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In this paper we study the front propagation with constant speed and small
curvature viscosity. We first investigate two related problems of conservation laws,
one of which is on the nonlinear viscosity methods for the conservation laws, and
the other one is on the structure of solutions to conservation laws with L1 initial data.
We show that the nonlinear viscosity methods approaching the piecewise smooth
solutions with finitely many discontinuity for convex conservation laws have the
first-order rate of L1-convergence. The solutions of conservation laws with L1 initial
data are shown to be bounded after t>0 if all singular points of initial data are
from shocks. These results suggest that the front propagation with constant speed
and a small curvature viscosity will approach the front movements with a constant
speed, as the small parameter goes to zero. After the front breaks down, the cusps
will disappear promptly and corners will be formed. � 2000 Academic Press

1. INTRODUCTION

Front propagation models with curvature-dependent normal velocities
arise in a variety of physical phenomena such as flame propagation,
solidification, and phase transition problems. For a front propagating with
constant velocity c the level set formulation is a simple Hamilton�Jacobi
(H�J) equation

�t ,+c |{,|=0. (1.1)

The problem is technically simpler than the ``general case'' in which the
Hamiltonian H may depend on {,

�t ,+H({,)=0. (1.2)

One way of identifying a uniquely existing solution for a class problems
which include (1.2) as a special case was given by M. G. Crandall and
P. L. Lions [2]. The relevant solutions are called viscosity solutions, and
they are known to be the solutions of primary interest in many areas of
applications.
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In another model, the front moves along its normal vector field with
speed V=c&=}, where } is the mean curvature,

}={ } \ {,
|{,|+

and so the level set formulation can be written as

�t ,=+c |{,=|=={ } \ {,=

|{,=|+ . (1.3)

Equation (1.3) is nonlinear, degenerate and undefined at points where
{,==0. A unique weak solution (viscosity solution) exists for the above
equation, see Chen, Giga and Goto [1] and Evans and Spruck [5].

The key to the level set approach is the following link [12, 14]. Consider
the propagating curve and two solutions: X =

curvature(t), obtained by evolving
the initial front with V=c&=}, and Xconstant (t), obtained with speed V=c
and the entropy condition. Then, for any time t>0

lim
= � 0

X =
curvature(t)=Xconstant (t), (1.4)

i.e., the limit of motion with curvature is the entropy solution for the
constant speed case. This is known as the nonlinear viscous limit. In order
to see why nonlinear viscosity is an appropriate name, we turn to consider
the link between propagating fronts and hyperbolic conservation laws
[12, 13].

We consider a small section of the curve ,(x, y, t)=0, which, without
loss of generality, can be written as y=�(x, t). In this case, the front
propagation with speed V=c&=} is governed by

�t+c - 1+�2
x ==

�xx

1+�2
x

. (1.5)

Letting u= (x, t)=�x(x, t) gives the conservation law

u=
t+(c - 1+(u=)2)x== \ u =

x

1+(u=)2+x
. (1.6)

Similarly, the front propagation with speed V=1 is governed by

ut+(c - 1+u2)x=0. (1.7)

In this paper, we will study the relationship between the solution u= to
equation (1.6) and the entropy solution u to equation (1.7). In general, the
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nonlinear parabolic equation (1.6) can be regarded as the nonlinear
viscosity approximation to the conservation law (1.7). One of the main
results in this work, as stated in Theorem 2.1, is that if solutions to (1.7)
is piecewise smooth with finitely many discontinuities then the rate of
L1-convergence for the nonlinear viscosity methods is of first order.

It is clear that the fronts may develop sharp corners and topological
changes (merge and break down). The structure of solution to (1.1) and
(1.3) are complicated. It is believed that the solution of equation (1.3)
approaches the solution of the H�J equation (1.1) when = goes to zero. In
other words,

lim
= � 0

1 = (t)=1(t), (1.8)

where

1(t)=[(x, y), ,(x, y, t)=0], 1 = (t)=[(x, y), ,= (x, y, t)=0].

