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Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers
with a nonlocal intermolecular potential
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The Doi kinetic theory for flows of homogeneous, rodlike liquid crystalline polymers~LCPs! is extended to
model flows of nonhomogeneous, rodlike LCPs through a nonlocal~long-range! intermolecular potential. The
theory features~i! a nonlocal, anisotropic, effective intermolecular potential in an integral form that is consis-
tent with the chemical potential,~ii ! short-range elasticity as well as long-range isotropic and anisotropic
elasticity, ~iii ! a closed-form stress expression accounting for the nonlocal molecular interaction, and~iv! an
extra elastic body force exclusively associated with the integral form of the intermolecular potential. With the
effective intermolecular potential, the theory is proven to be well posed in that it warrants a positive entropy
production and thereby the second law of thermodynamics. Approximate theories are obtained by gradient
expansions of the number density function in the free energy density.
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I. INTRODUCTION

Doi developed his well-known kinetic theory for spatial
homogeneous flows of rodlike liquid crystalline polyme
~LCPs!, in which the excluded volume effect is accounted
using either the Onsager or Maier-Saupe potential@1#. Later,
Doi, Shimada, and Okano extended the theory to mo
flows of nonhomogeneous LCPs by introducing a long-ra
intermolecular potential, called the hard-rod potent
through a mean field calculation@2#. With the extended Doi
theory, Shimada, Doi, and Okano@3# analyzed the spinoda
decomposition kinetics. Marrucci and Greco@4# further im-
proved the extended Doi theory by incorporating the mole
lar anisotropy and the range of interaction into the theory
approximated the nonlocal potential using a truncated Ta
series expansion of the probability density function~PDF! to
obtain an approximate potential depending on gradients
the second moments of the PDF. In the Marrucci-Greco
termolecular potential, both long-range isotropic and ani
tropic elasticity are accounted for. Using the approxim
theory, Marrucci and Greco@4# derived the explicit formula
for the three Frank elastic constants~elastic moduli! K1 , K2 ,
and K3 and identified their relative numerical order. Late
Bhave analyzed the spinodal decomposition kinetics of
approximate Marrucci-Greco theory and compared th
with the results obtained from the extended Doi theory@5#.
However, the impact of the intermolecular potentials w
gradients of the PDF function was not fully accounted for
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the stress expression in subsequent use of the theories
Feng, Sgalary, and Leal@6# showed that the stress should b
augmented by additional elastic stress terms for the o
constant approximation of the Marrucci-Greco potential
cently, which accounts for only the long-range isotropic el
ticity in the theory. Recently, Wang@7#, extended the theorie
to model flows of spheroidal LCP molecules with rodlike a
disklike LCPs as two extreme limits, in which an effectiv
intermolecular potential resulting from a gradient expans
of a nonlocal intermolecular potential is derived and used
the Smoluchowski equation to ensure the second law of t
modynamics, an important thermodynamical property t
the Marrucci-Greco theory does not share. Furthermore
derived a closed-form expression for the stress tensor ext
ing the work of Feng, Sgalary, and Leal to include the lon
range anisotropic elasticity given in the intermolecular p
tential. None of the theories mentioned above addresses
effect of the truely nonlocal intermolecular interaction on t
elastic stress and the well posedness of the hydrodyna
theory though.

The approximate theories based on the Taylor expan
of the PDF are easier to handle theoretically, especially,
deriving the constitutive equation in differential forms for th
orientation tensor since their intermolecular potentials o
contain local gradients of the PDF. However, it has no
vantages for Brownian dynamical simulation on the Smo
chowski equation or its equivalent stochastic equations
the dynamical variables because an ensemble-averaged
expression would have to be evaluated if the coupled hyd
dynamic equations were solved. Moreover, they are lo
wave, weakly nonlocal approximations to the kinetic theor
©2002 The American Physical Society04-1
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of nonlocal intermolecular potentials after all. In fact, mo
are truncated at the quadratic order.

