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OPTIMAL L-RATE OF CONVERGENCE
FOR THE VISCOSITY METHOD AND MONOTONE SCHEME
TO PIECEWISE CONSTANT SOLUTIONS WITH SHOCKS*

ZHEN-HUAN TENG!' AND PINGWEN ZHANG

Abstract. We derive optimal error bounds for the viscosity method and monotone difference
schemes to an initial-value problem of scalar conservation laws with initial data being a finite number
of piecewise constants, subject to the initial discontinuities satisfying the entropy conditions. It
is known that the entropy solution of the problem is piecewise constant with a finite number of
interacting shocks satisfying the entropy conditions. A rigorous analysis shows that both the viscosity
method and monotone schemes to approach the initial-value problem have uniform L!-error bounds
of O(e) and O(Axz) for the time +o00 > ¢ > 0, respectively, where € and Az are their corresponding
viscosity coefficient and discrete mesh length. The results are improvements over the half-order
rates of Ll-convergence. Numerical experiments for the Lax-Friedrichs scheme are presented and
numerical results justify the theoretical analysis.

Key words. monotone-difference scheme, viscosity method, conservation laws, error estimate,
convergence rate
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1. Introduction. Viscosity methods and monotone-difference schemes play an
important role in both theoretical analysis and practical computation for hyperbolic
conservation laws. The accuracy and error bound of the two classes of approxima-
tion methods are of much concern from the viewpoint of numerical computation.
Harten, Hyman, and Lax [5] pointed out that the monotone-difference schemes are of
at most first-order accuracy and Kuznetsov [9, 10] showed that their L'-error bound
for boundary value (BV) initial data is O(\/E) as Az goes to zero, where Az is
the size of space. Tang and Teng [16] recently proved that all monotone schemes
applied to linear first-order equations with discontinuous initial data is of at most
VAz rate of convergence in L -norm. This means that the v/Az rate of convergence
in L'-norm is indeed the best possible for the monotone schemes applied to scalar
conservation laws if it includes the linear case. But it is widely believed that some ap-
proximate methods (such as monotone difference schemes) to approach discontinuous
solutions for conservation laws with nonlinear fluxes perform better than those with
linear fluxes (see Harten [4]). This property has important implications in numerical
calculations [4]. In this paper we justify this observation and derive optimal L!-error
estimates for both the viscosity method and monotone difference scheme to piecewise
constant solutions with a finite number of shock waves, i.e., solutions of the following
initial-value problems:

ou _ Ofw) N
(1.1a) TR =0, (z,t) eRxRT,
(1.1b) u't:O = up(z), z€eR
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with
1), T < xi(})z,
0
(1.2) ug(z) = { ul®), wl(g—)1/2 <z< x,(gl/z, k=1,...,K -1,
o, A,
where u(®) (k = 0,1,...,K) and xi% < e < xgg)_lﬂ are given constants, K is

a positive integer, and the flux f(u) with the initial data (1.2) satisfies Oleinik’s
condition E (see [15])

fw) = f(u®) >Dk,>w, k<l (k1=0,1,..., K)

(1.3a) F——) , Py

for all u strictly between u(®) and u(®), and satisfies the Lax geometric condition (see

[11])
(1.3b) F W) > Dy, > fw®), k<l (k1=0,1,..., K),

where

f (k) _f )
(1-3¢) Dk»F%

is shock speed.

Remark. If the flux f(u) is strictly convex f”(u) > 0, then (1.3) is equivalent to
1@ > M) 5 oo (B

It is known [11] that under the conditions (1.3) the entropy solution u(z,t) of
(1.1) and (1.2) is piecewise constant with a finite number of interacting shocks. More
precisely, the solution is of the following form: for 0 < ¢t < ¢(1)

u(O)’ T < XI/Z(t)a
(1.4) u(z,t) = u®, Xy 10(t) <3< Xpy12(t), k=1,....,K—1,
U(K)a 2> -XK—l/Q(t)’

where
(1.5) Xi—1/2(t) = x;(go_)l/z + Di—1,

is a shock curve and t(1) is the earliest intersection time of any two neighboring shock
curves, i.e.,

1. t@) = in ¢
(1.6a) o<heRk—1®

where
(0) (0)
Trr1/2 ~ Tr_1/2
1.6b tr =
(1.6b) F Dg—1,5 — Dy k41

is the intersection time of two neighboring shock curves.
At the time ¢ u(z,t™M) is of another piecewise constant with K — 1 or less
discontinuities. The solution u(z,t) can be constructed beyond ¢1) as an entropy
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solution of (1.1) with the initial data u(x,t™)). To repeat the process a finite number
of times, u(z,t) can be continued to ¢t = oo.

In this paper we will prove the following main results.

THEOREM 1.1. Let the entropy conditions (1.3a) and (1.3b) be satisfied. If ve
and wag are solutions of the viscosity method and monotone scheme, defined by (1.9)
and (1.10) below, respectively, to the initial-value problem (1.1) and (1.2), then the
following uniform error bounds are fulfilled for any 0 <t < 4o00:

(1.7) lve(- ) —u(,OllLm) < Cre
and
(1.8) lwaz(yt) —u( )l w) < CxAz,

where u is the entropy solution of (1.1) and (1.2), € and Ax are the viscosity coefficient
and the discrete mesh length of the two approximate methods, respectively, and Cgk
are constants independent of t, €, and Ax, but depend on K, the number of initial
discontinuities.

Remark. The error estimates of (1.7) and (1.8) hold not only before but also after
interaction of shocks.