This is why the level set method works well for this problem.
When the front has topology change ({,=0), the H�J equation (1.1) is

not equivalent to a conservation law, then we can not use the results of
conservation laws to study the H�J equations. But after the front breaking
down, generally a cusp will appear. How the solution will be beyond the
formation of the cusp in the front? Sethian [14] constructed the entropy
weak solution by removing the ``tail'' from the ``swallowtail'' and discussed
the vanishing viscosity approach. We will handle it relating the entropy
weak solution of conservation laws. Using the result of Theorem 3.1, we
conclude that the cusp will disappear and a corner will be formed. It is also
known that the level set method can handle the topology change but the
accuracy is low at singular points. We will provide some explanations in
Section 3.

Finally, we point out that based on the Crandall and Lions theory, our
results are new in two aspects. Firstly, Crandall and Lions theory considers
the linear viscosity, while we deal with the nonlinear viscosity in this work.
Secondly, a half-order L1-convergence rate is obtained if we employ the
Crandall and Lions theory. However, a first-order rate of convergence is
established in this work.

2. FIRST-ORDER L1-CONVERGENCE FOR NONLINEAR
VISCOSITY METHODS

In this section, we will investigate the convergence rate for nonlinear
viscosity methods to conservation laws. In particular, we are interested in
the optimal L1-convergence rate.
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Consider the scalar hyperbolic conservation laws

ut+ f (u)x=0, &�<x<�, t>0, (2.1)

subject to initial condition

u(x, 0)=u0 (x), &�<x<�. (2.2)

The nonlinear viscosity method approximating the conservation laws (2.1)
and (2.2) is to solve the nonlinear parabolic equations

u=
t+ f (u=)x==(a(u=) u=

x)x , (2.3)

subject to the same initial condition

u(x, 0)=u0 (x), (2.4)

where u0 (x) # BV(R) & L� (R). By the maximum principle, we have

|u= (x, t)|�max
x

|u0 (x)|.M (2.5)

In this section we will establish the L1-convergence rate of O(= |ln =|+=)
for the nonlinear viscosity approximations (2.3) and (2.4) to the entropy
solutions of the scalar conservation laws (2.1) and (2.2) under the assump-
tions that (1): the fluxes are convex and the entropy solutions u of (2.1)
and (2): (2.2) are piecewise smooth with finitely many discontinuities. As
a matter of fact the piecewise smooth entropy solutions are quite general
and practical, which include initial central rarefaction waves, initial shocks,
possible spontaneous formation of shocks in a future time and interactions
of all these patterns. If neither central rarefaction waves nor spontaneous
shocks occur in the piecewise entropy solutions, the rate of L1-convergence
is improved to O(=).

In this study we use a matching method, which developed by Goodman
and Xin [6]. Goodman and Xin first introduced the matching method to
assemble the travelling waves and showed that the viscosity methods to
approximate piecewise smooth solutions with a finite number of nonin-
teracting shocks have a local = rate of convergence away from shocks. Later
Teng and Zhang in [19] used a similar technique to prove that both
viscosity methods and monotone difference schemes approaching piecewise
constant solutions with shocks for convex conservation laws have a first-
order rate of L1-convergence. Tang and Teng [17] showed that the
viscosity methods approaching the general class of piecewise smooth solu-
tions have the same first-order L1-convergence rate.
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Let b(u)= f $(u). Before giving the statement of our main theorems we
make the following assumptions:

v (A1) f (u) is strictly convex

min
|u|�M

f "(u)�#>0.

The function a(u)>0 associated with the viscosity is continuously differen-
tiable. Therefore, we have

min
|u|�M

a(u)�As>0, max
|u|�M

a(u)�AL .

v (A2) u0 (x) is bounded and piecewise C 2-smooth with a finite
number of discontinuous points #i , 1�i�I; u0 (#i\0) and u* 0 (#i\0) exist
and are finite; where u* 0 (x)=(d�dx) u0 (x).

v (A3) (d 2�dx2)(b(u0)) changes signs a finite number of times, i.e.,
b(u0 (x)) has a finite number of inflection points.