The purpose of this paper is to provide a general fram
work for the systematic development of the Smoluchow
equation with a nonlocal intermolecular potential and
derivation of the stress expression, which gives the crit
coupling between the macroscopic momentum transport
the microscopic molecular orientation, and to explore
well posedness of the hydrodynamic theory in terms of
ergy dissipation. The development begins with generaliz
the free energy given in the Doi kinetic theory for homog
neous LCPs to account for nonlocal interactions and the L
molecular anisotropy following Marrucci and Greco’s a
proach @4#, but in a more general formalism. We adopt
number density function~NDF! in place of the PDF for the
potentially spatial variation of the orientational distributio
of the LCP molecules in the presence of translational dif
sion. We then identify an effective intermolecular potential
accordance with the variational principle in the definition
the chemical potential. The chemical potential comprised
the effective intermolecular potential is then used to yield
Smoluchowski or kinetic equation. With the kinetic equatio
we set out to derive the elastic stress in closed form. Du
the nonlocality in the chemical potential, however, an ex
elastic body force in addition to the elastic stress emerg
which would vanish otherwise. We then show that the the
developed warrants a positive entropy production thereby
second law of thermodynamics. Finally, we outline the p
cedure for the derivation of a weakly nonlocal approxim
theory via gradient expansions of the NDF and refer
readers to Ref.@7# for details.

II. INTERMOLECULAR POTENTIAL

We model the molecules of the LCP as rigid rods~cylin-
ders of uniform circular cross sections whose height is c
siderably larger than its cross-sectional diameter! of equal
size. LetV be a material volume in which the solution o
LCPs resides andf (m,x,t) the NDF of liquid crystalline
polymers parallel to directionm at material pointx and time
t. For the LCP system, we extend the free energy in the
kinetic theory@1# to include a nonlocal intermolecular pote
tial as follows:

A@ f #5kTE
V
E

imi51
F f ~m,x,t !lnf ~m,x,t !2 f ~m,x,t !

1
1

2kT
U~m,x,t ! f ~m,x,t !Gdm dx, ~1!

wherek is the Boltzmann constant andT the absolute tem-
perature; the intermolecular potentialU(x,m,t) is defined by

U~m,x,t !5kTE
im8i51

E
V
E

V
B~m,m8,x82x!

3H~m8,x92x8! f ~m8,x9,t !dx9dx8dm8.

~2!
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Here

B~m,m8,x!5H N

V@B~0,R!#
im3m8i , xPB~0,R!,

0 otherwise,

~3!

defines the range of intermolecular interaction and the siz
the excluded volume. It is symmetric with respect tom and
m8. @Here we choose the range of the interaction as a sph
cal ball B(0,R)PR3, a more general domain can be chos
in other applications.# N measures the strength of the inte
molecular potential.V@B(0,R)# is the volume ofB(0,R).

H~m,x!5H 1

V@S~0!#
, xPS~0!,

0 otherwise,

~4!

is the normalized characteristic function for the domain o
cupied by the LCP molecule, called the shape function,S(0)
is the domain occupied by the molecule with its center
mass at the origin, andV@S(0)# is the volume ofS(0). This
intermolecular potential is quite general in that it can be u
to account for a variety of molecular geometries of revo
tionary configurations by specifying the shape functionH
and the excluded volume formula inB. For noncylindrical
shapes, the excluded volume formula would have to
modified accordingly. The intermolecular potential used
Marrucci and Greco@4# and Wang@7# are two special cases
Since we are interested in the rodlike LCP here,H is chosen
as a normalized characteristic function of a cylinder, rep
senting the rodlike molecular configuration. We remark th
both B(m,m8,x) and H(m,x) can be chosen to be smoo
functions with compact support to facilitate numerical co
putations and mathematical analyses if it is necessary.
definition, the number density of the LCP at material poinx
is given by

E
imi51

f ~m,x,t !dm. ~5!

The intermolecular potential is essentially an averaged
cluded volume with respect to the NDF over the doma
occupied by the single LCP molecule and the range of m
lecular interaction whose size is to be determined by exp
ments. This choice of intermolecular potential takes into
count the anisotropy of each individual molecule~via H! as
well as the anisotropy in their ensemble at the material po
x ~via BH and f !. It thus exerts an anisotropic mean field
both isotropic and anisotropic elasticity to the LCP molecu
an attribute of anisotropic microstructure materials li
LCPs.

By definition, the chemical potential is the variation of th
free energy with respect to the NDF

m5
dA

d f
. ~6!

A simple calculation aided by changing the order of integ
tion leads to
4-2
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m5kT ln f 1 1
2 ~U1U2!, ~7!

where

U2~m,x,t !5kT E
im8i51

E
V2

B~m8,m,x92x8!

