Endoscopic Relative Orbital Integrals on U_3

Chung-Ru Lee

Duke University

January 5, 2021 on POINTS *of* Peking University Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

・ロト・日本・モート・モー うくぐ

Table of Contents

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Distinction of Automorphic Representations

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - 釣んぐ

Automorphic representations

Global setting: K is a number field, and G is a reductive group over K.

Consider the vector space

 $V = L^{2}([G]) = L^{2}(G(K) \setminus G(\mathbb{A}_{K})).$

▶ Right regular representation: an action of G (thus a representation) $R: G(\mathbb{A}_K) \to GL(V)$ by translation

 $R(g)\cdot\varphi(x)=\varphi(xg).$

Ultimate goal: to study the decomposition and constituents of (V, R). The isotypic components of V are called *automorphic representations*. Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Distinction of automorphic representations

Let $H \subset G$ be a closed subgroup.

Definition

1. For any automorphic representation π and $\varphi \in V_{\pi}$, define the **period integral** of φ with respect to H to be

$$P_H(\varphi) = \int_{[H]} \varphi(h) \mathrm{d}h$$

2. An automorphic representation π is *H*-distinguished if $P_H(\varphi) \neq 0$ for some $\varphi \in V_{\pi}$.

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Examples of distinguished representations

- 1. *H*: a maximal unipotent. Then cuspidal representations \Leftrightarrow not distinguished by *H*.
- 2. L/K is quadratic. $G = \operatorname{Res}_{L/K} \operatorname{GL}_n$ and $H = \operatorname{U}_n$. Then *H*-distinguished \Leftrightarrow a base change lifting from GL_n (Flicker, Mok and Zinoviev).
- 3. $G = GL_n$ and $H = GO_n$. Then *H*-distinguished \Leftrightarrow a metaplectic lifting from \widetilde{GL}_n (conjecture of Jacquet, verified in n = 3 by Mao).

4. Distinction is also related to central L-values.

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Motivation behind distinction problem

Distinction problem is fruitful from several perspectives:

- 1. The subject of the relative Langlands program introduced by Sakellaridis and Venkatesh.
- 2. To study algebraic cycles on Shimura varieties.
- 3. Related to the Ichino-Ikeda conjecture and its generalizations.

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

The Comparison of Relative Trace Formulae

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - 釣んぐ

A strategy for distinction

- Philosophy (Jacquet): to study distinction problems through the *comparison of relative trace formulae*.
- The proof of the unitary case of Gan-Gross-Prasad conjecture.
- An approach by Getz-Wambach that considers a triple of involutions.

Distinction problems on classical groups \longrightarrow Distinction problems on general linear groups.

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

・ロト ・ 聞 ・ ・ 聞 ・ ・ 同 ・ うらぐ

The automorphic kernel

For $f \in C^{\infty}_{c}(G(\mathbb{A}_{K}))$, we can define an operator R(f) via

$$R(f)\varphi(x) = \int_{G(\mathbb{A}_K)} f(y)\varphi(xy)\mathrm{d}y.$$

• The operator R(f) has a kernel

$$K_f(x,y) = \sum_{\gamma \in G(K)} f(x^{-1}\gamma y)$$

referred to as the *automorphic kernel* associated to f.

 With some additional conditions, the automorphic kernel allows a spectral expansion

$$K_f(x,y) = \sum_{\pi \in \hat{G}} m(\pi) \sum_{\phi \in \mathcal{B}_{\pi}} \pi(f) \phi(x) \overline{\phi(y)}.$$

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Relative trace: the spectral side

Let ${\cal G}_1, {\cal G}_2$ be two algebraic subgroups of the reductive group ${\cal G}.$

- We consider $\int_{[G_1 \times G_2]} K_f(x, y) dx dy$.
- If we uses the spectral expansion for K_f(x, y), this integral is equal to

$$\sum_{\pi \in \hat{G}} m(\pi) \sum_{\phi} \int_{[G_1]} \int_{[G_2]} \pi(f) \phi(x) \overline{\phi(y)} dx dy$$
$$= \sum_{\pi \in \hat{G}} m(\pi) J_{\pi}(f).$$

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Relative trace: the geometric side

- On the other hand, the geometric expansion considers the same integral, but decomposed by equivalence classes.
- It becomes a sum over classes $\gamma \in G_1(K) \setminus G(K)/G_2(K)$:

$$\sum_{\gamma} a(\gamma) O_{\gamma}(f).$$

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

Here

$$O_{\gamma}(f) = \int_{I_{\gamma}(\mathbb{A}_K) \setminus G_1 \times G_2(\mathbb{A}_K)} f(x^{-1} \gamma y) \mathrm{d}x \mathrm{d}y$$

is the *relative orbital integral*.