Under the above assumptions, we can obtain the following estimates.

Theorem 2.1. Assume (A1)�(A3). Let u= and u be the solutions of the
Cauchy problem of (2.3) and (2.1) for the same initial data u0 . Then the
following estimate holds for all T>0

sup
0�t�T

&u= ( } , t)&u( } , t)&L1(R)�C(T ) = |ln =|. (2.6)

If there is no initial central rarefaction wave and no new formed shock in u,
then the error bound is improved to

sup
0�t�T

&u= ( } , t)&u( } , t)&L1(R)�C(T) =. K (2.7)

In order to provide a rigorous proof for the above theorem, we need to
study the stability for nonhomogeneous nonlinear viscous equations and
some properties for travelling wave. The following stability can be proved
by a technique used by Tang and Teng [17], with some modifications.

Lemma 2.1 ([17]). Let v(i) (x, t), i=1, 2 be continuous and piecewise
smooth solutions of the following equations:

(v(i))t+( f (v(i)))x&=(a(v(i)) v (i)
x )x= gi (x, t), t�s�0, i=1, 2.
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We assume that the above equation holds for all values of x except on some
curves Xm (t), 1�m�M, where v (i)

x may not exist. If w.v(1)&v(2) � 0 as
x � �, then

&w( } , t)&L1�&w( } , s)&L1+|
t

s
&g1 ( } , {)& g2 ( } , {)&L1 d{

+=AL :
M

m=1
|

t

s
|wx(Xm ({)+0, {)&wx(Xm ({)&0, {)| d{. K

(2.8)

Travelling wave solutions of (2.3) are of the form

u= (x, t)=U \x&St
= + , (2.9)

which is subject to the following boundary condition at x=\�:

lim
! � \�

U(!)=U\ , (2.10)

where U\ are constant states. The existence conditions for the travelling
waves are the following: the wave speed S and the boundary conditions
U\ satisfy the Rankine�Hugoniot condition

S=S(U& , U+)=
f (U+)& f (U&)

U+&U&

, (2.11)

and the entropy condition

U&>U+ . (2.12)

It is easy to show that the travelling wave solution U(!) satisfy the following
ordinary differential equation

U$=
1

a(U)
( f (U)& f (U\)&S(U&U\)).

For the given value

U(0; U& , U+)=( f $)&1 (S)
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the travelling wave solution U('; U& , U+) is expressed implicitly by

'=|
U

( f $)&1 (S)

a(u) du
f (u)& f (U\)&S(u&U\)

. (2.13)

Tang and Teng [17] studied the travelling wave behaviour for linear
viscosity equations. Here we will prove a parallel lemma for the travelling
solution (2.13). In what follows we will use F2 to denote a constant

F2=F2 (U& , U+)= max
u # [U+, U&]

| f "(u)| ,

AL , As to denote

AL=AL (U& , U+)= max
u # [U+, U&]

a(u),

As=As (U& , U+)= min
u # [U+, U&]

a(u)

and C(#, As , AL , F2) to denote some constants which depend only on
#, As , AL and F2 .

Lemma 2.2. Assume (2.11) and (2.12). Let U('; U& , U+) be defined by
(2.13). Then the following properties hold:

(1) U('; U& , U+) is a decreasing function satisfying

U$('; U& , U+)<0, U(0; U& , U+)=( f $)&1 (S), (2.14)

(2) U approach U\ with exponential rate decay as ' � \�

|U('; U& , U+)&H('; U& , U+)|

�
F2

#
(U� U+) exp[&#(u�U+) |'|�(2AL)], (2.15)

where H is the so-called Heaviside function defined by

H('; U& , U+)={U& , '<0
U+ , '�0.