3H~m,x82x! f ~m,x9,t !dx9dx8dm8. ~8!

We identify the second part of the chemical potential

Ue5
1

2
~U1U2! ~9!

as the effective intermolecular potential since the total b
free energy is unchanged if the intermolecular potentia
replaced by the effective intermolecular potential and it
clearly the variation of the free energy corresponding to
molecular interaction

Ue5
d

d f F1

2 EV
E

imi51
U~m,x,t ! f ~m,x,t !dm dxG . ~10!

The form of the effective intermolecular potential is th
required by the variational principle. Mathematically, this
equivalent to a symmetrization of the intermolecular pot
tial. Although the effective intermolecular potential andU
contribute equally to the free energy, they are different
functions ofm andx in that the mean fields corresponding
the two potentials differ slightly. Furthermore, the kern
function

E
V
E

im8i51

1
2 @B~m,m8,x82x!H~m8,x92x8!

1B~m8,m,x82x9!H~m,x2x8!#dm8dx8 ~11!

in the free energy with the effective potential is independ
of the pair of double (m,x) and (m8,x9), namely, it is indif-
ferent to the choice of the test molecule and its locati
making the effective potential an ideal choice for the int
molecular potential. This latter property is trivially satisfie
in the Doi kinetic theory by the way; it becomes a nontriv
issue in the kinetic theories with nonlocal intermolecular p
tentials however. The use of the effective intermolecular
tential seems straightforward, but was overlooked by m
before. In fact, it is crucial for the development of a we
posed hydrodynamic theory since it warrants the posi
entropy production and thereby the second law of the th
modynamics as we will show next.

III. SMOLUCHOWSKI EQUATION

Having decided upon the intermolecular potential,
next derive the Smoluchowski~kinetic! equation for the
NDF. We treat the LCP material system as incompress
and adopt the effective intermolecular potential~9!. Account-
ing for both the translational and rotational diffusion as w
as convection and following the derivation given in Re
@1,7#, we present the Smoluchowski equation for the L
system as follows:
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dt
5

1

kT
“•$@D imm1D'~ I2mm!#•~“m! f %

1
1

kT
R•@Dr~m! fRm#2R•@m3ṁf #,

ṁ5K"m2K:mmm, ~12!

whereD i>0 andD'>0 are the translational diffusion co
efficients parallel and normal to the orientation of the LC
molecule, respectively,Dr(m)>0 is the rotary diffusivity
@1#, “ is the gradient operator with respect to the spa
variablex, “m is the gradient operator with respect to th
rotational variablem, R5m3“m the rotational gradient
operator@8#, K5“v is the velocity gradient tensor, andd/dt
the material derivative (]/]t)1v•“.

This equation, also known as the kinetic equation, g
erns the time evolution of the number density functi
f (m,x,t). Sincem depends onf nonlocally, the kinetic equa-
tion is in fact an integral-differential equation. With the tim
evolutionary equation for the NDF, we next derive an expr
sion for the stress tensor from a virtual work principle
couple the orientational dynamics of LCPs to the moment
transport process.

IV. CONSTITUTIVE EQUATION
FOR THE STRESS TENSOR

In the LCP system, the extra stress is given by two pa
the viscous stressts and the elastic stresste ,

t5ts1te . ~13!

For solutions of LCPs the viscous stress comes from
sources, one from the solvent and the other from the solv
LCP interaction derived in@1#

ts52hsD12kTzD:^mmmm&, ~14!

where D5 1
2 (“v1“vT) is the strain rate tensor,hs is the

solvent viscosity,z is a friction coefficient, both of which are
positive, and

^~• !&5E
imi51

~• ! f ~m,x,t !dm ~15!

is an ensemble average with respect to the NDFf (m,x,t).
The elastic stress is derived through a generalized vir

work principle @1,6#. Consider an infinitesimal displaceme
given by du5vdt, corresponding to a deformation ratede
5Kdt. The variation of the free energy over the contr
volume V in response to the infinitesimal deformation a
displacement can be identified through the work done by
elastic body force along the displacement and the ela
stress with respect to the deformation rate. It then follo
that

dA5E
V

~de:te2du•Fe!dx, ~16!
4-3
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whereFe is the body force induced by the long-range~i.e.,
nonlocal! molecular interaction given by

52
kT

4 K K E
V2

f ~m,x,t !“F1

f
@B~m,m8,x82x!

