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Abstract
Low-dimensional topology is the study of manifolds and cell complexes in di-

mensions four and below. Input from geometry and analysis has been central to
progress in this field over the past four decades, and this article will focus on one
aspect of these developments in particular, namely the use of Yang–Mills theory, or
gauge theory. These techniques were pioneered by Simon Donaldson in his work
on 4-manifolds, but the past ten years have seen new applications of gauge the-
ory, and new interactions with more recent threads in the subject, particularly in
3-dimensional topology.

This is a field where many mathematical techniques have found applications,
and sometimes a theorem has two or more independent proofs, drawing on more
than one of these techniques. We will focus primarily on some questions and results
where gauge theory plays a special role.

1 Representations of fundamental groups

1.1 Knot groups and their representations. Knots have long fascinated mathemati-
cians. In topology, they provide blueprints for the construction of manifolds of dimen-
sion three and four. For this exposition, a knot is a smoothly embedded circle in 3-space,
and a link is a disjoint union of knots. The simplest examples, the trefoil knot and the
Hopf link, are shown in Figure 1, alongside the trivial round circle, the “unknot”.

Knot theory is a subject with many aspects, but one place to start is with the knot
group, defined as the fundamental group of the complement of a knotK � R3. We will
write it as �(K). For the unknot, �(K) is easily identified as Z. One of the basic tools
of 3-dimensional topology is Dehn’s Lemma, proved by Papakyriakopoulos in 1957,
which provides a converse:

Theorem 1.1 (Papakyriakopoulos [1957]). If the knot group �(K) is Z, then K is the
unknot.

It is a consequence of Alexander duality that the abelianization of �(K) is Z for
any knot. (This is the first homology of the complement.) So we may restate the result
above as saying that the unknot is characterized by having abelian fundamental group.
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Figure 1: The unknot, trefoil and Hopf link.

In particular, if we are able to find a homomorphism �(K) ! G with non-abelian
image in any target group G, thenK must be genuinely knotted. We begin our account
of more modern results with the following theorem.

Theorem 1.2 (Kronheimer and Mrowka [2010]). If K is a non-trivial knot, then there
exists a homomorphism,

� : �(K) ! SO(3);

with non-abelian image, from the knot group to the 3-dimensional rotation group.

There are two aspects to why this result is interesting. First, representations of the
knot group in particular types of target groups are a central part of the subject: the
case that G is dihedral leads to the “Fox colorings” Fox [1962], and the more general
case of a two-step solvable group is captured by the Alexander polynomial and related
invariants. But there are non-trivial knots with no Fox colorings and trivial Alexander
polynomial. It is known that �(K) is always a residually finite group, so there are
always non-trivial homomorphisms to finite groups; but it is perhaps surprising that the
very smallest simple Lie group is a target for all non-trivial knots.

Secondly, the theorem is of interest for the techniques that are involved in its proof,
some of which we will describe later. A rich collection of tools from gauge theory are
needed, and these are coupled with more classical tools from 3-dimensional topology,
namely the theory of incompressible surfaces and decomposition theory, organized in
Gabai’s theory of sutured manifolds Gabai [1983].

1.2 Orbifolds from knots. The knot group �(K) has a distinguished conjugacy
class, namely the class of the meridional elements. A meridional element m is one
represented by a small loop running once around a circle linkingK. If we take a planar
diagram of a knot (a generic projection of K into R2), and take our basepoint for the
fundamental group to lie above the plane, then there is a distinguished meridional ele-
ment me for each arc e of the diagram (a path running from one undercrossing to the
next). The elements me generate the knot group and satisfy a relation at each crossing,
theWirtinger relations Fox [1962]. (See Figure 2.)

Theorem 1.2 can be refined to say that � can be chosen so that �(m) has order 2 in
SO(3), for one (and hence all) meridional elements. This refinement can be helpfully
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Figure 2: (ൺ) TheWirtinger relation,mf me2 = me1mf holds in the fundamental
group of the complement. (ൻ) The corresponding points on the sphere lie on a
geodesic arc. The reflection about the green axis interchanges the two blue points.

reinterpreted in terms of the fundamental group of an orbifold. Recall that an orbifold
is a space locally modeled on the quotient of a manifold by a finite group, and that its
singular set is the locus of points which have non-trivial stabilizer in the local models.
Given a knot or link K in a 3-manifold Y , one can equip Y with the structure of an
orbifold whose non-trivial stabilizers are all Z/2 and whose singular set is K. Let
us write Orb(Y;K) for this orbifold. The orbifold fundamental group in this situation
can be described as the fundamental group of the complement of the singular set with
relations

m2 = 1

imposed, for all meridional elements. Thus the refinement we seek can be stated:

Theorem 1.3 (Kronheimer and Mrowka [2010]). If K is a non-trivial knot in S3, and
O = Orb(S3; K) is the corresponding orbifold with Z/2 stabilizers, then there exists a
homomorphism from the orbifold fundamental group,

� : �1(O) ! SO(3);

with non-abelian image.