Several authors provide convergence rates for various approximate methods to
discontinuous solutions of conservation laws (see, e.g., [6, 9, 10, 14, 16, 17, 19, 20]).
Although their methods are different, the convergence rates in the L!-norm obtained
are half-order in most of the cases. Therefore, Theorem 1.1, having one-order con-
vergence rate, may provide a clue on how to break the half-order barrier to the error
estimate.

The proof of Theorem 1.1 consists of two key steps. First, we prove the theorem
for a single shock solution, i.e., K = 1, by means of Jennings’ travelling discrete shock
wave [7] and travelling viscosity shock wave. For a finite number of interacting shock
waves, we use the matching method to assemble the corresponding travelling viscosity
shock waves or travelling discrete shock waves together in each time interval between
any two successive shock interactions. We prove that the assembling travelling-waves
solution is a good approximation to both the multishock solution and its corresponding
viscosity or finite-difference solution within an O(¢) or O(Az) Ll-error, respectively.

The analysis used in this paper can be extended to more general cases, such
as piecewise-smooth solutions, and a similar first-order L!-convergence rate can be
obtained. The result will be reported elsewhere [18].

‘We would like to mention that the study of this paper is also motivated by the
work of Goodman and Xin [3] in which they introduced the matching method to as-
semble the travelling waves in the theoretical proof of energy estimates for a system
of conservation laws and showed that the viscosity method approaching piecewise-
smooth solutions with a finite number of noninteracting shocks to a system of conser-
vation laws has a local € rate of convergence away from shocks. Liu and Xin [13] also
used this method to prove the stability of multiple shocks for Lax—Friedrichs schemes
to systems of conservation laws. As mentioned by Liu and Xin [12, 13], one would
expect a first-order L'-error estimate for the Lax-Friedrichs scheme approximating

-the Riemann single-shock solution to systems of conservation from their stability es-
timates. But they also said that this needs some initial-layer estimates for the case
of systems.

‘We now give a more detailed description of the viscosity method and the monotone
difference scheme. The viscosity method approaches the scalar conservation laws (1.1)
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by solving the parabolic equation

6Ue af(ve) _ 62U€
o T or  “on

(1.9b) vf]t:O = ug(z), zeR

(1.9a) (r,t) e RxR*, €>0,

and the entropy solution u of (1.1) can be constructed as the limit of solutions v, as
€ — +0.
The monotone scheme is a finite-difference approach to (1.1). A (p+ ¢+ 1)-point
conservative finite-difference scheme
1
w;”"' = H(W}_p, Wi i1y s Witq)
(1.10a) =w} — NF(W]_pi1,- - Wie) = FW]_py ooy wipg1)]

is said to be monotone if H is a monotone nondecreasing function of each of its
arguments, and is said to be consistent with the scalar conservation laws (1.1) if the
numerical flux f satisfies

(1.10b) f(wa’w) =f(w)>

where A\ = At/Az = constant, p and ¢ are given nonnegative integers, and

1 a:j+A:z:/2 .
(1.10c) w§ = Tagz(uo)(z;) = Z—a;/ uo(z)dz, x; = jAx.
z;—Ax/2

Extend the lattice function w} to continuous values of z and ¢ by setting
(1.10d) waz(z,t) = w) for (z,t) € [Tj_1/2,Zj41/2) ¥ [tns tnt1),

where 211/ = (j + 1/2)Az, t, = nAt,n € N, and j € Z.

Stability, convergence, and an error estimate for the monotone-difference schemes
can be found in [1] and [10].

The rest of this paper is organized as follows: in section 2 we will introduce
stability lemmas and travelling-wave lemmas for the viscosity method and monotone
schemes. In section 3 we prove Theorem 1.1 for the viscosity method, while in section
4 we prove the theorem for monotone schemes. In the last section we present some
numerical experiments to verify the theoretical analysis for both noninteracting shock
waves and interacting waves. Some lemmas are given in the Appendix.

2. Some basic lemmas. First we establish stability lemmas and travelling-wave
lemmas for both the viscosity method and the monotone difference scheme. These
two kinds of lemmas play central roles in proving Theorem 1.1.

LEMMA 2.1. If ug(z) belongs to L>°(R), then (1.9) has a unique solution v(z,t)
that satisfies:

1. ve(z,t) has continuous derivatives involved in (1.9) for t > 0,

2. ve(z,t) is uniformly bounded by

(2.1 [ve(, )l 2oy < lluo()lleomy VE>0,
3. ve(z,t) assumes the initial value ug(x) in the following sense:

(2.2) tl_i’I_'I_l0 ||U€(-, t) — U()(')IILI([_RyR]) =0 VR>O0.



VISCOSITY METHOD AND MONOTONE SCHEME 963

The proof of this lemma can be found in [8]. Next we introduce stability results
for the viscosity solutions of (1.9) with a nonhomogeneous term.

LEMMA 2.2 (stability). If v (@,t) fori=1,2 are solutions of (1.9) with nonho-
mogeneous terms g;(x,t) and initial data u((f) (z) € L*(R), namely,

o Lo Fy 92l

(2.3a) e S 9i(z,t), (z,t) e R x RY,
(2.3b) vgi)|t=0 = u(()i) (x), z €R,
then

(1) —v@COlmy < 1u§?() = u§? Ol @
t
(2.4) 4 /O l916,7) — 2( )2 o -

The lemma can be proved by a technique used by Lax in [11], with some modifi-
cations.

