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Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers
with a nonlocal intermolecular potential
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The Doi kinetic theory for flows of homogeneous, rodlike liquid crystalline polynile@P9 is extended to
model flows of nonhomogeneous, rodlike LCPs through a nonlémad-rangé intermolecular potential. The
theory featuresi) a nonlocal, anisotropic, effective intermolecular potential in an integral form that is consis-
tent with the chemical potentialji) short-range elasticity as well as long-range isotropic and anisotropic
elasticity, (iii ) a closed-form stress expression accounting for the nonlocal molecular interactiofiv )aad
extra elastic body force exclusively associated with the integral form of the intermolecular potential. With the
effective intermolecular potential, the theory is proven to be well posed in that it warrants a positive entropy
production and thereby the second law of thermodynamics. Approximate theories are obtained by gradient
expansions of the number density function in the free energy density.
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I. INTRODUCTION the stress expression in subsequent use of the theories until
Feng, Sgalary, and Lefb] showed that the stress should be
Doi developed his well-known kinetic theory for spatially augmented by additional elastic stress terms for the one-
homogeneous flows of rodlike liquid crystalline polymers constant approximation of the Marrucci-Greco potential re-
(LCPs, in which the excluded volume effect is accounted forcently, which accounts for only the long-range isotropic elas-
using either the Onsager or Maier-Saupe poteflialLater, ticity in the theory. Recently, Wan], extended the theories
Doi, Shimada, and Okano extended the theory to modelo model flows of spheroidal LCP molecules with rodlike and
flows of nonhomogeneous LCPs by introducing a long-rangelisklike LCPs as two extreme limits, in which an effective
intermolecular potential, called the hard-rod potential,intermolecular potential resulting from a gradient expansion
through a mean field calculatig]. With the extended Doi  of a nonlocal intermolecular potential is derived and used in
theory, Shimada, Doi, and Okan8] analyzed the spinodal the Smoluchowski equation to ensure the second law of ther-
decomposition kinetics. Marrucci and Grejet] further im-  modynamics, an important thermodynamical property that
proved the extended Doi theory by incorporating the molecuthe Marrucci-Greco theory does not share. Furthermore, he
lar anisotropy and the range of interaction into the theory andierived a closed-form expression for the stress tensor extend-
approximated the nonlocal potential using a truncated Tayloing the work of Feng, Sgalary, and Leal to include the long-
series expansion of the probability density functi®F to range anisotropic elasticity given in the intermolecular po-
obtain an approximate potential depending on gradients akntial. None of the theories mentioned above addresses the
the second moments of the PDF. In the Marrucci-Greco ineffect of the truely nonlocal intermolecular interaction on the
termolecular potential, both long-range isotropic and anisoelastic stress and the well posedness of the hydrodynamic
tropic elasticity are accounted for. Using the approximatetheory though.
theory, Marrucci and Grecpd4] derived the explicit formula The approximate theories based on the Taylor expansion
for the three Frank elastic constafesastic moduli K, K, of the PDF are easier to handle theoretically, especially, for
and K3 and identified their relative numerical order. Later, deriving the constitutive equation in differential forms for the
Bhave analyzed the spinodal decomposition kinetics of th@rientation tensor since their intermolecular potentials only
approximate Marrucci-Greco theory and compared thentontain local gradients of the PDF. However, it has no ad-
with the results obtained from the extended Doi thel@y  vantages for Brownian dynamical simulation on the Smolu-
However, the impact of the intermolecular potentials withchowski equation or its equivalent stochastic equations for
gradients of the PDF function was not fully accounted for inthe dynamical variables because an ensemble-averaged stress
expression would have to be evaluated if the coupled hydro-
dynamic equations were solved. Moreover, they are long-
*Corresponding author. wave, weakly nonlocal approximations to the kinetic theories
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of nonlocal intermolecular potentials after all. In fact, mostHere
are truncated at the quadratic order.
The purpose of this paper is to provide a general frame-
work for the systematic development of the Smoluchowski  B(m,m’,x)
equation with a nonlocal intermolecular potential and the
derivation of the stress expression, which gives the critical