Using the Wirtinger presentation described above, this result can be given a concrete
interpretation. An element of order 2 in SO(3) is a 180ı rotation about an axis A in R3,
an these are therefore parametrized by the pointsA ofRP 2. So if we are given a diagram
of K, then a representation � : �(K) ! SO(3) which sends meridians to elements of
order 2 can be described by giving a point A(e) in RP 2 for each arc e, satisfying a
collection of constraints coming from the Wirtinger relations at the crossings. So the
concrete version of Theorem 1.3 is the following.

Theorem 1.4. Given any diagram of a non-trivial knot K, we can find a non-trivial
assignment e 7! A(e),

farcs of the diagramg ! RP 2;
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(a) (5,7)-torus knot dia-
gram

(b) Axes of one representa-
tion

Figure 3: The green arcs in the diagram on the left contain all the over-crossings.
The blue arcs consist only of under-crossings. In the right-hand picture, the green
vertices are axes A(e) corresponding to green arcs e in the knot diagram. The
blue vertices correspond to blue arcs.

so that the following condition holds: whenever e1, e2, f are arcs meeting at a crossing,
with f being the overcrossing arc (see Figure 2), the point A(e2) is the reflection of
A(e1) in the point A(f ).

The last condition in the theorem means that A(e1), A(f ), A(e2) are equally spaced
along a geodesic, see Figure 2. The case that all the A(e) are equal is the trivial case,
and corresponds to the abelian representation. Dihedral representations arise when the
pointsA(e) lie at the vertices of a regular polygon onRP 1. A configuration correspond-
ing to a non-dihedral representation of the (5; 7)-torus knot is illustrated in Figure 3.

1.3 Three-manifolds and SO (3) . Having considered a knot or link in R3 and an
associated orbifold, we consider next a closed 3-manifold Y and its fundamental group
�1(Y ). From the solution of the Poincaré conjecture Lott [2007], we know that �1(Y )

is non-trivial if Y is not the 3-sphere. Motivated by the discussion of knot groups in the
previous section, one might ask:

Question 1.5. Let Y be a closed 3-manifold with non-trivial fundamental group. Does
there exist a non-trivial homomorphism � : �1(Y ) ! SO(3)?

It is not known whether the answer is yes in general. Stated this way, the interesting
case for this question is when Y is a homology 3-sphere, i.e. a 3-manifold with the same
(trivial) homology as S3. (If Y has non-trivial homology, then �1(Y ) has a cyclic group
as a quotient, and there will always be a representation in SO(3) with cyclic image.)
For homology 3-spheres, an affirmative answer to the question is known when Y has
non-zero Rohlin invariant Akbulut and McCarthy [1990], when Y is obtained by Dehn
surgery on a knot in S3 Kronheimer and Mrowka [2004a, 2010], or when Y carries a
taut foliation Kronheimer and Mrowka [2004b]. See also Baldwin and Sivek [2016].



KNOTS, THREE-MANIFOLDS AND INSTANTONS 611

There is an interesting variant of this question, for 3-manifolds with non-trivial ho-
mology. A representation � : �1(Y ) ! SO(3) defines a flat vector bundle on Y with
fiber R3, and such a vector bundle has a second Stiefel–Whitney class w2. Thus the
representations � can be grouped by this class,

w2(�) 2 H 2(Y ;Z/2):

which is the obstruction to lifting � to the double cover SU(2) ! SO(3). The following
result completely describes the classes which arise as w2(�).

Theorem1.6 (Kronheimer andMrowka [2010]). LetY be a closed, oriented 3-manifold
and let ! 2 H 2(Y ;Z/2) be given. Suppose that for every embedded 2-sphere S in Y ,
the pairing! �[S ] is zero mod 2. Then there exists a homomorphism � : �1(Y ) ! SO(3)
with w2(�) = !.

