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Abstract We present a convergence analysis of a stochastic method for numerical modeling of complex fluids

using Brownian configuration fields (BCF) for shear flows. The analysis takes into account the special structure

of the stochastic partial differential equations for shear flows. We establish the optimal rate of convergence. We

also analyze the nature of the error by providing its leading order asymptotics.
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1 Introduction

Stochastic methods have become an increasingly popular tool in modeling complex fluids, in-
cluding polymeric fluids, liquid crystal flows, suspension and sedimentation. By modeling di-
rectly the dynamics and conformation of the macromolecules or particles in the solvent, they
provide a direct link between the structure of the solute and the properties of the flows. Further-
more, this approach bypasses the need for empirical constitutive relations. However, stochastic
methods also suffer from well-known difficulties, namely that the accuracy is often poor and
the results are noisy. Therefore it is very important to understand the error in such methods in
order to improve their accuracy. In this paper we analyze one of the most competitive stochastic
method that uses Brownian configuration fields in the simplest flow geometry, the shear flow.
We establish optimal rate of convergence and we analyze the nature of the error by providing
its leading order asymptotics.

This paper is organized as follows. In the next section we give a short review of the stochastic
dumbbell models for polymeric fluids. In Section 3 we prove the optimal error estimates and in
Section 4 we analyze the leading order asymptotics of the error. Some conclusions are drawn
in Section 5.

2 Stochastic Dumbbell Models

We consider the simplest situation where the polymers are modeled by dumbbells with two
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beads connected by a spring. Such models are discussed extensively in [1]. The configuration
of the dumbbell is specified by the positional vector for the spring, denoted by QQQ. The spring is
convected and stretched by the flow and at the same time experiences the spring and Brownian
forces. In the BCF approach, QQQ is viewed as a field. Its equation is then given by

∂

∂t
QQQ(xxx, t) + (uuu · ∇)QQQ(xxx, t) = (∇uuu)TQQQ(xxx, t)− 2

ζ
FFF

(
QQQ(xxx, t)

)
+

√
4kBT

ζ
ẆWW (t), (1)

where uuu is the velocity field, F (Q)F (Q)F (Q) is the spring force, and ẆWW (t) is temporal white noise, kB is
the Boltzmann constant, T is the temperature, ζ is the friction coefficient. The velocity field
satisfies the momentum equation

∂uuu

∂t
+ (uuu · ∇)uuu+∇p = νs∆uuu+∇ · τp, ∇ · uuu = 0, (2)

where νs is the solvent viscosity, τp is the extra stress due to the polymers. In the dilute limit,
this polymeric stress is given by Kramers expression:

τp = −nkBTIII + n
〈
FFF (QQQ)⊗QQQ

〉
, (3)

where n is the number density per unit volume of the polymers, ⊗ is tensor product, and 〈·〉
denotes averaging with respect to the white noise.

Two special cases of the spring force law are of particular interest. The Hookean model for
which FFF (QQQ) = HQQQ and the FENE model for which FFF (QQQ) = HQQQ

1−Q2/Q2
0
.

Introducing the non-dimensional parameters:

De =
Tr

Tc
, Re =

ρUL

ν
, γ =

ηs

η
, (4)

where Tr is the typical relaxation time scale of spring, Tc is the typical convection time scale.
We can rewrite (1)–(3) in non-dimensionalized form:

∂uuu

∂t
+ (uuu · ∇)uuu+∇p =

γ

Re
∆uuu+

1− γ

ReDe
∇ · τp

∇ · uuu = 0, τp =
〈
FFF (QQQ)⊗QQQ

〉
∂QQQ

∂t
+ (uuu · ∇)QQQ = (∇uuu)TQQQ− 1

2De
FFF (QQQ) +

1√
De

ẆWW (t).

(5)

Models of this type are drastically different from traditional models of polymeric fluids that
invoke empirical constitutive relations in order to obtain a Navier-Stokes-like hydrodynamic
equations. For a comparison between these two types of models, we refer to [3,11,15].