A travelling-wave solution is a solution of (1.9a) in the form ve(z,t) = Vi(z — St),
where the wave speed S is a constant. We have the following existence lemma for the
travelling-wave solution.

LEMMA 2.3 (travelling wave). Let the assumption (1.3) be satisfied. Then for each
pairk <1 (k,1=0,1,...,K) and each un, € (u(’“) Au® uk) v u®) there is a unique
travelling-wave solution V*" (z—Dg i) of (1.9a) taking on the values Ve(k’l)(O) = U,
Ve(k’l)(—oo) =u® and VL (00) = uD), which has the following properties:

1. Ve(k’l)(a: — Dy it) = Vii((x — Di,it)/€), where Vi, 1(€) is defined implicitly by

v
(2.5a) &a(V) = / ®p 1 (u)"t du,
where
(2.5D) Dpa(w) = f(u) = fF@®) = Dpg(u—u®);

2. Fordllé € R
(2.6) u® A uW <V (6) < u® v au®),

where ¢ A d = min{c,d} and ¢V d = max{c,d};

3. V(€ (Ve(k’l)(f) as well) is a monotone function for £ € R and approaches
u® and u® ezponentially in § as & — Foo; namely, there are positive constants i,
and I'y; such that

(2.7a) [Via(€) —u®| < Ty el for ¢ <0,

(2.7b) Vi (&) = uW| < Ty e ™Hlel for ¢ > 0.
4. The following estimates hold:

(2.8) Ap = [Hea () = Vi (llzrmy < 00
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FiG. 1. Entropy conditions (1.3a) and (1.3b). Dark line is @ (u), light lines are agi(u —
ul®))(u - u®) and By, (u — ulF))(u — u®).

and
(2.9) 1 Hia(-) = Vi (/O m) = Ax,ie,
where

u® z<0
2.10 H = ’ =7
( ) k,l(x) {u(l), z>0.

Proof. To be specific, we assume u(®) > u(), The expression (2.5) can be easily
derived by substituting Ve(k’l) (x — Dgt) = Viy((® — Dg,t)/€) with Ve(k’l)(O) = Um
into (1.9a) and, in view of Oleinik’s condition E (1.3a), or equivalently ®4;(u) < 0
for u € (u®,u®) and &y, ;(u®) = & ;(uV)) = 0, the inverse function of (2.5a) also
satisfies Vi (—00) = u® and Vj,;(c0) = ul®.

Property (2) follows immediately from (2.5a) and V};(§) = ®x.(V) <O.

In order to prove (3), we show that there exist 0 < a; < Bk, such that

(2.11)
Bra(u = u®)(w —ul) < By () < ap(u—u®)(w-u?) vue @, ).

This is due to the entropy conditions (1.3a) and (1.3b), or equivalently, @ ;(u) < 0
for u € (u®,u®) and @;c’l(u(l)) < 0 and @;c’l(u(k)) > 0 (see Figure 1). Thus (2.11)
and (2.5) imply that

apt HEV) < &(V) <Bri V), V> um,

(2.12) o s
By~ (V) < &a(V) < awy ™ E(V), V < U,

where

_ v 1
W)= | e

1 V= u®N [y —u®
RGOk Kv_u(w) (um _u(m)J '
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Since all three functions in (2.12) are decreasing functions for V € (u®,u(*®), their
inverse functions also satisfy a similar inequality in the same order:

V(o 18) < Viey(€) < V(Br,ié), £>0,

(2.13) o -
V(Bra€) < Via(€) < V(ari), £€<0,
where
GE (uoc) +u® (1;(’“) - 5::) exp{e® — u®) })
(2.14) m

-1
X (1 + (M) exp{€(u® — u(l))}) .

Uy, — D

It is easy to see from (2.14) that V(¢) approaches u(*) and u(!) exponentially in ¢ as
& — Foo, and so does V4 ;(€). Hence (3) is proved.

Equation (2.8) is an immediate conclusion from property (3). Substituting viEb (z) =
Vi,i(x/€) and Hy(x) = Hy,(x/€) (because of the special form of (2.10)) into the left-
hand side of (2.9) and using integration by substitution, we obtain the equality (2.9).
‘We have now completed the proof of Lemma 2.3. 0

Remark (i). From the proof we see that the Lax geometric condition (1.3b) is
necessary for proving property (3). This condition is also needed for proving a similar
property in Lemma 2.5 below.

Remark (ii). If the flux is strictly f”(u) > 0, then Ag,; in (2.9) has an explicit
bound

-1
Ap <4 min "y } .
o {lulSIluollLoof )

Similarly, we can also establish the stability lemma and the travelling-wave lemma

for the monotone scheme. )
LEMMA 2.4 (stability). If wxgb(a:, t) for i = 1,2 are solutions of (1.10) with

nonhomogeneous terms h;(x,t) and initial data uéi) (z) € L*®(R), namely, for any
t, =nAt (n=1,2,...)

(2.15a) wgl(a:, tnt1) — H(wxzc(x — pAz,t,),... ,wgl(x + qAz,t,)) = hi(z, t,)At,
(2.15b) wd (2,0) = u{ (z),
then

wS (- tn) = WD ta)lprmy < e () — @ (o)

n—1
+ 3 b1 (e tm) = ha( tm) L1 @y A,

m=0

(2.16)

The proof can be found in [1].
In what follows we introduce a travelling-wave solution to the monotone scheme
(1.10a) by following Jennings’ work [7]. A travelling-wave solution of (1.10a) moving
with speed Dy, ; satisfies the difference equation
Kl Kl Kl
(2.17) wED L =HWED L owED,

2—Dg, z=p
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The minimal domain on which (2.17) makes sense consists of functions defined on
the linear span over the integers of n = Dy ;A and 1. Call the closure of the set L.
If n is rational, £, is discrete; if  is irrational, then £, is the entire real line. L*(Ly)
is the space of absolutely integrable functions on £, with the usual sense.