Remark 1.7. The restriction on ! is also necessary as well as sufficient, because a flat
vector bundle on a 2-sphere is trivial and must therefore have trivial Stiefel–Whitney
class on the sphere.
Remark 1.8. The condition on ! � [S ] is automatically satisfied if Y is irreducible, i.e. if
every 2-sphere in Y bounds a ball. To prove the theorem it is enough to consider only
irreducible 3-manifolds.
Remark 1.9. If � has cyclic image, then w2(�) has a lift to a torsion class in the integer
homology, H 2(Y ). The case that there is no such lift is the case that w2(�) has non-
trivial image in Hom(H2(Y );Z/2), and in this case � must be non-cyclic. The case
that ! has non-trivial image in Hom(H2(Y );Z/2) is the difficult case for the theorem.

An interesting special case of this theorem is the case that Y is the mapping torus
of a diffeomorphism, h : Σg ! Σg , of a surface of genus g. The conjugacy classes
of representations �1(Σg) ! SO(3) with non-zero w2 are parametrized by an orb-
ifold M (Σg) of dimension 6g � 6, and the diffeomorphism h gives rise to a map
h� : M (Σg) ! M (Σg) by pull-back. It is then a consequence of the above theo-
rem that the diffeomorphism h� has fixed points inM (Σg). In this form, the result was
proved independently and with different methods by Smith [2012].

1.4 Spatial graphs. A spatial graph is a graph (tamely) embedded as a topological
space in R3. We will be interested here in finite, trivalent graphs (also called cubic
graphs). Thus we are generalizing classical knots and links by allowing vertices of
valence 3. We allow that the set of verticesmay be empty, so knots and links are included
as a special case, regarded as vertexless graphs. There is a significant literature on spatial
graphs: see for example Conway and Gordon [1983].

Aswith knots and links, wewrite�(K) for the fundamental group of the complement
of a spatial graph K � R3. For each edge e of K, there is corresponding distinguished
conjugacy class of meridional curvesme , obtained from the small circles linking e. Fol-
lowing the same lines as before, we wish to study representations of �(K) in SO(3),
with the constraint that the meridional elements map to elements of order 2. Represen-
tations of this sort are parametrized by a topological space, the representation variety,

(1) R(K) = f � : �(K) ! SO(3) j �(me) has order 2 for all edges eg
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As with knots and links, this representation variety for a spatial graph can be inter-
preted as a space of representations for the fundamental group of an orbifold. Given
a trivalent graph K in a 3-manifold Y , we may construct a 3-dimensional orbifold
Orb(Y;K)whose underlying topological space is Y , whose singular set isK, and whose
local stabilizer groups are Z/2 at the interior points of edges of K. At vertices of K
where three edges meet, the local model for the orbifold is the quotient of the 3-ball by
the Klein four-group, V4. In this way, R(K) becomes the space of homomorphisms
from the orbifold fundamental group,

� : �1(Orb(S3; K)) ! SO(3);

with the additional property that � is injective on each of the non-trivial local stabilizer
groups.

TheKlein 4-group V4 is contained in SO(3) as the subgroup of diagonal matrices, and
representations � : �(K) ! SO(3) with image in V4 play a special and already subtle
role. Since V4 is abelian, a representation into the Klein four-group factors through
the abelianization of �(K), namely the homologyH1(S

3 nK)), so we are considering
homomorphisms

� : H1(S
3

nK) ! V4

which map meridional elements to elements of order 2. If we write the elements of
V4 as f1; A; B; C g, then � assigns one of three “colors” fA;B;C g to each edge e, and
this coloring must satisfy the constraint that, at a vertex, the colors of the three incident
edges are all different (because the sum of the corresponding elements of H1 is zero).
Such a 3-coloring of the edges of a trivalent graph is a called a Tait coloring. So we
have:

Proposition 1.10. For a trivalent spatial graph K, the representations � 2 R(K)

whose image is contained in the Klein 4-group V4 are in one-to-one correspondence
with Tait colorings of K.

Notice in particular that this set depends only on the abstract graph K, independent
of the embedding. This is a reflection of the fact that the homology groupH1(S

3 nK)

is isomorphic toH 1(K) by Lefschetz duality.
The question of whether a cubic graph admits a Tait coloring is difficult. Indeed Tait

[1884] observed that the four color theorem Appel and Haken [1989] and Robertson,
Sanders, Seymour, and Thomas [1997] could be reframed as a question about the exis-
tence of Tait colorings as follows. A planar map determines a graph, giving the borders
of the countries. A map is called proper if no country has a border with itself, in which
case the graph of the borders is bridgeless; that is, no edge (or “bridge”) can be removed
making the graph disconnected. It is also elementary to see that it suffices to verify the
four color theorem for planar maps whose border graph is trivalent. Tait’s observation is
that the four-colorability of the regions of the map is equivalent to the existence of a Tait
coloring of the border graph. So the four color theorem is equivalent to the statement
that every bridgeless trivalent graph admits a Tait coloring.