Laso and Öttinger seem to be the first to introduce simulation methods based on stochastic
models of the type (5). They designed the so-called CONNFFESSIT (Calculation of Non-
Newtonian Flow: Finite Elements and Stochastic Simulation Technique). A collection of N
dumbbells at each grid point are evolved according to

dxxx

dt
= uuu(x, t),

dQQQ

dt
= (∇uuu)TQQQ(xxx, t)− 2

ζ
FFF

(
QQQ(x, t)

)
+

√
4kBT

ζ
ẆWW (t).

(6)

The polymeric stress is then calculated at each grid point by ensemble averaging over the
N dumbbells. CONNFFESSIT is a Lagrangian method that follows the trajectories of the
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dumbbells. As such, it suffers from standard problems associated with Lagrangian methods,
e.g. the distortion of the grid. This problem is amplified by the noise.

To overcome these difficulties, Hulsen et. al introduced a method that is based on the
dynamics of configuration fields. The full model is then (5) and Hulsen et. al solve (5) using
Eulerian methods. The configurations of the dumbbells are modeled by N fields QQQi(xxx, t), i =
1, · · · , N . QQQi evolves independently according to (1), and the extra stress is again computed
through ensemble averaging over the N fields at each grid point. This approach eliminates the
problem with the distortion of the grids and also reduces the noise in the results.

As these methods become increasingly popular, interests in the numerical analysis of these
methods grow[11,15]. However this does not seem to be an easy task because of the presence of
the nonlinearity and the randomness. In this paper, we study a simple setup for the flow—the
shear flow. In this case, the model has some special structure that can be exploited for the
purpose of numerical analysis.

3 Convergence Analysis for Shear Flows

In the special case of pressure driven shear flows, we have

uuu =
(
u
0

)
, ∇ =

(
0
∂y

)
, ∇p =

(
c
0

)
,

the simplified form of equation (5) will be

∂tu+ c =
γ

Re
∂yyu+

1− γ

ReDe
∂y〈Q1Q2〉,

∂tQ1 =
(
∂yuQ2 − 1

2De
Q1

)
+

1√
De

Ẇ1,

∂tQ2 = − 1
2De

Q2 +
1√
De

Ẇ2.

(7)

Here c is the pressure gradient that drives the flow. For simplicity, we have restricted ourselves
to the case of Hookean dumbbells.

After dropping the parameters in the equation above (for notational ease), we have
∂tu+ c = ∂yyu+ ∂y〈Q1Q2〉,
dQ1 = (∂yuQ2 −Q1) dt+ dW1,

dQ2 = (−Q2) dt+ dW2

(8)

with boundary condition u|y=0 = u|y=1 = 0 and initial condition u|t=0 = 0, Q1i, Q2i ∼ N(0, 1).
Without loss of generality, we will consider a finite difference discretization of the field

equations. At each grid point, we place N configuration fields QQQi. For simplicity, we will not
consider spatial discretization here since the modification to the analysis brought by the spatial
discretization is quite standard. Therefore we will consider the following discretization

un+1 − un

∆t
+ c = ∂yyu

n+1 + ∂y(〈Qn
1Q

n
2 〉N ),

Qn+1
1i = Qn

1i + (∂yu
nQn

2i −Qn
1i)∆t+ dWn

1i,

Qn+1
2i = Qn

2i + (−Qn
2i)∆t+ dWn

2i,

(9)

where dWn
1i, dWn

2i are i.i.d. (independent identically distributed) N(0,∆t) random variables.
Here and in the following we use 〈·〉N to denote empirical averages, e.g.

〈Qn
1Q

n
2 〉N ∆=

1
N

N∑
i=1

Qn
1iQ

n
2i.
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Similarly we define 〈
f(Qn

1 , Q
n
2 )

〉
N
=
1
N

N∑
i=1

f(Qn
1i, Q

n
2i).

We will use E to denote expectation with respect to the noises in (9).
Define en = un − u(tn), tn = n∆t, ‖en‖0 = (

∫ 1

0
(en)2 dy)

1
2 , we then have

Theorem 3.1. If the solution of equation (8) u ∈ C2
(
[0,+∞], C2([0, 1])

)
, and ∆t is suf-

ficiently small, then except for a set of probability 1
∆te

−δN , for some fixed δ > 0, we have
‖en‖0 ≤ C

(
∆t+ ξ√

N

)
, where C is a constant independent of N and ∆t, and Eξ2 ≤ constant.