LEMMA 2.5 (travelling wave). Let the assumption (1.3) be satisfied and |n| < 1.
Then for each pair k <1 (k,1 = 0,1,...,K) and each upm € (u® A u® u®) v y®)
there is a travelling-wave solution Wz(f’,l,) of (2.17) continuous on L, taking on the
values Wék’l) = U, Wi’fxl)) =u®), and ng b = u®, which is a monotone function
of z and approaches u®) and uV) ezponentially in z as z — Foo.

The lemma, for the strictly monotone scheme is due to Jennings [7] and it is gener-
alized by Engquist and Osher [2] to any weakly monotone scheme of the form (1.10a)
having the property that for any € > 0 sufficiently small there exists a strictly mono-

tone scheme HE(w;_p, ... ,Wjtq) such that HE(wj_p, ... ,Wjtq) = H(Wj—p,... ,Wjtq)
as € — 0.
For rational 7 the set £, is discrete. So it is of the form {z;}%,, with z; < z;41
(k

Vj € Z. We extend the discrete travelling-wave solution W; b (j € Z) to continuous

values of £ (£ € R) by setting
(2.18a) Wii(€) = WD, ¢ € (25, 2i41),
where j € Z.

For irrational n we identify Wy ;(§) with Wg(k’l) , e,
(218b) Wia(§) = W, ¢eR.

For Wi 1(§) we have the following lemma. '

LEMMA 2.6. Under the conditions of Lemma 2.5, Wy 1(§) has the following prop-
erties:

1. u® Au® < Wi (&) < u® vul® forall € € R.

2. Wi,(€) is a monotone function for £ € R and approaches u® and u® ez-
ponentially in £ as & — Foo; namely, there are positive constants 6i,; and Ay, such
that

(2.19a) (Wi (&) — u®| < Ag e 1l for ¢ < g+gq,

(2.19b) (Wi, (€) —u®| < Ag el for £ > —(p+q),

where p and q are parameters given by (2.10a).
3. The following estimates hold:

(2.20) By = [[Hy() = Wi ()l 1wy < 00

and

(2.21) 1Hia() = W Oll 21y = Brade,

where Hy1(€) is defined by (2.10) and

(2.22) WD (z) = Wy (z/ Ax).
Proof. Lemma, 2.6 is a direct consequence of Lemma 2.5. O
3. Proof of Theorem 1.1 for the viscosity method.

3.1. Proof of (1.7) for K = 1. Now we first prove the simplest case of The-
orem 1.1, i.e., K = 1. In this case (1.1)—(1.2) is reduced to a Riemann problem subject
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to the initial data

(3.1) uo(x) = Hoa(z — z{)y) = s

u©), T < wg%,
u®, x> Ty /g

where u(®) and u(!) satisfy (1.3). From (3.1) and (1.3) we see that the Riemann
solution of (1.1) and (3.1) can be expressed as

(3.2) u(z,t) = Ho(z — Xy/5(t)),
where Hp 1(x) is defined by (2.10) and
(3.3) Xi/2(t) = 938)2 + Do,1t

is a shock curve. Substituting (3.2) into the right-hand side of (1.7) and using the
triangular inequality we obtain

oe(,2) — u(, )l (r) = llve(-st) — Hoa (- — X12(t)) 2 (m)
' < e t) = VOV = Xy /a(t)) 2 my
(3.4) + VOV (- = Xy 5(t)) — Hop(- — X12t) 1 ()
= [[ve(-5t) = VOV = X12()) 11 my
VOV () = Hot ()2 my,

where Ve(o’l)(x — X1/2(t)) is a travelling-wave solution of (1.9a) given in Lemma 2.3.
Since V%V (z — X1/2(t)) is also a solution of (1.9a), (2.4) implies that

lve(,8) = VEOD( = X1 o)y < I1Ho1 () = VOV (|1 my-
Therefore substituting this into (3.4) yields
e (-, ) = u(, Ol ry < 211 Hou(-) = VOV ()l ry

and applying (2.9) to the above inequality gives the desired (1.7) with a constant
C1 = 2A0,1, where Ay is defined by (2.8) and is obviously independent of ¢ and ¢.
This has verified (1.7).

3.2. Proof of (1.7) for general K. We prove the general case by using induc-
tion on K. For K =1 (1.7) is true, as has been proved in the previous section. We
now assume that the theorem is true for K — 1 and prove it is true for K.

A ke%y')step in the proof is to construct a combining approximate solution: for
0<t <t

(3.5a)

K
Te(z,t) = u(z,t) + Y [Vk—l,k) (ﬂzﬁ) — Hy11 (z - Xk—1/2(t)):| ;
k=1

where u(z, t) is defined by (1.4) and ¢(!) is given by (1.6). On account of the definitions
of u(z,t) and Hg_1,k(£), the combining solution 7, (x,t) can also be written as

€

= S z— Xp_1/2(t)
(3.5b)  T(=,t) = — Z u® 4 Z Vi—1,% (——————) for 0 <t <M,
k—O k:l
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The expression of (3.5b) was first used by Liu and Xin [13] to prove the stability of
multiple shocks for Lax—Friedrichs schemes to systems of conservation laws. The next
lemma easily follows from the two expressions.