coupling between the macroscopic momentum transport angefines the range of intermolecular interaction and the size of
the microscopic molecular orientation, and to explore thehe excluded volume. It is symmetric with respecintoand
well posedness of the hydrodynamic theory in terms of enm’, [Here we choose the range of the interaction as a spheri-
ergy dissipation. The development begins with generalizinga| pall B(0,R) € R3, a more general domain can be chosen

the free energy given in the Doi kinetic theory for homoge-in other applicationd.N measures the strength of the inter-
neous LCPs to account for nonlocal interactions and the LCRyolecular potentialV[ B(0,R)] is the volume of8(0,R).

molecular anisotropy following Marrucci and Greco'’s ap-
proach[4], but in a more general formalism. We adopt a 1
number density functioiNDF) in place of the PDF for the _{ V[S(O)]’ xe S(0),

. . - ; . L H(m,x)= (4)
potentially spatial variation of the orientational distribution
of the LCP molecules in the presence of translational diffu-
sion. We then identify an effective intermolecular potential in
accordance with the variational principle in the definition of

the chemical potential. The chemical potential comprlsed Ols the domain occupied by the molecule with its center of

the effective intermolecular potential is then used to yield themaSS at the origin, and[S(0)] is the volume ofS(0). This
Szzgtcgoxzkég:_k;nfgg :g?go;}gggh;hgogggt}%fgugt'%niintermolecular potential is quite general in that it can be used
W u v ! ! - PU€ 195 account for a variety of molecular geometries of revolu-

the nonlocality in the chemical potential, however, an extrationary configurations by specifying the shape functien
elastic body force in addition to the elastic stress emerges, . 1 ihe excluded volume formula B. Eor noncylindrical
which would vanish otherwise. We then show that the theoryShapes the excluded volume formula would have to be

developed warrants a positive entropy production thereby th?nodified accordingly. The intermolecular potential used by

zggorr\g ]J;thr‘]’; t(;‘:rr.maﬁ%ﬁnz?]:s'ezslallxbm(e)c(:l'tgnertct]enl?;?éMarrucci and Grec$4] and Wand 7] are two special cases.
u vatl W y Pproxi Since we are interested in the rodlike LCP hétds chosen

theory via gradient expansions of the NDF and refer theas a normalized characteristic function of a cylinder, repre-

readers to Ref7] for detalls. senting the rodlike molecular configuration. We remark that
both B(m,m’,x) andH(m,x) can be chosen to be smooth
[l. INTERMOLECULAR POTENTIAL functions with compact support to facilitate numerical com-
putations and mathematical analyses if it is necessary. By
definition, the number density of the LCP at material paint
is given by

N
Wﬂmxm ||, Xe B(O,R), (3)

0 otherwise,

0 otherwise,

is the normalized characteristic function for the domain oc-
upied by the LCP molecule, called the shape funct&{0,)

We model the molecules of the LCP as rigid rddglin-
ders of uniform circular cross sections whose height is con
siderably larger than its cross-sectional diametdrequal
size. Let() be a material volume in which the solution of
LCPs resides and(m,x,t) the NDF of liquid crystalline f f(m,x,t)dm. 5
polymers parallel to directiom at material poin and time fmi=21
t. For the LCP system, we extend the free energy in the Doi
kinetic theory[1] to include a nonlocal intermolecular poten-
tial as follows:

The intermolecular potential is essentially an averaged ex-
cluded volume with respect to the NDF over the domain
occupied by the single LCP molecule and the range of mo-
lecular interaction whose size is to be determined by experi-
ments. This choice of intermolecular potential takes into ac-
count the anisotropy of each individual moleclga H) as
well as the anisotropy in their ensemble at the material point
X (via BH andf). It thus exerts an anisotropic mean field of
both isotropic and anisotropic elasticity to the LCP molecule,
an attribute of anisotropic microstructure materials like

wherek is the Boltzmann constant aridthe absolute tem- LCPs.

perature; the intermolecular potentia(x,m,t) is defined by By definition, the chemical potential is the variation of the
free energy with respect to the NDF