The relative trace formula

The relative trace formula thus asserts (roughly)

$$\sum_{\pi} m(\pi) J_{\pi}(f) = \sum_{\gamma} a(\gamma) O_{\gamma}(f),$$

Here each J_π(f) are related to the period integrals of functions in V_π with respect to G₁ and G₂ because

$$J_{\pi}(f) = \sum_{\phi \in \mathcal{B}_{\pi}} P_{G_1}(f \cdot \phi) \overline{P_{G_2}(\phi)}.$$

- Assume f = ∏_v f_v, so that the relative orbital integrals O_γ(f) is a product of its local factors.
- Strategy: using the (local) comparison on the geometric side to study the spectral data.

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

The Getz-Wambach comparison

- Setting: let L/K be a quadratic extension of number fields and H = Res_{L/K}GL_n.
- Given a pair of commuting involutions (automorphism of order 2) on H: θ and σ. Let τ = σ ο θ.
- ► Twisted relative trace formula of H ↔ Relative trace formula of G = H^τ.

イロト 不得 トイヨト イヨト ニヨー

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

A general principle

 With the previous setting, they suggested that (roughly speaking) one should have

Ansatz (Getz-Wambach)

An automorphic representation π of $H(\mathbb{A}_K)$ is distinguished by both H^{σ} and $H^{\theta} \Leftrightarrow \pi$ is a lifting of an G^{σ} -distinguished automorphic representation on $G(\mathbb{A}_K)$.

They proposed a relative trace formula method of proof.

 Relates directly to the relative Langlands program because symmetric subgroups are always spherical. Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Studied examples

- ► The biquadratic case: a theorem of Getz-Wambach says that (with some additional condition) the ansatz holds for the case of U_n ⊂ Res_{L/K}U_n, where L is a quadratic extension over K.
- The unitary Friedberg-Jacquet case: for U_n × U_n ⊂ U_{2n}.
 - $(\Rightarrow)~$ The work of S. Leslie and the work of J. Xiao and W. Zhang.
 - (\Leftarrow) The work of **Pollack-Wan-Zydor**.

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

・ロット 4回ット 4回ット 4回ット 4回ット

Case of interest and its conjecture

- Let L/K be a quadratic extension. H = Res_{L/K}GL_n, σ be a quasi-split orthogonal involution, and θ be the nontrivial Galois conjugate.
- Thus G = U_n and G^σ = O_n are quasi-split reductive groups.

Conjecture (L.)

A cuspidal automorphic representation π of $U_n(\mathbb{A}_K)$ is distinguished by $O_n \Leftrightarrow$ its base change lifting to $\operatorname{Res}_{L/K}\operatorname{GL}_n(\mathbb{A}_K)$ is a metaplectic lifting from $\operatorname{Res}_{L/K}\widetilde{\operatorname{GL}}_n(\mathbb{A}_K)$. Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

The associated symmetric variety

- We consider the integrals on $H^{\sigma} \setminus H/H^{\theta}$ and the integrals on $G^{\sigma} \setminus G/G^{\sigma}$. Furthermore, we will be focusing on the latter for the rest of the talk.
- The symmetrization map

$$\begin{array}{l} G \to G \\ g \mapsto g g^{-\sigma} \end{array}$$

has kernel G^{σ} .

- Instead of considering G/G^σ, we consider the schematic image of this map, denoted as S.
- \blacktriangleright S is a spherical variety under the adjoint action of G.
- Studying setting: fix n = 3 and consider the adjoint action of G₁ := SO₃ on the symmetric space S.

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

(ロ) (個) (注) (注) (注) (注) のへで

The pre-stabilization of the relative trace formulae

The adelic ring: $\mathbb{A}_K = \prod_v^{\text{res}} K_v$. Fix a nonarchimedean local field $K_v = F$ and denote its valuation ring by \mathcal{O}_F .

On the geometric side of the relative trace formula: relative orbital integrals with local factors

$$O_{\gamma}(f) = \int_{G_{1\gamma}(F) \backslash G_{1}(F)} f(g^{-1} \cdot \gamma) \mathrm{d}g.$$

- Over the algebraic closure, there is a *norm map* to match orbits.
- Difficulty: the *F*-points of $G_{1\gamma} \setminus G_1$ can be different to $G_{1\gamma}(F) \setminus G_1(F)$.
- ▶ The solution to this issue is called the *pre-stabilization*.

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Stable orbits versus rational orbits

- Stable orbits: F-points of $G_{1\gamma} \setminus G_1 \longleftrightarrow G_1(\overline{F})$ -classes in $\mathcal{S}(F)$.
- ▶ Rational orbits: $G_{1\gamma}(F) \setminus G_1(F) \longleftrightarrow G_1(F)$ -classes.
- The set of rational orbits inside a stable orbit is parametrized by a group
 D(F, G_{1γ}, G₁) := ker[H¹(F, G_{1γ}) → H¹(F, G₁)].
- Harmonic analysis: to stabilize, one should consider the local κ-orbital integrals.