LEMMA 3.1. v(z,t) is a smooth function on {(z,t)|z € R, t € [0, tM]} and
satisfies

(36) ||u(,t) — ﬁe(',t)”Ll(R) <Cgke for0<t< t(l),

where Ck is some constant.

Proof. Equation (3.5b) indicates the smoothness of T (z, t), while (3.5a) and (2.9)
give the desired error estimate. 0

Next, with the aid of the stability estimate (2.4), we will prove that the L;-error
of the difference between @¢(-,t) and ve(-,t), the viscosity solution of (1.9), is also
bounded by O(e). We first derive a nonhomogeneous viscosity equation for w(, ).
Substituting v.(-, t) into (2.3) yields the following lemma.

LEMMA 3.2. Tc(z,t) satisfies

— — 2_
(3.72) P L U@ _ 0T _cinty for 0<t <O,
ot Or Oz2
(3.7b) Tel,_o = To(),
where
_ X z— Xs—1/2(t) (s)
e S G [ o, (2R,
k=1 Ls<k €
— X _1ya(t — Xe_1/a(t
(3.8a) +3 Vect,s (”_____1_/2(_2) _ 4D } ‘Vic—l,k (wk—l/z()>
s>k € € z
and
K T - xl(cO)l 2
(880)  To(®) =uo@)+ Y |Vi-rs | ———L | = Hiorp (2 -2, )
k=1

with uo(x) being defined by (1.2) and some constant Ck .
Proof. Substituting (3.5b) into the left-hand side of (3.7a), on account of
Vi—1,6((z — Xj—1/2(t))/€) being a solution of (1.9a), gives

K
g(xa t) = f(ﬂe)m - Z f(Vk—l,k)a:
k=1

(f'@e) = f' (Vi—1,6)) Vi—1,k),

s<k

(o () ). ()

s>k

K
k=1
K
k=1
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Since U, and Vi_1 1 are uniformly bounded, so is the integration in the above expres-
sion, and thus we arrive at the conclusion (3.8a). Equation (3.8b) is

obvious. a
It is easy to see from (3.8a), (A.1), and (A.2), where (A.1) and (A.2) are given in
the Appendix, that

W)

(3.9) /0 156y < Crc 6

and from (3.8b) and (2.9) that
(3.10) @o(-) = uo()llLr(m) < Ck €.

Applying Lemma 2.2 to the combining solution ¥.(z,t) and the viscosity solution
ve(,t) we conclude the following lemma.
LEMMA 3.3. For 0 <t <t(!)

“56('at) - Ue('>t)|lL1(R) <Cke,

where Cy is some constant that is independent of t € [0,t(V)].
Proof. Since U (x,t) and ve(z, t) satisfy (3.7) and (1.9), respectively, so Lemma 2.2,
with the aid of the estimates (3.9) and (3.10), gives the desired result. 0
Lemmas 3.1 and 3.3 indicate that

(3.11) fve(-,t) —u(-, )|z ry < Cre for 0 <t <t

We are now in a position to complete the induction proof. From the definition
(1.6) we know that at t = t™) at least two neighboring shock curves join; therefore one
piece of the constant, located between the neighboring shock curves, disappears at
(). That means u(z, (")) consists of at most K — 1 piecewise constants. So according
to the induction hypothesis, Theorem 1.1 is valid for the initial-value problem with
the initial data

(3.12) uo(z) = u(z, tM).

We denote the viscosity solution to the initial-value problem (1.9a) and (3.12) by
vél)(x, t) and Theorem 1.1 shows that

(3.13) u(-,t+tP) o@D ()| L1y < Cr-1e for 0 <t < +oo.

On the other hand, Lemma, 2.2 indicates that

(3.14)
[ve(-,t + D) = oD ()| Lrmy < Hfve(-t D) = u(, t )| prmy  for 0 <t < +oo.

Combining (3.13) and (3.14), with the aid of (3.11), verifies that (1.7) is true for K, so
the induction proof is finished. We have proved the theorem for the viscosity method.
4. Proof of Theorem 1.1 for monotone schemes.

4.1. Proof of (1.8) for K = 1. We now turn to Theorem 1.1 for the finite-
difference monotone schemes. The proof of (1.8) is similar to that of the viscosity
method.
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Let

(4.1) WO (z) = Wo (Aix) ,

where Wy 1(€) is defined by (2.18). Since Wy 1(§) is a travelling-wave solution of
(1.10a), it satisfies

Wo,1(€ — DoaA) = HWo,1 (6 —p),--- . Woa(§+9), §€ER.

From this we see that W(0 1)( — X1/2(t)) is also a solution of (1.10a); therefore (2.16)
implies that

lwaz(-8) = WD (- = X1/5(8) |l 1. (my
< Jwas(0) = WOV (- = 20 12wy

= [[Ho (- — 21%) = Wo((- — 21 ))/A2) | 1wy
= [|Ho,1(") = Wo1 ()l )Az = BoAx,

(4.2)

where the last two equalities follow from Hp1(z) = Ho,1(z/Az) and (2.20), respec-
tively. By using (4.1), (4.2), and a similar argument as in (3.4), we have

lwaz (- t) — u(- 1)1 (r)
< lwas(t) = WP = X1 o)l @)
+ [ Hoa (- — Xija(®) = WP (- = X1/2(0)) |12 (m)
< BoaAz + |[Ho (- — X1/2(t)) — Wo,i((- — X1/2(t))/Az)| L1 (w)
= 2By 1Az.