While the methods of gauge theory at the time of writing have not given a proof the
four color theorem, one can prove some suggestive results. To state the main result we
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(a) (b)

Figure 4: The dodecahedral graph admits a Tait coloring, while the Petersen
graph, the simplest snark, has none.

observe that for spatial graphs there is a natural extension of being bridgeless. A spatial
bridge is an edge of a spatial graph K for which the meridional loop is contractible
in the complement of the graph. Equivalently, it is an edge e for which we can find a
sphere S for which K \ S is a single point of e, with transverse intersection. Note that
the existence of such a spatial bridge implies that R(K) is empty. The converse is the
following non-trivial theorem.

Theorem 1.11 (Kronheimer and Mrowka [n.d.]). ] For any trivalent graph K � R3

without a spatial bridge, the representation variety R(K) is non-empty.

We conclude this section with some remarks to put this result in context. There is an
action of SO(3) onR(K) by conjugacy. Representation with image V4 are characterized
by the fact their stabilizer is exactly V4 under this action. For a graph with at least one
vertex, the possible groups that can arise as stabilizers are V4, Z/2 and the trivial group.
One can show (see Kronheimer and Mrowka [ibid.]) that, for planar graphs, if there is
a representation with non-trivial stabilizer then there is also one with V4 stabilizer, and
hence a Tait coloring of K. Theorem 1.11 is agnostic regarding the possible stabilizers
of the representation that it guarantees. There are planar graphs with only V4 representa-
tions, as well as many with both V4 representations and irreducible representations (the
simplest being the 1-skeleton of the dodecahedron.)

Bridgeless trivalent graphs with no Tait colorings are called snarks. The simplest
one is the Petersen graph, shown in a spatial embedding in Figure 4.

Trivially, the four color theorem says that there are no planar snarks. For any spa-
tial embedding of a snark, Theorem 1.11 guarantees the existence of a representation
�(K) ! SO(3).

Theorem 1.11 also says that even a graph with a bridge, when embedded in a spa-
tially bridgeless manner, will have a nontrivial representation. An example is shown
Figure 5. On the left, the “handcuffs” are shown embedded in R3 with a spatial bridge,
and the representation variety R(K1) is empty. On the right, the same abstract graph
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Figure 5: The standard handcuffs and the tangled handcuffs.

is shown with a more interesting embedding. The representation variety R(K2) in this
case consists of the SO(3) orbit of a single representation � whose image in SO(3) is
the symmetry group of a cube.

2 Background on instantons and four-manifolds

The theorems discussed above are proved by means of more general results based on
non-vanishing theorems for Floer’s instanton homology for 3-manifolds, first intro-
duced in Floer [1988]. Before introducing the instanton homology groups, we discuss
their natural historical precursor, the invariants of smooth 4-manifolds developed by
Simon Donaldson in the 1980’s Donaldson [1990].

2.1 Instanton moduli spaces. The story begins with the work of Donaldson and his
use of gauge theory in 4-dimensional topology. On an oriented Riemannian manifold
X of dimension 2n, the Hodge �-operator maps n-forms to n-forms,

� : Ωn(X) ! Ωn(X)

and satisfies �2 = (�1)n. When n is even, this gives rise to a decomposition into the
˙1 eigenspaces, the self-dual and anti-self-dual n-forms,

Ωn(X) = Ωn+(X) ˚ Ωn�(X):

The case of dimension 4 and n = 2 plays a special role, because if E ! X is a vector
bundle andA is a connection inE, then the curvature of the connection is a 2-form with
values in the endomorphisms of E:

FA 2 Ω2
�
X ;End(E)

�
:

Only in dimension 4, therefore, we can decompose the curvature into its self-dual and
anti-self-dual parts, F+

A + F �
A and we can consider the anti-self-dual Yang–Mills equa-

tions,
F+
A = 0:

The solutions are the anti-self-dual connections A, sometimes called instantons on X .
We shall first consider the case that the structure group G for the bundle is SU(N ),

so that E is a rank-N bundle with a hermitian metric and trivialized determinant. Our
connections A will be SU(N ) connections: they will respect the trivialization. The
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isomorphism classes of pairs (E;A) consisting of an SU(N ) bundleE with an anti-self-
dual connection A are parametrized by a moduli spaceMN (X) (which depends also on
the Riemannian metric). When X is closed and connected, the bundles E themselves
are classified by a single integer k, the second Chern number, or instanton number,

k = c2(E)[X ]:

We therefore have a decomposition

MN (X) =
[
k

MN;k(X):

Each MN;k(X) is finite-dimensional, and for generic choice of Riemannian metric it
will be a smooth manifold, except at reducible solutions: i.e. those where A preserves
some orthogonal decomposition of E. An index calculation yields a formula for the
dimension ofMN;k ,

(2) dimMN;k = 4Nk � (N 2
� 1)(�+ �)/2;

in which � and � are the signature an Euler number of X . The quantity (�+ �)/2 is an
integer, which can also be written as

b2+ � b1 + 1

where bi is the rank of H i (X) and b2+ is the dimension of a maximal positive-definite
subspace for the quadratic form onH 2(X ;R) defined by the cup-square.