3H~m8,x92x8!1B~m8,m,x82x9!

3H~m,x2x8!#Gdx8dx9L L . ~17!

The elastic stress is identified as

te52^m3Rmm&. ~18!

The details of the derivation are given in the appendix.
From Eq.~17! and the derivation presented in the appe

dix, we conclude that the extra elastic body force is the dir
consequence of the nonlocality in the effective intermole
lar potential. Equation~17! shows explicit dependence on th
spatial inhomogeneity of the NDF as well as the spa
variation of the interaction intensity quantified byBH. Thus,
the specific expression of the extra elastic body force
pends strongly on the form of the nonlocal intermolecu
potential@9#.

The elastic stress yields a torque to the macroscopic
tion given by the ensemble-averaged molecular torque:

2t i j e i jk5^Rm&k , ~19!

where e i jk is the permutation symbol@8#. An additional
torque comes from the extra elastic body force. The to
torque on the control volume is then given by

E
V

~2t i j e i jk1xiFe je i jk !dx

5E
V
S E

imi51
~Rm!kf ~m,x,t !dm1xiFe je i jk D dx.

~20!

The Smoluchowski equation, the constitutive equation
stress and the extra body force along with the continu
equation and balance of linear momentum constitute the g
erning system of equations for the solution of rodlike LCP
The continuity equation is

ṙ50 ~21!

wherer is the mass density of the LCP solution. The balan
of linear momentum equation is

r v̇5“•~2pI1t!1Fe1rg, ~22!

wherep is the static pressure andg is the external force pe
unit mass.

Given the hydrodynamic theory, we next examine t
time evolution of the total energy in the system.
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V. ENTROPY PRODUCTION AND ENERGY DISSIPATION

Let S be the entropy of the LCP system inV. When the
external force is neglected, the entropy production of an i
thermal system can be calculated as@10#

TṠ52
d

dt F EV
~ 1

2 rv•v!dx1A@ f #G
52E

V
r

dv

dt
•v dx

2kTE
V
E

imi51

d

dt F f ~m,x,t !ln f ~m,x,t !2 f ~m,x,t !

1
1

2kT
Ue~m,x,t ! f ~m,x,t !Gdm dx

52E
V

@“•~2pI1ts1te!1Fe#•v dx

2kTE
V
E

imi51

d

dt F f ~m,x,t !ln f ~m,x,t !2 f ~m,x,t !

1
1

2kT
Ue~m,x,t ! f ~m,x,t !Gdm dx

5E
V

@~2pI1ts1te!:“v2Fe•v#dx

2kTE
V
E

imi51

d

dt F f ~m,x,t !ln f ~m,x,t !2 f ~m,x,t !

1
1

2kT
Ue~m,x,t ! f ~m,x,t !Gdm dx

5E
V

ts :“vdx2E
V
E

imi51
m

d*

dt
f ~m,x,t !dm dx

5E
V

@2hsD:D12kTz^~mm:D!2&#dx

1
1

kT EV
^“~m!•@D imm1D'~ I2mm!#•“m

1Rm•DrRm&dx, ~23!

where

d*

dt
5

1

kT
“•$@D imm1D'~ I2mm!#•~“m! f %

1
1

kT
R•@Dr~m! fRm#. ~24!

This is non-negative definite provided

hs>0,z>0,

D imm1D'~ I2mm!>0, ~25!

Dr~m!>0.
4-4
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Thus, the total energy is dissipative and the second law
thermodynamics is verified under the isothermal condit
since Eqs.~25! are all positive by assumption. We rema
that the second law of thermodynamics is warranted beca
of the choice of the effective intermolecular potential. If t
original intermolecular potentialU(m,x,t) was used in the
Smoluchowski equation, the above inequality could not h
been established.