(3) If U\ are time dependent function, i.e. u\=U\ (t), and X(t)
satisfies the Rankine�Hugoniot condition (2.11)

X4 (t)=S(U& (t), U+ (t)),
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then U=U(x&X(t); U& , U+) satisfies

�t U+�x f (U)=(a(U) Ux)x+(U)U&
U4 &+(U)U+

U4 + , (2.16)

&UU+
( } ; U& , U+) U4 ++UU&

( } ; U& , U+) U4 &&H( } ; U4 & , U4 +)&L1 (R)

�C(#, As , AL , F2)
|U4 + (t)|+|U4 & (t)|

U& (t)&U+ (t)
, (2.17)

where UU\
('; U& , U+)=�U\

U('; U& , U+) and U4 \=(d�dt) U\ (t). K

Proof. It is easy to prove (2.14) by differentiating (2.13) with respect '
with the aid of the entropy condition (2.12) and by substituting '=0 in to
(2.13).

We observe that

8(u; U& , U+).
f (u)& f (U\)&S(u&U\)

a(u)
(2.18)

=
1

a(u) |
1

0
f "(u*) % d%(u&U+)(u&U&). (2.19)

where u* is some intermediate value between U& and U+ . The assumption
f "�#>0, As�a(u)�AL and the entropy condition U&>U+ gives that
for any u between U+ and U& the following inequalities hold

F2

2As
(u&U&)(u&U+)<8(u; U& , U+)<

#
2AL

(u&U&)(u&U+). (2.20)

We also observe that

S& f $(U\)=|
1

0
f $(%U++(1&%) U&) d%&|

1

0
f $(U\) d%

=\|
1

0
f "(u~ \) % d%(U�U+)( f $)&1 (S)&U\

=( f $)&1 (S)&( f $)&1 ( f $(U\))=
1

f "(û\)
(S& f $(U\)),

where u~ \ and û\ are some intermediate values between U& and U+ .
Therefore from the above two equations we obtain
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#
2

(U&U+)�|S& f $(U\)|�
F2

2
(U&U+)

#
2F2

(U&U+)�|( f $)&1 (S)&U\ |�
F2

2#
(U& U+). (2.21)

The second inequality of (2.20) and the definition U of (2.13) indicate
that

{
U('; U& , U+)&U+�(( f $)&1 (S)&U+) exp[#'(U+&U&)�(2AL)]

for '�0.

U& U('; U& , U+)�(U& ( f $)&1 (S)) exp[#'(U& &U+)�(2AL)]
for '�0.

It follows from the above results and the equality (2.21) that

{
|U('; U& , U+)&U+ |�

F2

2#
(U& U+) exp[#'(U+&U&)�(2AL)]

for '�0,

|U('; U& , U+)&U& |�
F2

2#
(U&U+) exp[#'(U& U+)�(2AL)]

for '�0.

which is equivalent to (2.15). Direct calculation on U(x&X(t); U& , U+)
with the aid of (2.13) gives the result (2.16).

Differentiating (2.13) with respect to the parameter U+ gives

0=
(U)U+

8(U; U& , U+)
&

SU+
� f "(S)

8(( f $)&1 (S); U& , U+)

&|
U

( f $)&1 (S)

SU+
(u&U&) du

a(u) 8(u; U& , U+)2 , (2.22)

where S=S(U& , U+) is defined by (2.11) and

SU+
.�U+

S(U& , U+)=
f $(U+)(U+&U&)&( f (U+)& f (U&))

(U+&U&)2 .

It follows from the above equation that

F2�SU+
�#,
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we obtain from the equation (2.24) that

(U)U+
&1=

8(U; U& , U+)(SU+
� f "(S)&1)

8(( f $)&1 (S); U& , U+)
+8(U; U& , U+)

_|
U

( f $)&1 (S)

8(u; U& , U+)U+
+8(u; U& , U+)u

8(u; U& , U+)2 du. (2.23)

Direct calculation on (2.19) gives

8U+
+8u=

1
a(u) {&

f $(U+)(U+&U&)&( f (U+)& f (U&))
(U+&U&)2 (u&U&)

+ f $(u)&
f (U+)& f (U&)

U+&U&

&a$(u) 8(u; U& , U+)=
=

1
a(u) {&

f $(U+)(U+&U&)&( f (U+)& f (U&))
(U+&U&)2 (u&U+)