So we arrive at the conclusion (1.8) with a constant Cy = 2By, 1, where By ; is defined
by (2.20) and is independent of Az and ¢. This has finished the proof of (1.8) for the

simplest case.

4.2. Proof of (1.8) for general K. We first construct a combining approxi-
mate solution for the monotone scheme: for 0 < t < (1),

(4.3a)
K —
Tpaz(T,t) = u(z,t) + Z [Wk—l,k (QEL&) — Hy_1x (z— Xk—l/z(t))] )
k=1

where u(z, t) is defined by (1.4) and ¢(!) is given by (1.6). On account of the definitions
of u(z,t) and Hy_1x(£), the combining solution Wa,(x,t) can also be written as

(4.3b) Wag(z,t) KZ_I “Mf:w (x_X""l/"’(t)) for 0 <t <t
. Waz(z,t) = — U k| ———— or 0 <t <t
A P P k—1,k Az

The next lemma easily follows from the two expressions.
LEMMA 4.1. Waz(z,t) satisfies

(4.4) [u(-t) = Tas ()|l my < Cx Az for 0 <t <t

where Ck is some constant.
Proof. (4.3a) and (2.21) give the desired error estimate. 0
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Next, with the aid of the stability estimate (2.16), we will prove that the Ls-
error of the difference between Wa, (-, t) and waz(+,t), the monotone-scheme solution
of (1.10), is also bounded by O(Az). We first derive a nonhomogeneous monotone-
difference scheme for Wa4(-,t). Substituting @Wa,(-,¢) into (2.15) yields the following
lemma.

LEMMA 4.2. Wa,(z,t) satisfies for 0 < t,, < t(1)

(4.58) Waz(Z,tny1) — H(Waz(z — pAz, tn)s - Wae(® + qAz, t,)) = h(z, t,)At,
(4.5b) Wz (z, 0) = Uo (%),

where

T+ JjAT — X,_q/9(t s
Ws—l,s ( J = 1/2( )) —u®

el <ok K{ [Z

t,J=—p k=1 s<k

AT — X,_q1/9(t

+Z Wi_1,s (w+J an: s-1/2( )> —u(s_l)}
(4.63.) s>k
Az — Xy _1/9(t
X |\Wg_1k (x—H xA w1l ))
T
T4+ (1 — DAz — Xp_1/o(t 1

_Wk_l’k( ( )Aw ‘ 1/2<>) _A_x}

and

K T — w((ﬁ
(46b) ﬁo(ﬂ:) = UO(IZI) + Z ’:Wk—l,k (—A%/E - Hk:—l,k (1} — xl(co—)l/2)
k=1

with uo(x) being defined by (1.2) and some constant Ci.
Proof. We first introduce some simplified notations as follows:

w(z + Az/2) = (w(z — (p— 1)Az), ... ,w(z + ¢Az));
w(z — Az/2) = (w(z — pAz),... ,w(z + (¢ — 1)Az));
Aw(z) = w(z + Az/2) — w(z — Az/2);

W(0) = 0w(z + Az/2) + (1 — O)w(z — Az/2);

Df=(...f;...); D*f=(f,),

where ?j = df/0w; and ﬂj = 8%f/Ow;0w;, (i,5=—(p— 1),...,9).
Substituting equation (4.3b) into the left-hand side of (4.5a) (on account of
Wi—1k((z — Xg_1/2(t))/Az) being a solution of (1.10a)) and using the above no-
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tations gives

h(z,t)At = A (f (Waz(z + Az/2)) — F (Was(z — Az/2)))

K
=2 (F (Wi k(z + Az/2)) — F (Wi_1k(z — Az/2)))
k=1

= /0 1 Df (%M(e)) dOAT p(x)
(4.7) - /\i /01 Df (Wk—m(a)) dOAW 1 1 ()
k=1
- )\i /O 1 (D 7 (%M(o)) _Df (v“(rk_l,k(e)) de) AWj_1 4(x)
k=1

K
- )\§ /O /O (Wae(6) ~ Wi-14(6)) D2 ((Fas(6) + (1 = OWi-1,1(6) )

X AWy _1 () d¢ db,

where the variable t is omitted from the above expressions. Here some terms in (4.7)
are expressed more explicitly as

Waz(0) — Wi_1(0)
_ Z[e (Ws_l,s(x +Az/2) — u(3)> +(1-0) (WS_I,S(x — Az/2) - u(3)>]

s<k
+> [0 (WS_LS(ac + Az/2) — u(s_1)>
s>k
+(1-6) (Woona(e — Az/2) - u(s_1)>]
and
AWk_l,k(ac) = Wk_l,k(x + Aw/2) — Wk_l,k(:c — Ax/2),
where
T+ jAT — Xp_q/9(t
Wi_1k(z + Az/2) = ( TWi—1.k ( J Az k=172 )) ,) ,
(J = _(p_ 1)7aq)

and

u® =(..,u® ).