VI. APPROXIMATE THEORIES BASED ON GRADIENT
EXPANSIONS OF NDF

An approximate, ‘‘weakly nonlocal’’ theory of an inter
molecular potential in differential forms can be obtained
we expand the NDF in Taylor series in the free energy d
sity ~1!. An approximate theory with a quadratic expansi
has been derived for flows of nonhomogeneous LCPs
spheroidal configurations in Ref.@7#, where an effective in-
termolecular potential is devised at the level of second
fourth order moments of NDF. Higher order truncation m
also be attempted through straightforward, but laborious
culations if one would like to pursue higher order of acc
racy in the approximation to the integral form of interm
lecular potential.

As illustrated in Ref.@7#, the derivation of the approxi
mate theories should share the same procedures as we
lined above, i.e., an effective intermolecular potential m
be used in the Smoluchowski equation to be consistent w
the chemical potential and to warrant the positive entro
production in the total energy. Moreover, special care m
be exercised in the derivation of the elastic stress when
plying the generalized virtual work principle@6#. In the ap-
proximate theories, the extra elastic body force reduces
divergence of a second order tensor so that it can be c
bined completely with the elastic stress given by Eq.~18! to
give the total elastic stress tensor. For details, please ref
Ref. @7#.

VII. CONCLUSION

We have outlined a systematic extension of the Doi
netic theory to a kinetic theory of nonlocal intermolecu
potential of an integral form for solutions of nonhomog
neous, rodlike liquid crystalline polymers, in which bo
short-range elasticity and long-range isotropic as well as
isotropic elasticity are included. In this development,
have identified the need for an effective intermolecular
tential to be consistent with the chemical potential and
ensure the second law of thermodynamics. In the presenc
the nonlocal intermolecular potential of the integral form, w
discover an extra elastic body force that exerts an additio
elastic body torque at each material point besides
ensemble-averaged molecular torque. The existence of
extra elastic body force is due to the nonlocality in the int
molecular potential involving the finite range of molecul
interaction and the spatial variation of the NDF.

This theory generalizes all existing kinetic-based hyd
dynamic theories for solutions of rodlike LCPs and has
potential to accommodate an extended class of molec
05150
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configurations, for example, the LCP molecules of revo
tionary symmetry, although we present it here only for ro
like LCPs. It provides the critical coupling between the ma
roscopic momentum transport and the mesoscopic mat
structure through the closed-form stress and extra ela
body force formula. The positive entropy production clea
establishes the dissipative nature of the theory under the
thermal condition. It is therefore proven to be a hydrod
namically well-posed theory for studying the flow behavi
of nonhomogeneous rodlike LCPs. The stress and the e
elastic body force formula will also be useful if the hydr
dynamic simulation is carried out with the equivalent s
chastic differential equations instead of the Smoluchow
equation.

Approximate theories can be obtained by gradient exp
sions of the NDF in the free energy density. The resultant
a chemical potential that depends on derivatives of the
few moments of the NDF. A symmetrized effective interm
lecular potential must be devised in consistence with
chemical potential to ensure the second law of thermo
namics. Different from the nonlocal theory though, it yields
stress expression whose divergence provides all the el
forces.
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APPENDIX: DERIVATION OF THE ELASTIC STRESS
AND BODY FORCE

We derive the elastic stress and the extra elastic b
force using the virtualwork principle @1#, which is also
equivalent to theleast action principle@11#. We begin with
an infinitesimal deformation given bye5Kdt. The corre-
sponding variation of the NDFf is given by the change off
along the material point path given by@1#

d f 5
d f

dt
dt52R•~m3K"mf !dt. ~A1!

The virtual work principle states that the change of t
free energy is equal to the virtual work done by the elas
stresst with respect to the infinitesimal deformation and t
extra elastic body forceFe along the infinitesimal displace
mentdu5vdt,

dA5E
V

@te :K2Fe•v#dx dt. ~A2!
4-5
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Here,

dA5kTE
V
E

imi51
dF f lnf 2 f 1

1

2kT
~Ue! f Gdm dx

5kTE
V
E

imi51
H F ln f 1

Ue

kTGd f

1F 1

2kT
d~Ue! f 2

1

2kT
~Ue!d f G J dm dx

5kTE
V
E

imi51
F F ln f 1

Ue

kTG d f

dt
dt

1S 1

2kT
d~Ue! f 2

1

2kT
~Ue!

d f

dt
dt D Gdm dx

5kTE
V
E

imi51
Fm d f

dt
dt

1S 1

2kT
dUef 2

1

2kT
Ue

d f

dt
dt D Gdm dx, ~A3!

where the incompressibility condition is used in moving t
derivative into the integral. The first term on the right-ha
side can be rewritten as

E
V
E

imi51
md f dm dx

5E
V
E

imi51
m@2R•~m3K"mf !#dm dx dt

5E
V
E

imi51
Rm~m3K"m! f dm dx dt

52E
V
E

imi51
~m3Rmm!:K f dm dx dt. ~A4!