A[f]:ijQf”m=l[f(m,x,t)lnf(m,x,t)—f(m,x,t)

U(m,x,t)f(m,x,t)|dmdx, (1)

KT

_ g SA
U(m,x,t) kaml:lLJQB(m,m X' =X) m= 55 (6)

XH(m® X" =x)T(m’, X", t)dx"dx"dm’. A simple calculation aided by changing the order of integra-

(2)  tion leads to
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u=kTInf+3(U+U,), (7) df 1
- ==V A[Dymm+D  (I-mm)]- (Vu)f}
dt KT
where
1 .
Uz(m,X,t):kT f B(m,,m,X"_X,) +k_TR[Dr(m)fRM]_R[mef],
Im"|=1J 02
XH(m,x"—=x)f(m,x",t)dx"dx’dm’. (8) m=K-m—K:mmm, (12
We identify the second part of the chemical potential whereD ;=0 andD, =0 are the translational diffusion co-
efficients parallel and normal to the orientation of the LCP
U =1(U+U ) 9) molecule, respectivelyD,(m)=0 is the rotary diffusivity
€2 2 [1], V is the gradient operator with respect to the spatial

o o variablex, V, is the gradient operator with respect to the
as the effective intermolecular potential since the total bulkotational variablem, R=mxV,, the rotational gradient

free energy is unchanged if the intermolecular potential ig)peratof8], K= Vv is the velocity gradient tensor, anddt
replaced by the effective intermolecular potential and it iSihe material derivatived(dt)+v- V.

clearly the_variatio_n of the free energy corresponding to the This equation, also known as the kinetic equation, gov-
molecular interaction erns the time evolution of the number density function
1 f(m,x,t). Sinceu depends orf nonlocally, the kinetic equa-
_J J U(m,x,t)f(m,x,t)dmdx|. (10) tion is in fact an integral-differential equation. With the time
2 JaJm=1 evolutionary equation for the NDF, we next derive an expres-
sion for the stress tensor from a virtual work principle to

The .form of the ef_fec_:tive in'gerr_nolecular potential is t.he_n couple the orientational dynamics of LCPs to the momentum
required by the variational principle. Mathematically, this 'Stransport process

equivalent to a symmetrization of the intermolecular poten-
tial. Although the effective intermolecular potential abd

contribute equally to the free energy, they are different as IV. CONSTITUTIVE EQUATION
functions ofm andx in that the mean fields corresponding to FOR THE STRESS TENSOR

the tWO pOtentia|S diﬁer Sl|ght|y Furthermore, the kemel In the LCP System’ the extra stress is given by two parts’
function the viscous stress, and the elastic stress,,

1)
Uezﬁ

fgﬁm,uﬂ L[B(m,m’ X' —x)H(m’ X'~X') =75t Te. a3

) S ) L For solutions of LCPs the viscous stress comes from two
+B(m’,m,x’ —x")H(m,x—x") Jdm"dx (1) sources, one from the solvent and the other from the solvent-

in the free energy with the effective potential is independen!‘CP interaction derived if1]

of the pair of double 1n,x) and (m’,x"), namely, it is indif- 7¢= 27D+ 2kT¢D:(mmmm) (14)
ferent to the choice of the test molecule and its location, s S '

making the effective potential an ideal choice for the i”ter'whereD=§(Vv+ Vv is the strain rate tensoms is the
molecular potential. This latter property is trivially satisfied go1yent viscosity¢ is a friction coefficient, both of which are
in the Doi kinetic theory by the way; it becomes a nontrivial positive, and

issue in the kinetic theories with nonlocal intermolecular po-

tentials however. The use of the effective intermolecular po-

tential seems straightforward, but was overlooked by many ()= (-)f(m,x,t)dm (15
before. In fact, it is crucial for the development of a well- Imi=1

posed hydrodyqamic theory since it warrants the positivqS an ensemble average with respect to the NI, x.t).
entropy production and thereby the second law of the ther- The elastic stress is derived through a generalized virtual