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Relative κ -orbital integrals

For each $\kappa \in \mathfrak{D}(F, G_{1\gamma}, G_1)^{\mathrm{D}}$, define the κ -orbital integral

 $SO^{\kappa}_{\gamma}(f) = \sum_{\gamma' \sim_{\mathrm{st}} \gamma} \kappa(\gamma') O_{\gamma}(f).$

- SO_γ(f) := SO¹_γ(f) is called the stable relative orbital integral.
- We say that SO^κ_γ(f) is an endoscopic relative orbital integral if κ is nontrivial.
- Expectation: proceed inductively by relating the endoscopic relative orbital integrals to stable relative orbital integrals on other (simpler) spaces.

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

(ロ) (個) (注) (注) (注) (三) (の)

Unitary relative endoscopy

Local setting: let $E = F[\xi]$ be an unramified quadratic extension of local fields. Denote the uniformizer by ϖ .

- Recall: G = U₃ and G^σ = O₃ are quasi-split.
 S is the space of (twisted) symmetric unitary matrices.
 G₁ := SO₃.
- The generic stabilizer $G_{1\gamma}$ is *disconnected* and *finite*.
- ► For any regular semisimple point $\gamma \in S(F)$, we want to compute $SO_{\gamma}^{\kappa}(f)$ for $f = \mathbb{1}_{S(\mathcal{O}_F)}$ for κ nontrivial.
- ln particular, we consider only those γ with a nontrivial $\mathfrak{D}(F, G_{1\gamma}, G_1)$.

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Classification of stable orbits

It turns out that D(γ, G_{1γ}, G₁) can be computed by the isomorphism classes of G_γ, which occurs in J.
 Rogawski's work.

Let

$$T_{\nu}(R) = \left\{ \begin{pmatrix} x & z \\ \nu y & x \end{pmatrix} \in \mathrm{U}_{3}(R) \mid x, y, z \in E \otimes_{F} R \right\}.$$

Lemma (L.)

Any regular semisimple stable orbit with a nontrivial $\mathfrak{D}(F, G_{1\gamma}, G_1)$ contains an element in (some unique) $T_{\nu}(F)$ with $\nu \in \{1, \xi^2, \varpi, \xi^2 \varpi\}$.

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Types of the endoscopic stable orbits

The stable orbits of interest are represented by elements in T_ν(F) for some ν ∈ {1, ξ², ∞, ξ²∞}.

Types of tori: we say that T_ν is of

$$\begin{cases} \mathsf{Type I} & \text{if } \nu = \xi^2, \\ \mathsf{Type II} & \text{if } \nu = 1, \\ \mathsf{Type III} & \text{if } \nu = \varpi \text{ or } \xi^2 \varpi. \end{cases}$$

・ロト ・ 育 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

Later, we will compute the formula on type I tori as an explicit example.

Related cohomological data

 Recall: D(F, G_{1γ}, G₁) = ker[H¹(F, G_{1γ}) → H¹(F, G₁)] parametrizes rational orbits inside the stable orbits of γ. In general, those are *Galois cohomology pointed sets*.

Lemma (L.)

In our case, there exist a natural group structure on $\mathfrak{D}(F,G_{1\gamma},G_1)$ so that

 $\mathfrak{D}(F,G_{1\gamma},G_1) \cong \begin{cases} F^{\times} \backslash \mathcal{N}(E^{\times}) & \text{for Type I tori,} \\ F^{\times} \backslash (F^{\times})^2 & \text{for Type II and III tori.} \end{cases}$

► In particular, $|\mathfrak{D}(F, G_{1\gamma}, G_1)| = 2$ for γ in a Type I torus.

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

Iwasawa decomposition

Recall that we are considering

$$O_{\gamma}(f) = \int_{G_{1\gamma}(F)\backslash G_1(F)} \mathbb{1}_{\mathcal{S}(\mathcal{O}_F)}(g^{-1} \cdot \gamma) \mathrm{d}g.$$

► Iwasawa decomposition: G(F) = N(F)A(F)G(O_F). Since f is G(O_F)-invariant we have (with the suitable choice of measure)

$$O_{\gamma}(f) = \int_{F \times F^{\times}} f\left(\left(\begin{smallmatrix} t \ u \ -t^{-1}u^{2}/2 \\ 1 \ -t^{-1}u \\ t^{-1} \end{smallmatrix} \right)^{-1} \cdot \gamma \right) \frac{\mathrm{d}u\mathrm{d}^{\times}t}{|t|}$$