+ f $(u)& f $(U+)&a$(u) 8(u; U& , U+)=
=

1
a(u) {&

f "(u*)
2

(u&U+)+ f "(u**)(u&U+)

&a$(u) |
1

0
f "(u***) % d%(u&U&)(u&U+)=

where u*, u**, u*** # (U+ , U&). Therefore, we obtain that

|8U+
+8u |�C(As , AL , F2) |u&U+ |. (2.24)

The inequalities of (2.21) and (2.20) show that

#3

8F 2
2AL

(U&U+)2�|8(( f $)&1 (S); U& , U+)|�
F 3

2

8#2As
(U&U+)2.

for '>0, we have U+�U�( f $)&1 (S) and hence from (2.24), (2.20) and
(2.23) we obtain

|(U)U+
&1|�C(As , AL , #, F2)

|U&U+ |
|U&U+ | \1+|

U

( f $)&1 (S)

1
|u&U+ |

du+
�C(As , AL , #, F2)

|U&U+ |
|U& U+ | \1+ln \( f $)&1 (S)&U+

U&U+ ++ .
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On account of (2.15) and (2.21) we obtain that

|
�

0
|UU+

('; U& , U+)&1| d'

�C(As , AL , #, F2) |
�

0
exp[&#(U&U+) '�(4AL)] d'

�
C(As , Al , #, F2)

U&U+

.

In a similar way we obtain that

(U)U&
=

8(U; U& , U+)(SU&
� f "(S)&1)

8(( f $)&1 (S); U& , U+)
+8(U; U& , U+)

_|
U

( f $)&1 (S)

8(u; U& , U+)U&

8(u; U& , U+)2 du. (2.25)

which gives

|
�

0
|UU&

('; U& , U+)| d'�
C(As , Al , #, F2)

U&U+

.

Combining the above two inequalities yields

|
�

0
|UU+

('; U& , U+) U4 ++UU&
('; U& , U+) U4 &&H('; U4 & , U4 +)| d'

�C(As , AL , #, F2)
|U4 & |+ |U4 + |

U&U+

.

Similar estimate holds for the integral with same integrand over (&�, 0).
This completes the proof of the Lemma. K

As a consequence of (2.11), (2.16) and (2.17) we can easily obtain the
following corollary by using rescaling of integration variables in (2.26) and
(2.27).

Corollary 2.1.

&U= ( } ; U& , U+)&H( } , U& , U+)&L1 (R)

�C(As , AL , #, F2) = (2.26)

&U= ( } ; U& , U+)U&
U4 &+U= ( } ; U& , U+)U+

U4 +&H( } ; U4 & , U4 +)&L1 (R)

�C(As , AL , #, F2)
|U4 & |+|U4 + |

U&U+

=. (2.27)
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Proof of Theorem 2.1. We have proved the lemmas on L1-stability and
the behaviour of travelling wave solution for the equation of nonlinear
viscosity. Using the structure of solutions to the scalar conservation laws
[16, 17, 18], we can prove the main theorem with a little modification to
the linear viscosity method [17].

3. NONLINEAR CONSERVATION LAWS WITH L1 INITIAL DATA

We divide this section into three subsections.

3.1. Existence and uniqueness. We consider a scalar conservation law

ut+ f (u)x=0, (3.1)

subject to initial value

u(x, 0)=u0 (x), (3.2)

We suppose that the flux f is convex

f "(u)>0 . (3.3)

If u0 (x) # BV(R) & L� (R), then the existence and uniqueness results of
entropy solutions can be found anywhere [9, 15].

In this section we suppose that

| f $(u)|�A, u0 (x) # L1 (R). (3.4)

where A is a constant. Lax [9] introduced the integrated function .(x, t)
defined as follows

.(x, t)=|
x

&�
u( y, t) dy;

then

.x=u.