modynamics as we will show next. work principle[1,6]. Consider an infinitesimal displacement
given by su=vét, corresponding to a deformation rafe
Ill. SMOLUCHOWSKI EQUATION =Kdt. The variation of the free energy over the control
Having decided upon the intermolecular potential, wevolume () in response to the infinitesimal deformation and
next derive the Smoluchowskkinetic) equation for the displacement can be identified through the work done by the
NDF. We treat the LCP material system as incompressibl&lastic body force along the displacement and the elastic
and adopt the effective intermolecular potent®! Account-  Stress with respect to the deformation rate. It then follows
ing for both the translational and rotational diffusion as wellthat
as convection and following the derivation given in Refs.
[1,7], we present the Smoluchowski equation for the LCP 5A:f (S€: Tg— SU-Fo)dx, (16)
system as follows: 0
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whereF. is the body force induced by the long-range., V. ENTROPY PRODUCTION AND ENERGY DISSIPATION
nonloca) molecular interaction given by

=— k_T< < f f(m,x t)VP[B(m m’ X’ —x) thermal system can be calculated[ &6]
4 S)Z 1 L f L 1
. d
— 1
XH(m’,x"=x")+B(m’,m,x"—x") Ts= dtUQ(ZPV'V)dHA[f]}
XH(m,x—x")] dx’dx”>>. (17) - _ py-vdx
o dt
i isi ifi d
The elastic stress is identified as _ka f —[f(m,x,t)ln F(moxt)— F(mx.t)
0 J m|-1dt
Te=—(MXRum). (18
1
The details of the derivation are given in the appendix. +m_ue(m,x,t)f(m,x,t) dm dx
From Eq.(17) and the derivation presented in the appen-
dix, we conclude that the extra elastic body force is the direct ~ _ _ f L _
consequence of the nonlocality in the effective intermolecu- Q[V (=Pl 75t 7o) +Fe]-vdx

lar potential. Equatiofil7) shows explicit dependence on the
spatial inhomogeneity of the NDF as well as the spatial
variation of the interaction intensity quantified By{. Thus,

the specific expression of the extra elastic body force de-

_ka f E[f t)in Ot )
o Jm|=1dt (m,x,t)Inf(m,x,t) —f(m,x,1)

pends strongly on the form of the nonlocal intermolecular i
potential[9]. +2kTUe(m,x,t)f(m,x,t) dmdx
The elastic stress yields a torque to the macroscopic mo-
tion given by the ensemble-averaged molecular torque: :J [(—pl+ 7o+ 70): VV— Fo- v]dx
Q

— 7ij €ijk = (R W)k (19

d
where €, is the permutation symbd]8]. An additional —kTLJm1E[f(m,x,t)lnf(m,x,t)—f(m,x,t)

torque comes from the extra elastic body force. The total

torque on the control volume is then given by 1 Uo(m.x, ) f(m,x,t) |dm dx
e 1N 1N

TokT

d*
=f TS:VVdX—j f == f(m,x,t)dm dx
Q oJjmj=1" dt

:fﬂ[znsD:D+2kTg<(mm:D)2>]dx

fﬂ(— 7ij €ijk T XiFej€iji) dX

:f (J (’R,u)kf(m,x,t)dm+XiFejeijk)dX.
Q\ Jm[=1

(20)
1
The Smoluchowski equation, the constitutive equation of T L)(V(M) A[Dymm+D (I-mm)]-Vu
stress and the extra body force along with the continuity
equation and balance of linear momentum constitute the gov- +Ru-D,Ru)dx, (23

erning system of equations for the solution of rodlike LCPs.