In order to prove this result, we need the following lemma about the discretization of SDE.
Lemma 3.1[7,10]. Consider the stochastic differential equation dXt = A(t,Xt) dt+B(t,Xt) dWt.
The Euler scheme Xn+1 = Xn +A(tn,Xn)∆t+B(tn,Xn)(Wn+1 −Wn) is of weak order one,
i.e. for any continuous g(t, x),

∣∣E(
g(tn,Xtn)

) − E
(
g(tn,Xn)

)∣∣ ≤ Cg∆t.
Proof of Theorem 3.1. Taylor expansion of equation (8) at t = tn gives

u(tn+1)− u(tn) + c∆t = ∂yyu(tn+1)∆t+
(
∂y〈Q1Q2〉(tn)

)
∆t+O (∆t2),

then we have

en+1 = en +∆t∂yye
n+1 +∆t∂y

(〈Qn
1Q

n
2 〉N − 〈Q1Q2〉(tn)

)
+O (∆t2)

and a simple energy estimate shows

‖en+1‖2
0 ≤(1 + L∆t) ‖en‖2

0 + L∆ t
∥∥〈Qn

1Q
n
2 〉N − 〈Q1Q2〉(tn)

∥∥2

0

− L∆t ‖∂ye
n+1‖2

0 +O (∆t3), (10)

where L = 1
1−∆t and we have assumed that ∆t is sufficiently small. Here and in the following

C represents generic positive constant independent of n and ∆t.
Next we consider the error of stress term∥∥〈Qn

1Q
n
2 〉N − 〈Q1Q2〉(tn)

∥∥2

0
. (11)

The error term (11) comes from two sources: the discretization of time and the approxima-
tion of the expectation by ensemble averaging. These two errors should be handled separately.
Consider first {

Q̃n+1
1 = Q̃n

1 +∆t(∂yu(tn)Q̃n
2 − Q̃n

1 ) + dWn
1 ,

Q̃n+1
2 = Q̃n

2 +∆t(−Q̃n
2 ) + dWn

2 ,
(12)

where u(tn) is the value of exact solution u at time tn. By Lemma 3.1, we have∣∣〈Q1Q2〉(tn)− 〈Q̃1Q̃2〉(tn)
∣∣ ≤ C∆t,

where C is a constant independent of ∆t. Hence we have∥∥〈Q1Q2〉(tn)− 〈Q̃1Q̃2〉(tn)
∥∥2

0
≤ C∆t2.

Next we consider the BCF discretization of equation (12){
Q̂n+1

1i = Q̂n
1i +∆t(∂yu(tn)Q̂n

2i − Q̂n
1i) + dWn

1i,

Q̂n+1
2i = Q̂n

2i +∆t(−Q̂n
2i) + dWn

2i

(13)

for i = 1, · · · , N , where dWn
1i, dW

n
2i are the same as in equation (9).
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Note that the {Q̂i}’s are independent for different i, it follows that

E
∣∣〈Q̃1Q̃2〉(tn)− 〈Q̂n

1 Q̂
n
2 〉N

∣∣2 ≤ Var (Q̃1Q̃2)
N

.

Lemma 3.2. Under the assumption of Theorem 3.1, we have∫
Var (Q̃1Q̃2) dy ≤ C

for some constant C.
The proof of this lemma will be deferred to later.
Thus we get

E
∥∥〈Q̃1Q̃2〉 − 〈Q̂n

1 Q̂
n
2 〉N

∥∥2

0
≤ C

N
. (14)

Define
Rn = 〈Qn

1Q
n
2 〉N − 〈Q̂n

1 Q̂
n
2 〉N ,

we can decompose the error of the stress term (11) into three parts∥∥〈Q1Q2〉(tn)− 〈Qn
1Q

n
2 〉N‖2

0

≤‖〈Q1Q2〉(tn)− 〈Q̃n
1 Q̃

n
2 〉

∥∥2

0
+

∥∥〈Q̃n
1 Q̃

n
2 〉 − 〈Q̂n

1 Q̂
n
2 〉N

∥∥2

0
+

∥∥〈Q̂n
1 Q̂

n
2 〉N − 〈Qn

1Q
n
2 〉N

∥∥2

0

≤C(∆t)2 + ‖Rn‖2
0 +

∥∥〈Q̃n
1 Q̃

n
2 〉 − 〈Q̂n

1 Q̂
n
2 〉N

∥∥2

0
. (15)