Integrating (3.1) from &� to x one obtains

.t+ f (.x)=0, (3.5)
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where f has been adjusted so that f (0)=0. Lax [9] proved that the exist-
ence theorem of the equation (3.5), so we obtain the existence of the solu-
tion to (3.1) (3.2) for L1 initial value. We notice that (3.5) is a Hamilton�
Jacobian equation, Crandall and Lions [2] proved that the existence and
uniqueness of viscosity solutions. As we know [10, 11], the viscosity
solution of (3.5) is equivalent to the entropy solution of (3.1) for one-
dimensional problem, so we obtain the existence and uniqueness of entropy
solution for L1 initial value of (3.1).

3.2. Structure of solution

Theorem 3.1. We assume that f "(u)>0, | f $(u)|�A. If u0 # L1 (R),
and if

lim
x � x0+0

u0 (x)<�, �
x � x0&0

u0 (x)>&�, \x0 # R, (3.6)

then

u( } , t) # L� (R), \t>0.

Proof. We prove this theorem by using the following four steps.

Step 1. We denote the norm in L p (R) by | } |p . Let |u0 |1�C, then
|u( } , t)|1�C for all t>0. We take M1>0 and fix t0>0, then we define a
set EM1

=[x; |u(x, t0)|>M1]. Clearly, meas(EM1
)<C�M1 . There exists an

open set U#EM1
, such that meas(U)<C�M1 . Let U=�i Ii , where Ii are

open intervals. We take another constant M2>M1 , and define a subset S
of [Ii], such that Ii # S if and only if supx # Ii

|u(x, t0)|>M2 .

Step 2. We claim that S is a finite set. To prove it, we use the expres-
sions [9]

u(x, t)=b \x& y0 (x, t)
t + , (3.7)

where

b=a&1, a= f $,

and y0 (x, t) is the unique minimum point of the function

&(!; x, t)=|
!

0
u0 (') d'+ g \x&!

t + t,
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where

g( y)=|
y

0
b(s) ds.

It is known that [9] [4] y0 (x, t) makes sense for all t and almost all x.
Let Ii # S, x0 # I i such that |u(x0 , t0)|>M2 . We consider the case of

u(x0 , t0)>M2 first. If x<x0 and if y0 (x, t0) makes sense, then by
y0 (x, t0)� y0 (x0 , t0) we have

u(x, t0)=b \x& y0 (x, t0)
t0 +�b \x& y0 (x0 , t0)

t0 + .

Since b(x0 & y0 (x0 , t0)�t0 ) > M2 , there exists x~ < x0 , such that
b(x~ & y0 (x0 , t0)�t0 )=M1 . Then

a(M1)=
x~ & y0 (x0 , t0)

t0

, a(M2)<
x0& y0 (x0 , t0)

t0

,

hence

x0&x~ >t0 (a(M2)&a(M1)).

If x # (x~ , x0), then u(x, t0)>M1 , which implies (x~ , x0)/Ii , so meas(Ii)�
x0&x~ >t0 (a(M2)&a(M1)). If u(x0 , t0)<&M2 , by the same way we can
prove (x0 , x~ )/Ii , and x~ &x0>t0 (a(&M1)&a(&M2)). On the other hand
we have �i meas(Ii)�C�M1 , therefore S is a finite set.

Step 3. We prove by contradiction that supx # Ii
|u(x, t0)|<+�.

If [xj] is a sequence in Ii such that limj � � |u(x j , t0)|=�, by the
assumption (3.6) [xj] can be monotonic increasing or decreasing,
depending on the limit is +� or &�. For definiteness we suppose
limj � � u(xj , t0)=+� and [xj] is monotonic increasing. Let y =
limj � � y0 (xj , t0) and ur=limx � y+0 u0 (x). We take an arbitrary $>0,
then u0 (x)<ur+$ on one interval ( y, y1].