The continuity equation is where
( il = ! V-{[D +D, (I Vu)f
p=0 (21) at kT A[Dymm+D, (I-mm)]-(Vu)f}
wherep is the mass density of the LCP solution. The balance 1
of linear momentum equation is i RDi(MIRu]. (24)
pv=V.(—pl+7)+F.+pg, (22)  This is non-negative definite provided
. . ) 7s=0,{=0,
wherep is the static pressure amyis the external force per
unit mass. , _ D,mm+D, (I—mm)=0, (25)
Given the hydrodynamic theory, we next examine the
time evolution of the total energy in the system. D,(m)=0.
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Thus, the total energy is dissipative and the second law ofonfigurations, for example, the LCP molecules of revolu-
thermodynamics is verified under the isothermal conditiortionary symmetry, although we present it here only for rod-
since Eqs.(25) are all positive by assumption. We remark like LCPs. It provides the critical coupling between the mac-
that the second law of thermodynamics is warranted becausescopic momentum transport and the mesoscopic material
of the choice of the effective intermolecular potential. If the structure through the closed-form stress and extra elastic
original intermolecular potentidl (m,x,t) was used in the body force formula. The positive entropy production clearly
Smoluchowski equation, the above inequality could not havestablishes the dissipative nature of the theory under the iso-
been established. thermal condition. It is therefore proven to be a hydrody-
namically well-posed theory for studying the flow behavior
of nonhomogeneous rodlike LCPs. The stress and the extra
elastic body force formula will also be useful if the hydro-
dynamic simulation is carried out with the equivalent sto-

An approximate, “weakly nonlocal” theory of an inter- chastic differential equations instead of the Smoluchowski
molecular potential in differential forms can be obtained if equation.
we expand the NDF in Taylor series in the free energy den- Approximate theories can be obtained by gradient expan-
sity (1). An approximate theory with a quadratic expansionSiOﬂS of the NDF in the free energy density. The resultant has
has been derived for flows of nonhomogeneous LCPs of chemical potential that depends on derivatives of the first
spheroidal configurations in Rdf7], where an effective in- few moments of the NDF. A symmetrized effective intermo-
termolecular potential is devised at the level of second andecular potential must be devised in consistence with the
fourth order moments of NDF. Higher order truncation maychemical potential to ensure the second law of thermody-
also be attempted through straightforward, but laborious calramics. Different from the nonlocal theory though, it yields a
culations if one would like to pursue higher order of accu-stress expression whose divergence provides all the elastic
racy in the approximation to the integral form of intermo- forces.
lecular potential.
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VI. APPROXIMATE THEORIES BASED ON GRADIENT
EXPANSIONS OF NDF

APPENDIX: DERIVATION OF THE ELASTIC STRESS

AND BODY FORCE
VIl. CONCLUSION

We derive the elastic stress and the extra elastic body
ce using the virtualwork principle [1], which is also
equivalent to thdeast action principleg/11]. We begin with
an infinitesimal deformation given by=Két. The corre-

We have outlined a systematic extension of the Doi ki'for
netic theory to a kinetic theory of nonlocal intermolecular
potential of an integral form for solutions of honhomoge-

neous, rodlike liquid crystalline polymers, in which both sponding variation of the NDFis given by the change df
short-range elasticity and long-range isotropic as well as anélong the material point path given by]

isotropic elasticity are included. In this development, we
have identified the need for an effective intermolecular po-

tential to be consistent with the chemical potential and to df
ensure the second law of thermodynamics. In the presence of of = —6t=—R-(mxXK-mf)ét. (A1)
the nonlocal intermolecular potential of the integral form, we dt

discover an extra elastic body force that exerts an additional . o
elastic body torque at each material point besides the The virtual work principle states that the change of the

ensemble-averaged molecular torque. The existence of tHEE® €nergy is equal to the virtual work done by the elastic
extra elastic body force is due to the nonlocality in the inter-SI€SST with respect to the infinitesimal deformation and the
molecular potential involving the finite range of molecular €Xtra elastic body forc&, along the infinitesimal displace-
interaction and the spatial variation of the NDF. mentsu=vaét,

This theory generalizes all existing kinetic-based hydro-
dynamic theories for solutions of rodlike LCPs and has the 5A:f [ 7o:K—Fq-v]dx &t. (A2)
potential to accommodate an extended class of molecular Q
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Here, X{[B(m,m’,x"=x)H(m',Xx"—x")
+B(m’,m,x’—x”)H(m,x—x’)]f(m’,x”,t)}dx”dx’
SA=KT o) fInf— fldmd
me AL 2kT( e)} max ff dmdx
[mf=1
U
=kTJ f HInH——e}af _kT
oJm|=1 KT f f m,x,t) dm’
o3 [mf=1 [m’|=1
1
— 6 of
2kT (Ue)t 2kT(Ue> Hdmdx ><[u(x,t)-V[B(m,m’,x’—x)H(m’,x”—x’)
df
=kT St +B(m’,m,x’—x")H(m,x—x")]f(m’,x",t)
Jujm -1 [ kT} dt ( ( ]