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Relative orbital integral

 \blacktriangleright Rational orbits in the stable orbit of γ are given by $\gamma_{\mu} = \begin{pmatrix} x & \mu y \\ \mu^{-1} \mu y & z \end{pmatrix}.$ ► The entries of $\begin{pmatrix} t & u & -t^{-1}u^2/2 \\ 1 & -t^{-1}u \\ t^{-1} \end{pmatrix}^{-1} \cdot \gamma_{\mu}$ are (excluding the repeated ones): 1. $x - \frac{1}{2}u^2\mu^{-1}\nu y$, 2. $t^{-1}(ux - uz - \frac{1}{2}u^3\mu^{-1}\nu y)$, 3. $t^{-2}(\mu y - u^2 x + u^2 z + \frac{1}{4}u^4 \mu^{-1}\nu y)$, 4. $tu\mu^{-1}\nu y$, 5. $u^2 \mu^{-1} \nu y + z$, 6. $t^2 \mu^{-1} \nu u$.

Problem: computing the measure of those u and t that makes all these entries integral. Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

A few technical remarks

- Notice that by Iwasawa decomposition, the orbital integral can be reduced to a double integral taken over F × F[×].
- We will write v(t) = m and v(u) = k, then separate the orbital integral accordingly:

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Some invariants

- Goal: express the relative orbital integrals in terms of invariants.
- Let λ_i denote the eigenvalues of γ (we fix an ordering so that λ₂ = z).
- Invariants associated to the stable orbit of γ :

$$M_{ij} := v(\lambda_i - \lambda_j),$$

$$N_{ij} := v(\lambda_i + \lambda_j).$$

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Integration

The nature of computation varies on different parts of the orbital integral.

On (A), it involves solving a quadratic equation

$$u^4 \equiv 4\mu^2 \xi^{-2} \pmod{\varpi^{m+k-M_{13}+v(\mu)}}.$$

- On (B), it also depends on solving a quadratic equation, along with a combinatorial datum 2k + 2M₁₂ ≥ 2m > 2k + M₁₂.
- On (C) all the conditions are combinatorial: $2M_{12} - M_{13} + v(\mu) \ge 2m > -M_{13} + v(\mu)$ and $4m > 4k \ge 2m - M_{13} + v(\mu)$.

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

The formula for relative orbital integrals

- The expressions for $O_{\gamma_{\mu}}(f)$ depends on M_{ij} .
- ▶ I have computed the formula for $O_{\gamma_{\mu}}(f)$ for any γ_{μ} .
- ▶ For instance, when $M_{13} > M_{12} > 0$, $O_{\gamma_{\mu}}(\mathbb{1}_{\mathcal{S}(\mathcal{O}_F)})$ is equal to

$$\frac{1}{2} \Big(\left(M_{13} - M_{12} + \delta(M_{12}, 1) \right) q^{\lfloor M_{12}/2 \rfloor} \\ + 2 \left(1 + \delta(M_{12} - M_{13}, \mu) \right) \frac{q^{\lceil M_{12}/2 \rceil} - 1}{q - 1} \\ + \delta(M_{13}, \mu) - 1 \Big).$$

Here δ is a function that detects parity.

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

・ロト・4回ト・4回ト・4回ト・4回ト

The formula

For every γ in type I, II and III tori I have computed the formula for endoscopic relative orbital integrals. In particular,

Theorem (L.)

Let γ be in a type I torus. The endoscopic orbital integral $SO^{\kappa}_{\gamma}(\mathbb{1}_{\mathcal{S}(\mathcal{O}_F)})$ is computed as in the following table:

$$\begin{aligned} & \kappa \neq 1 \\ \hline M_{13} = 0 & \frac{1}{2} \\ M_{13} > M_{12} = 0 & \frac{1}{2}(-1)^{M_{13}} \\ M_{13} > M_{12} > 0 & (-1)^{M_{12} - M_{13}} \frac{q^{\lceil M_{12}/2 \rceil} - 1}{q^{-1}} + \frac{1}{2}(-1)^{M_{13}} \\ M_{12} = M_{13} = M_{23} > 0 & \frac{1}{2}(1 + \left(\frac{z_y^2 - \xi^2}{F}\right)) \frac{q^{\lfloor M_{12}/2 \rfloor} - 1}{q^{-1}} + \frac{1}{2}(-1)^{M_{12}} \end{aligned}$$

Endoscopic Relative Orbital Integrals on U₃

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Thank you for your attention.

Endoscopic Relative Orbital Integrals on U_3

Chung-Ru Lee

Distinction of Automorphic Representations

The Comparison of Relative Trace Formulae

Pre-stabilization and Endoscopy

Endoscopic Relative Orbital Integrals

くしゃ (雪を)(雪を)(雪を)(日を)