Define Rn
1i = Qn

1i − Q̂n
1i and (R

n
1 )

2 = 1
N

N∑
i=1
(Rn

1i)
2, and notice that Q2 is independent of u

and y, we have Qn
2i = Q̂n

2i, thus

‖Rn‖2
0 =

∥∥〈(Qn
1 − Q̂n

1 )Q
n
2 〉N

∥∥2

0
≤ ‖Rn

1 ‖2
0

〈
(Qn

2 )
2
〉

N
.

In order to control
〈
(Qn

2 )
2
〉

N
, we will use large deviation estimates. Let Kk =

〈
(Q̃k

2)
2
〉
=

E(Qk
2i)

2. It is not difficult to prove that Kk ≤ C since Qn
2 is simply the discretized Ornstein-

Uhlenbeck process. Then 〈
(Qk

2)
2
〉

N
→ Kk

as N → +∞. Furthermore, from Cramer’s theorem, we have

Prob
{〈
(Qk

2)
2
〉

N
> Kk + 1

} ≤ e−δN

for some δ > 0 (see [14]).
Let Ωk =

{
ω ∈ Ω, 〈(Qk

2)
2
〉

N
> Kk + 1

}
. Ωn =

n∪
k=1
Ωk. We will now assume ω∈Ωn. We

have
Prob (Ωn) ≤ ne−δN .

Since
Rn+1

1i = Rn
1i +∆t(∂ye

nQn
2i −Rn

1i) = (1−∆t)Rn
1i +∆t∂ye

nQn
2i.

Time Rn+1
1i to both sides and apply Cauchy inequality we have〈

(Rn+1
1 )2

〉
N

≤ (1 + C∆t)
〈
(Rn

1 )
2
〉

N
+∆t(1 + C∆t) |∂ye

n|2. (16)

Let

‖Rn
1‖2

0 =
∫ 1

0

〈
(Rn

1 )
2
〉

N
dy,
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then
‖Rn+1

1 ‖2
0 ≤ (1 + C∆t) ‖Rn

1 ‖2
0 +∆t(1 + C∆t) ‖∂ye

n‖2
0. (17)

From (10), we have, on (Ωn)c,

‖en+1‖2
0 ≤(1 + ∆tL) ‖en‖2

0 + C∆t
(
∆t2 +

∥∥〈Q̃n
1 Q̃

n
2 〉 − 〈Q̂n

1 Q̂
n
2 〉N

∥∥2

0
+ ‖Rn

1 ‖2
0

)
− L∆t‖∂ye

n+1‖2
0 +O (∆t3). (18)

Combining the inequalities (8) and (7), and noticing that 1 < L ≤ C, we have(‖Rn+1
1 ‖2

0 + ‖en+1‖2
0 +∆t‖∂ye

n+1‖2
0

)
≤(1 + C∆t)

(‖Rn
1 ‖2

0 + ‖en‖2
0 +∆t‖∂ye

n‖2
0

)
+ C∆t3 +∆t

∥∥〈Q̃n
1 Q̃

n
2 〉 − 〈Q̂n

1 Q̂
n
2 〉N

∥∥2

0
.
(19)

By using the discrete Gronwall inequality, we obtain(‖Rn
1‖2

0 + ‖en‖2
0 +∆t‖∂ye

n‖2
0

)
(20)

≤C(∆t)2 +∆t
∑
k≤n

(1 + C∆t)n−k
∥∥〈Q̃k

1Q̃
k
2〉 − 〈Q̂k

1Q̂
k
2〉N

∥∥2

0
. (21)

Let
ξ2
n = N∆t

∑
k≤n

(1 + C∆t)n−k
∥∥〈Q̃k

1Q̃
k
2〉 − 〈Q̂k

1Q̂
k
2〉N

∥∥2

0
,

then from inequality (14), we have Eξ2
n ≤ Const. Hence on (Ωn)c, we have

‖en‖0 ≤ C
(
∆t+

ξn√
N

)
with Eξ2

n ≤ Const.
This proves the Theorem 3.1.