Without loss of generality we assume that y=0. Let a1=a(+�). We
take t1 # (0, t0] and let x0=a1 t1 . If min! &(!; x0 , t1)=&( y2 ; x0 , t1), then
y2�0. Moreover we have y2>0, which is because the derivative of
g((x0&!)�t1 ) at !=0 is infinity and u0 is bounded, !=0 is not a minimum
point. We require that y2� y1 , otherwise we can reduce t1 to achieve it.
Since (x0& y2 )�t1 <a(ur+$), we have y2>x0&a(ur+$) t1 . Let

== g(a1)&
1
t1

|
y2

0
u0 (') d'+ g \x0& y2

t1 +>0.
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We take !0<0 such that

|
!

0
u0 (') d'>&

=
3

t1 for all ! # [!0 , 0).

We take a$<a1 such that

g \ x
t1+>g(a1)&

=
3

for all x # (a$t1 , a1 t1).

Besides we take a"<a1 , such that

g \x& y2

t1 +& g \x0& y2

t1 +<
=
3

for all x # (a"t1 , a1t1).

If max(x0+!0 , a$t1 , a"t1)<x<x0 , ! # [x&x0 , 0], then

&(!; x, t1)=|
!

0
u0 (') d'+ g \x&!

t1 + t1

> &
=
3

t1+ g(a1) t1&
=
3

t1

=
=
3

t1+|
y2

0
u0 (') d'+ g \x0& y2

t1 + t1

>|
y2

0
u0 (') d'+ g \x& y2

t1 + t1

=&( y2 ; x, t1).

Therefore ! is not a minimum point. Consequently u(x, t1)�ur+$. We
have

u(xj , t0)=u(x j&a(u(x j , t0))(t0&t1), t1),

and

lim
j � �

(xj&a(u(xj , t0))(t0&t1))=x0 ,

so u(xj , t0)�ur+$ for large j, which leads to a contradiction.
Following the same lines the case of limj � � u(xj , t0)=&� can also be

studied.

Step 4. We have either supx # R u(x, t0)�M2 , or |u|�=supIj # S

supx # Ij
|u(x, t0)|<+�. The proof is thus complete. K
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Corollary 3.1. Under the assumptions of Theorem 3.1 total variation
of u( } , t) is locally bounded for all t>0.

Proof. Let M=|u( } , t)|� , B=max |u|�M (1� |a$(u)| ). It follows from
(3.7) that

var(u( } , t); [&X, X])�B var \ } & y0 ( } , t)
t

, [&X, X]+<+�. K

Remark. Counterexample can be constructed to show that the condi-
tion (3.6) is essential.

The above result explains why after a front breaks down the cusp disap-
pears promptly, and a corner is formed. Let us consider the equation (1.7)
and let the initial data be the value of the cusp. If x0 is the singular point,
then limx � x0\0 u0 (x)=��. By Theorem 3.6 u( } , t) # L� (R) for t>0,
which means it becomes a corner because the slope of the curve is finite.

3.3. L1-convergence of nonlinear viscosity method

The nonlinear viscosity method approximating the equation (3.1) is to
solve the nonlinear parabolic equation

u=
t+ f (u=)x==(a(u=) u=

x)x , (3.8)

subject to the initial condition

u(x, 0)=u0 (x), (3.9)

where u0 (x) # L1.
As we know, BV(R) is compact in L1 (R), i.e. \$>0, it always exists

u$
0(x), such that

&u$
0( } )&u0 ( } )&L1�C$. (3.10)

We denote the solution of conservation law (3.1) with initial value u$
0(x) by

u$ (x, t). By virtue of L1-stability [9], we have

&u$ ( } , t)&u( } , t)&L1�&u$
0( } )&u0 ( } )&L1�C$. (3.11)

We denote the solution of nonlinear parabolic equation (3.8) with initial
value u$

0(x) by u=$ (x, t). By virtue of L1-stability [9], we obtain

&u=$ ( } , t)&u= ( } , t)&L1�&u$
0( } )&u0 ( } )&L1�C$, (3.12)

where constant C is independent of = and $.
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Using the triangle inequality, by the Theorem 2.1, (3.11) and (3.12), we
have

&u= ( } , t)&u( } , t)&L1�2$+C$ =, \$>0, (3.13)

where C$ depends on BV norm of u$
0 .