Since Wa, and Wj_1 j are uniformly bounded, so are the components of the matrix
DZf in (4.7), and thus from the above expressions we arrive at the conclusion (4.6a).
Equation (4.6b) is obvious. g

It is easy to see from (4.6a), (A.3), and (A.4), where (A.3) and (A.4) are given in
the Appendix, that

n_1

(4.8) > ARG tm) |z ®) At < Ck Az,

m=0
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and from (4.6b) and (2.21) that
(4.9) [@o() — wo()lrmy < Cx Az,

where n(t) = [t(1) /At]. Applying Lemma 2.4 to the combining solution Wa(z,t) and
the finite-difference solution wa(z,t) we conclude the following lemma.
LEMMA 4.3. For 0 < t, < ¢

”TU-AQ:(th) - wA:t:('a tn)”Ll(R) < CK AZL‘,

where Ci 1is some constant which is independent of 0 < n < n,

Proof. Since Waz(z,t) and wag(z,t) satisfy (4.5) and (1.10), respectively, Lemma
2.4, with the aid of the estimates (4.8) and (4.9), gives the desired
result. 0

Lemmas 4.1 and 4.3 indicate that

(4.10) [waz (s tn) = (s tn)lLiry < Crx Az for 0 < n < n(.

We are now in a position to complete the induction proof. As shown before,
u(z,tM)) consists of at most K — 1 piecewise constants. So according to the induction
hypothesis, Theorem 1.1 is valid for the initial-value problem with the initial data
(4.11) uo(z) = u(z, tW).

We denote the finite-difference solution to the initial-value problem (1.9a) and (4.11)
by w A)(a: t) and Theorem 1.1 shows that

(4.12) Ju(,t+tD) —wD (6| pim) < Cr_1 Az for 0 <t < +o0.
On the other hand, Lemma 2.2 indicates that for 0 < t < 400
(413)  Jwas(,t+1tD) —wl) (D)l < llwas(, D) = u(, t V)1 w)-

From the definition (1.10d) we know waz(z,t)) = waz(z, [t()/At]At). Therefore,
it follows from (4.10) and the L!-continuity of u(z,t) with respect to ¢ (see [1], [10])
that
(4.14)
lwae (-t ™) = u(, tD)|[prmy < lwas(, (D /AAL) — ul-, [t/ AAL)|| 11w
T lu [/ AGAY — u(, V)] 11y
< CxAz + Cllug (1)l v ) At

Combining (4.12) and (4.13), with the aid of (4.14), verifies that (1.8) is true for K, so
the induction proof is finished. We have proved the theorem for the finite-difference
monotone scheme.

5. Numerical experiments. In this section we will present some numerical
experiments to verify the theoretical analysis, i.e., the convergence rates of monotone
schemes to multishock wave solutions are of one order.

The initial-value problem we consider is of the form

Ou 8f(u)
z <0,
(5.1b) Ulp=0 = 1>22>0,

—20 z2>1
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with
(5.2) flu)=——.

3

It is easy to show that the initial data (5.1b) with the nonlinear fluxes (5.2)
satisfies the entropy conditions (1.3) and the solution of (5.1) is of the following form:
for0 <t<1.25

0.0, =< %84,
(5.32) u(z,t) =408,  —08t< g1 204y
2.0, z>1-23X¢

and for t > 1.25

_08 _ 40
(5.3b) w(z, t) = 0.0, z < 3 i(t 1.25),
~2.0, z>-%8 4t 1.25),

where () = 1.25 is the intersection time of the two shock curves.
The monotone difference scheme we consider here is the Lax—Friedrichs scheme,
which is defined below.

A
Wt = Ly ) - S(F) - Fy)

A simple analysis reveals that the scheme is monotone provided that the Courant—
Friedrichs-Lewy (CFL) condition
/
max u)| <1
Ju] <sup |w]| Pl <
holds.
Let us recall some of the notations defined earlier in this paper:

At
A= R =constant, wf mu(eyte), 7= ATty =nAL

Numerical results for the initial value problems (5.1) and (5.2) are given in
Table 1, where ¢t = 1 is a time before shocks interact while ¢ = 1.5 is after shocks inter-
act. Here errors mean ||ju — wag||: with different steps Az and A = 1/6. The numer-
ical results clearly indicate that for the Lax—Friedrichs monotone-difference scheme,
the convergence rates for both noninteracting and interacting shocks are of one order,
which complies well with the theoretical analysis of Theorem 1.1.

Appendix. In order to prove Theorem 1.1 for the more general case we need the
following lemmas concerning the travelling-wave solutions.
LEMMA A.1. For each pair 0 < s<k< K —1,

(A1)
Hes)
=X = X
/ [Vs-l,s <__1/_2_(T_)) _ u(s)] Vi 1k <_~_’°__1_/E£72) dr < Cype
0 ¢ ¢ I L1(R)
and for each pair 0 < k<s< K -1,
(A.2)
Hey) X X
/ [Vs—l,s (_LILQ_(_T_)> _ u(s—l)] Vi1 (_*k_-i/i@) dr < Cspe,
o € € zllL1(R)

where t) is defined by (1.6) and Csx, are some constants.
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TABLE 1
Ll-errors and convergence rates for the Laz—Friedrichs scheme to (5.1) and (5.2).

A=1/6 t=1 t=1.5

Az Ll-error Ll-rate Ll-error Ll rate
2-1 1.654991 1.760314

22 0.9165800 | 0.8524904 | 0.9282734 | 0.9232112
23 0.6044413 | 0.6006584 | 0.4752705 | 0.9658009
24 0.4495423 | 0.4271453 | 0.2445131 | 0.9588373
275 0.3305978 | 0.4433799 | 0.1270373 | 0.9446595
2-6 0.2260204 | 0.5486241 | 0.0635880 | 0.9984254
27 0.1393246 | 0.6980032 | 0.0316562 | 1.0062660
28 0.0764073 | 0.8666656 | 0.0160277 | 0.9819129
29 0.0384515 | 0.9906718 | 0.0082601 | 0.9563378
2-10 0.0194208 | 0.9854328 | 0.0040531 | 1.0271060
211 0.0098752 | 0.9757114 | 0.0019994 | 1.0194890