The elastic stress can then be identified as

te52^m3Rmm&. ~A5!

The second part of the right-hand side reads:

E
V
E

imi51
S 1

2
dUef 2

1

2
Ue

d f

dt
dt Ddm dx

5E
V
E

imi51
S 1

2

dUe

dt
f 2

1

2
Ue

d f

dt Ddm dx dt

5
kT

4 F E
V3

dxE
imi51

dm f ~m,x,t !E
im8i51

dm8
d

dt
05150
3$@B~m,m8,x82x!H~m8,x92x8!

1B~m8,m,x82x9!H~m,x2x8!# f ~m8,x9,t !%dx9dx8

2E
V
E

imi51
Ue

d f

dt
dm dxGdt

5
kT

4 F E
V3

dxE
imi51

dm f ~m,x,t !E
im8i51

dm8

3H v~x,t !•“@B~m,m8,x82x!H~m8,x92x8!

1B~m8,m,x82x9!H~m,x2x8!# f ~m8,x9,t !

1@B~m,m8,x82x!H~m8,x92x8!

1B~m8,m,x82x9!H~m,x2x8!#

3
]

]t
f ~m8,x9,t !J dx9dx82E

V
E

imi51
Ue

d f

dt
dm dxGdt

5~ I!1~ II !, ~A6!

where

~ I!5
kT

4 E
V3
E

imi51
E

im8i51
v~x,t !•“@B~m,m8,x82x!

3H~m8,x92x8!1B~m8,m,x82x9!H~m,x2x8!#

3 f ~m,x,t ! f ~m8,x9,t !dx9dx8dm8dm dx dt

5
kT

4 E
V

v~x,t !•K K E
V2
“@B~m,m8,x82x!

3H~m8,x92x8!1B~m8,m,x82x9!

3H~m,x2x8!#dx9dx8L L dx dt ~A7!

and

~ II !5
kT

4 F E
V3

dxE
imi51

dm dx8dx9dxE
im8i51

dm8 f ~m,x,t !

3@B~m,m8,x82x!H~m8,x82x!

1B~m8,m,x82x9!H~m,x2x8!#

3S d

dt
f ~m8,x9,t !2v~x9,t !•“x9 f ~m8,x9,t ! D dt

2E
V
E

imi51
Ue

d f

dt
dm dxGdt. ~A8!
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Exchanging the order of integration, we notice that the fi
and the third term cancel each other. In the end, we hav

~ II !52
kT

4 E
V3
E

imi51
E

im8i51
v~x,t !•“ f ~m,x,t !

3@B~m8,m,x82x!H~m8,x92x8!

1B~m8,m,x82x9!H~m,x2x8!#

3 f ~m8,x9,t ! f ~m,x,t !dx9dx8dm8dm dx dt

52
kT

4 E
V

v~x,t !•K K E
V2
“@ ln f ~m,x,t !#

3@B~m8,m,x82x!H~m8,x92x8!

1B~m8,m,x82x9!H~m,x2x8!#dx9dx8L L dx dt.

~A9!

Combining ~I! and ~II !, we identify the extra elastic bod
force as
s

05150
t
Fe52

kT

4 F K K E
V2
“@B~m,m8,x82x!H~m8,x92x8!

1B~m8,m,x82x9!H~m,x2x8!#dx8dx9L L
2K K E

V2
“ ~ lnf !@B~m,m8,x82x!H~m8,x92x8!

1B~m8,m,x82x9!H~m,x2x8!#dx8dx9L L G
52

kT

4 K K E
V2

f ~m,x,t !“F1

f
@B~m,m8,x82x!

3H~m8,x92x8!1B~m8,m,x82x9!

3H~m,x2x8!#Gdx8dx9L L . ~A10!

In the derivation, we notice that the existence of the ex
elastic body force is related to the kernel functionBH, which
is the source of the nonlocal~long-range! molecular interac-
tion.
s
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