Proof of Lemma 3.2. In order to prove∫
Var (Q̃1Q̃2) dy ≤ C,

we only need to show ∫
Var (Q1Q2) dy ≤ C.

We get this by a simple application of Lemma 3.1.
Define

b11 = 〈Q2
1〉, b12 = 〈Q1Q2〉, b22 = 〈Q2

2〉,
b1122 = 〈Q2

1Q
2
2〉, b1222 = 〈Q1Q

3
2〉, b2222 = 〈Q4

2〉,
then Var (Q1Q2) = b1122 − b212, we have the differential equations from equation (7), b1122

b1222
b2222


t

=

−4 2∂yu 0
0 −4 ∂yu
0 0 −4

 b1122
b1222
b2222

+

 1 0 1
0 3 0
0 0 6

  b11
b12
b22

 ,

 b11
b12
b22


t

=

−2 2∂yu 0
0 −2 ∂yu
0 0 −2

 b11
b12
b22

+

 1
0
1

 .
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The steady state is

b1122 =
1
4

(
b11 +

3
2
∂yub12 +

(
1 +

3
4
∂yu

2
)
b22

)
,

b11 =
1
2
+
1
4
∂yu

2, b12 =
1
4
∂yu, b22 =

1
2
.

Finally we have b1122 − b212 =
1
4 +

3
16∂yu

2 when t tends to +∞, then∫
Var (Q1Q2) dy ≤ C

if u ∈ H1
0

(
[0, 1]

)
.

4 Asymptotic Analysis of the Error

In this section, we analyze the leading order structure of the error. For simplicity we will only
consider the discretization in probability space, i.e. the error due to replacing the expectation
values by empirically averaged values.

Consider the following stochastic scheme

∂uuuN

∂t
+ (uuuN · ∇)uuuN +∇p = ∆uuuN +∇ · τN

p , ∇ · uuuN = 0, (22)

τN
p =

1
N

N∑
i=1

GGG(QQQN
i ), (23)

∂QQQN
i

∂t
+ (uuuN · ∇)QQQN

i = (∇uuuN )TQQQN
i − FFF (QQQN

i ) + ẆWW i(t), (24)

where GGG(QQQN
i ) = FFF (QQQN

i )⊗QQQN
i .

We will compare uuuN with uuu and QQQN
i with QQQi, where QQQi is the solution of

∂QQQi

∂t
+ (uuu · ∇)QQQi = (∇uuu)TQQQi + FFF (QQQi) + ẆWW i(t). (25)

The noise terms in (24) and (25) are assumed to be the same.
Write

uuuN (xxx, t)− uuu(xxx, t) =
1√
N

vvv(xxx, t) + · · · , (26)

QQQN
i (xxx, t)−QQQi(xxx, t) =

1√
N

qqqi(xxx, t) + · · · , (27)

where the omitted terms are smaller compared with 1√
N
. Substituting (26) and (27) into

(22)–(24), we obtain equations for qqqi and vvv:

∂vvv

∂t
+ (uuu · ∇)vvv + (vvv · ∇)uuu = ∆vvv +∇ · 〈GGG′(QQQ)qqq〉+∇ · ξ(xxx, t), (28)

∂qqqi

∂t
+ (uuu · ∇)qqqi + (vvv · ∇)QQQi = (∇uuu)Tqqqi + (∇vvv)TQQQi − FFF ′(QQQi)qqqi, (29)

where ξ is the noise term arising from

1
N

N∑
i=1

GGG(QQQi)−
〈
GGG(QQQ)

〉
=

1√
N

ξ(xxx, t) + · · · . (30)
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From central limit theorem, ξ is Gaussian.
Having obtained the leading order expression for the error, we can design numerical methods

to further reduce the fluctuations. This will be the research topic in the future.

5 Conclusion

In this paper, we give a rigorous analysis of BCF applied to 1D pressure driven shear flow for
Hookean dumbbell model under suitable assumption on the regularity of uuu. The convergence
analysis takes into account the special structure of the stochastic differential equations. We
obtain optimal order of accuracy for the error: O (∆t+N− 1

2 ). The leading order asymptotics
of the error is also analyzed.
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