Proof. From (2) and (3) of Lemma, 2.3, we know that V; s41(€)—u(®) and V}_, x(6)
will not change their signs for £ € R. Thus the integrand of (A.1), denoted by I (1),
can be written as

=+ [ Ve (2 (Kiy2(7) ‘XS-W(T”) -u<s>} Vi (%) de

oo €

=11 + I,
where I is the integral over {|z| < (Xx_1/2(7) — X;_1/2(7))/2} and I is over {|z| >
(Xp—1/2(7) = X5_1/2(7))/2}. Since Xk—1/2(T) = Xg_1/2(7) > 0, due to k > s, we can
use the estimate of (2.7b) to I; and obtain

X - X,
L <4y eXp{_%—l,s k—1/2(7) . 1/2(7')}

Xhhm(&AMﬂ%&4mﬂ>—Wiw}&AMﬂi&*Mﬂ”

Xi—1/2(1) = Xs—1/2(7) }
2¢ '

< Iu(k) _ u(k_l)IFs—l,s exp {—’ys—l,s

Using the estimates of (2.6) and (2.7) to I gives

X
Iy < £ut) —ul) [u“” ~ Viv ( k-1/2(7)

2—6 Xs—l/2(T)>

X — X
Veork (_ k 1/2(7')26 s 1/2(7)) _,u(lc—l):l

Xi—1/2(7) — Xs_1/2(7) }
2¢ '
Substituting the above estimates of I; and I» into I and integrating the resulting

inequality with respect to 7 gives

) ts,k
/ Hﬂmg/ I(r)dr
0 0
<2|u(k) _ ulk- 1)IFS 18 +4|u(s) (=) Dk k)

Ye—1,k

< 20l — ) Fg—1,kexp {—’Yk—l,k

<e
Ds—l,s - Dk—l,lc

= Clc,s €,
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where

0) (0
b = xi—1/2 —Ts 12
*® " Ds_1,6— Dr_1k
is the intersection time of Xj_;/5(7) and X,_1/2(7), which is greater than or equal to
t™) due to the definition of (1.6). This has completed the proof of (A.1). The proof
of (A.2) is similar and is omitted. O

LEMMA A.2. For each pair 0 < s <k < K —1 and for any —p <4,j<¢q

n()_1 . .
A AT — X 1/0(tm 4 iAT — Xp_1/2(tm
Z [WS_LS ( + Az s 1/2( )) _u(s):| |:W]c_1’k ( +1Ax k 1/2( ))
= Az Az
. i — DAL — X1 /9(tm
(A.3) Wy, (A - K En)\ T L oA
’ Ax Ax L1(R) ’

and for each pair 0 <k < s< K —1 and for any —p <14, j < ¢q

[Ws—l,s ( +jA:1) - Xs—1/2(tm)) _ u(s_l):| [Wk—l,k ( + Az — Xk—1/2(tm))

Ax Az

nM_1
m=0

(A4) — W1k (

At < Cy Az,
L\(R)

4 (- 1)AxA; Xk_1/2(tm)>J Aix

where n® = [t /At] and Cs 1, are some constants.

Proof. The proof is similar to that of Lemma A.1. From (1) and (2) of Lemma 2.6,
we know that W s41(€) — u(®) and Wi—1,5(§) — Wi—1,k(§ —n) will not change their
signs for ¢ € R and 7 fixed. Thus the summand in (A.3), denoted by I(7), can be
written as

1) = i/+o<> [Ws—l,s (x + (j —i)Az + XkA_;/z(r) - XS_1/2(7')> B u(s)]

T — Ax 1
[ss(g) - one (527 35 e

where I; is the integral over {|z| < (Xjk—1/2(7) — Xs—1/2(7))/2} and I is over {|z| >
(Xp—1/2(1) = X5_1/2(7))/2}. Since Xp_1/2(T) = Xs_1/2(7) > 0, due to k > s, we can
use the estimate of (2.19b) to I; and obtain

D e

—0o0

=1 + Iy,

X
I < :l:As—l,s €xp {_63—173 g 1/2(

() — u(k—l))X’C—l/?(T) — Xs—1/2(7)

Az
Xi_ — X,_
< 1.5u® — u®-D|A,_y , exp {—53—1,5 k 1/2(7'31Aw 1/2(7) }
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Using the estimates of (2.19) to 2 gives

X - X, ~
I < +juC — )| u(k)_Wk—l,k< k 1/2(7)2A a—1/2(7) +91)
T
X — Xy ~
 We1n (_ k 1/2(T)2Ax k-1/2(7) +92> _ oy
X — Xs_
< 20ut™ —u®| Ap_1 exp{—ék_1,k k 1/2(7)2&6 s 1/2(7')},

where —1 < 6; < 1 (i=1,2). Substituting the above estimates of I; and I into I and
integrating the resulting inequality with respect to 7 gives

nM_1 +D

mz::O I(tm)At < /O

I(r)dr < /0 " ey dr

6lu® — u(k—l)IAs—l,s + 4ful) — u(s—l)lAk—l,k)
65—1,5 6

k—1,k
Ds—l,s - Dk—l,k

SA.’E(

= Cy,s Az.

In the second inequality we have used the fact that

(0) (0)
Trl172 — Tsl1)2

s—1,s — De—1,6
This is because of the definition (2.6). This has completed the proof of (A.3). The
proof of (A.4) is similar and is omitted. O

tD <ty =
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