+[B(m,m’,x"=x)H(m’,x"—x")

1 df
2kT o(Ue)f— ZkT(Ue)aﬁt”dm dx +B(m’,m,x"—x")H(m,x—x")]

—kTJf af
0 o jmp=a * at

oU f 1Udf
HlokT oV T k7 Year

—f(m X" t)}dx”dx—ff dmdx
Imil= 1

=D+, (AB)

5t> }dm dx, (A3)

where
where the incompressibility condition is used in moving the
derivative into the integral. The first term on the right-hand
side can be rewritten as

kT
(I)z—j f f v(x,t)-V[B(m,m’,x"—Xx)
4 Jo3Jymi=1J|m'=1 [
fﬂf'mnlfuﬁ dm dx XH(M' X"—x")+B(m’,m,x" —x")H(m,x—x")]
X f(m,x,t)f(m’,x",t)dx"dx"dm’dm dx &t

= kTT JQv(x,t)-<< fQZV[B(m,m’,x’—x)

XH(m',x"=x")+B(m’,m,x’ —x")

=f f Hil,u[—’R,.(me-mf)]dmdxét

=f Ru(mxXK-m)fdmdx st
Iml=1

—f f | (MXRum):Kfdmdx ét. (Ad) XH(m,x—x’)]dx”dx’>>dxé‘t (A7)
m|=1
The elastic stress can then be identified as and
Te=—(MXRum). (A5)
II—kadf dd’d”df dm’f t
The second part of the right-hand side reads: (= 4| Jas X [ml=1 m @xaxex Im’ =1 m“f(m.xt)
ff (1 1 df ) X[B(m,m’,x"—x)H(m’,x’ —X)
= O0Uf— U 6t|dmdx
=112 % 2 7°dt +B(m’,m,x’ —x")H(m,x—x")]
1dU 1 df d
f fml (|2 dt [ g Yegy/dmdx et X| g Fm" XD =v(X", 1) - Vo f(m', X", 1) | &t
kadf dm f( t)f dm’ Jf 02 dm dx| ot (A8)
=— X m f(m,Xx, m'— — —dm dx
0 Jjml-1 jmj=1 — dt oJjmj=1°dt
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Exchanging the order of integration, we notice that the first kT
and the third term cancel each other. In the end, we have  Fe=— T[<< QZV[B(m,m’,x’ —X)H(m’,x"—x")

(II)=—k4—TJﬂaflm”_ljnm,”_lv(x,t)-Vf(m,x,t) +B(m"m,X'—X”)H(m,x—x’)]dx’dx”>>
X[B(m’,m,x"=x)H(m’,x"—x") —<<fQZV(Inf)[B(m,m’,x’—x)H(m’,x”—x’)
+B(mMm’,m,x" —x")H(m,x—x")]

X f(m’,x",t)f(m,x,t)dx"dx’dm’dm dx ot +B(m',m,X’—X”)H(m,x—x’)]dx’dx”>H
KT
=—7J9v(x,t)-<<lev[lnf(m.x,t)] :—kTT<<L)zf(m,x,t)VH[B(m,m’,X'—X)

X[B(m',m,x"—x)H(m’,x"—x") XH(M’ X" —x')+B(m’,m,x’ —x")

+B(m’,m,x’ —X")H(m,X—X')]dX"dX'>>dx ot. XH(m,x—x")]

dx’dx”> > . (A10)

A9 L . .
(A9) In the derivation, we notice that the existence of the extra

elastic body force is related to the kernel funct®id, which
Combining (I) and (1), we identify the extra elastic body is the source of the nonlocélbng-range molecular interac-
force as tion.
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