We summarize what we have shown by stating the following:

Theorem 3.3. Assume (A1)�(A3). Let u= and u be the solutions of the
Cauchy problem of (3.8) and (3.1) with the same L1 initial data u0 . Then the
following result holds

sup
0�t�T

&u= ( } , t)&u( } , t)&L1 � 0 = � 0. (3.14)

Remark. Theorem 3.2 suggests that the solutions of nonlinear viscosity
methods converge to the solution of conservation laws with L1 initial data.
However, we can not obtain any convergence order since it is not clear
how C$ depends on $.

ACKNOWLEDGMENTS

It is a pleasure to thank Professor Zhenhuan Teng for many interesting and fruitful discus-
sions. The second author would like to acknowledge the partial support from National
Natural Science Foundation of China, the summer school of Morningside Mathematical
center in 1997, and Doctoral Key grant from Educational Committee of China.

REFERENCES

1. Y. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of
generalized mean curvature flow equations, J. Diff. Geom. 33 (1991), 749.

2. M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton�Jacobi equations, Trans.
Amer. Math. Soc. 277 (1983), 1�43.

3. M. G. Crandall and A. Majda, Monotone difference approximation for scalar conserva-
tion laws, Math. Comp. 34 (1980), 1�21.

4. C. M. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic
conservation laws, Indiana Univ. Math. J. 26 (1977), 1097�1119.

5. L. C. Evans and J. Spruck, Motion of Level Sets by Mean Curvature I, J. Diff. Geom. 33
(1991), 635.

6. J. Goodman and Z. Xin, Viscous limits for piecewise smooth solutions to systems of
conservation laws, Arch. Rational Mech. Anal. 121 (1992), 235�265.

7. S. Jin and M. Katsoulakis, Relaxation approximations to front propagation, J. Differen-
tial Equations 138 (1997).

8. S. N. Kruzkov, First order quasi-linear equation in several independant variables, USSR-
Sb. 10 (1970), 217�243.

305VANISHING CURVATURE VISCOSITY



9. P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock
waves, in ``Board Math. Sci.,'' Vol. 11, SIAM, 1973.

10. P. L. Lions, Generalized solutions of Hamilton�Jacobi equations, in ``Research Notes in
Mathematics,'' Vol. 69, Pitman Advanced Publishing Program, 1982.

11. S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton�Jacobi formulations, J. Comp. Phys. 79 (1988), 12�49.

12. J. A. Sethian, Curvature and the evolution of fronts, Comm. Math. Phys. 101 (1985),
487�499.

13. J. A. Sethian, Numerical methods for propagating fronts, in ``Variational Methods for
Free Surface Interfaces'' (P. Concus and R. Finn, Eds.), Springer-Verlag, 1987.

14. J. A. Sethian, Theory, algorithms, and applications of level set methods for propagating
interfaces, Acta Numer. (1995).

15. J. Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, 1983.
16. E. Tadmor and T. Tassa, On the piecewise smoothness of entropy solutions to scalar

conservation laws, Comm. PDE 18 (1993), 1631�1652.
17. T. Tang and Z. H. Teng, Viscosity methods for piecewise smooth solutions to scale

conservation laws, Math. Comp. 66 (1993), 495�526.
18. Z. H. Teng, ``First-order L1-convergence for Relaxation Approximations to Conservation

Laws,'' Comm. Pure Appl. Math., Vol. LI, pp. 857�895, 1998.
19. Z. H. Teng and P. Zhang, Optimal L1-rate of convergence for viscosity method and

monotone scheme to piecewise constant solutions with shocks, SIAM J. Numer. Anal. 34
(1997), 959�978.

306 YING AND ZHANG


	1. INTRODUCTION 
	2. FIRST-ORDER ...-CONVERGENCE FOR NONLINEAR VISCOSITY METHODS 
	3. NONLINEAR CONSERVATION LAWS WITH ... INITIAL DATA 
	ACKNOWLEDGMENTS 
	REFERENCES 