The spaceMN;k(X)will usually be non-compact, because there may be sequences of
solutions (En; An) in which the point-wise norm of the curvature, jFAn

j, diverges near
finitely many points in X , a “bubbling” phenomenon analyzed by Uhlenbeck [1982].

Having associated to each closed Riemannian 4-manifold an infinite sequence of new
spaces, one is led to ask whether the moduli spaces MN;k(X) are non-empty. Do the
anti-self-dual Yang–Mills equations have solutions? This question was answered in the
affirmative by Taubes [1982, 1984], who constructed solutions on general 4-manifolds
X using a grafting technique to transfer standard solutions from flat R4. Taubes’ results
tell us in particular that M2;k(X) is non-empty for all k � k0, where the value of k0
depends only on the topology ofX . The resulting solutions have curvature concentrated
near points in X , the same situation that is allowed in Uhlenbeck’s work.

2.2 Donaldson’s polynomial invariants. Although they may be non-compact, Don-
aldson showed that the moduli spacesMN;k(X) have sufficient compactness properties
as a consequence of Uhlenbeck’s theorems that they may (under mild conditions) be
regarded as possessing a fundamental class [MN;k(X)] in the homology of the ambient
space in which they sit, namely the spaceBN;k(X)which parametrizes all isomorphism
classes of SU(N ) connections with instanton number k.

To elaborate on this, the space BN;k(X) (or more relevantly, the open subspace
B�
N;k

(X) of irreducible connections) has a well-understood topology, and the “funda-
mental class” [MN;k(X)] gives rise to a rich collection of invariants, the Donaldson
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invariants of X . For these to be defined, it is important that the moduli space be con-
tained in the irreducible part, B�

N;k
(X), and this will be true for N = 2 and for generic

choice of Riemannian metric, as long as b2+(X) � 1 and k > 0. (We discuss this point
again in the next subsection.) Furthermore, if b2+(X) � 2, then the fundamental class
of the moduli space in B�

2;k
(X) is independent of the choice of metric, and so can be

regarded as an invariant of the underlying smooth 4-manifold X .
These invariants, defined originally using the N = 2 moduli spaces, are usually

referred to as Donaldson’s polynomial invariants. In the N = 2 case, the rational co-
homology of B�

2;k
contains a polynomial algebra Donaldson [1990]. More specifically,

let us introduce the symmetric algebra

A(X) = Sym(Heven(X ;Q))

graded so thatHr(X ;Q) lies in A4�r(X). Then there is an injection, for each k,

� : Ad (X) ! Hd (B2;k(X);Q):

The polynomial invariants defined by the moduli spacesM2;k(X) are linear maps

qX;k : Ad(k)(X) ! Q

where d (k) is the dimension of the moduli space (2). If we accept thatM2;k(X) carries
a fundamental class in homology, then we can regard the definition as:

qX;k(z) =
˝
�(z); [M2;k(X)]

˛
:

The definition can be generalized in various way, in particular by considering N > 2.
We can omit k from the notation by taking the sum,

(3) qX =
M
k

qX;k : A(X) ! Q:

There is an understanding that qX is zero on Ad (X) for integers d not of the form d (k).
The invariants qX of smooth 4-manifolds, together with some closely-related invari-

ants Donaldson [1987], were the first tools which were able to show that the the dif-
feomorphism type of a simply-connected compact 4-manifold is not determined by its
cohomology ring alone.

2.3 A generalization, U (N ) bundles. In the discussion above, the bundle E had
structure group SU(N ). We now consider U (N ) bundles with non-trivial determinant
instead. A U (N ) connection A can be described locally as the sum of an SU(N ) con-
nection and a U (1) connection. More invariantly, and globally, A is determined by

• a PU(N ) connection Ao; and

• a connection tr(A) in the determinant line bundle, the top exterior power ΛNE.

Whether there are anti-self-dual connections on the line bundle ΛNE is determined by
Hodge theory on X , and usually they will not exist if the line bundle is non-trivial. The
appropriate set-up is to ask only that Ao is anti-self-dual. More specifically, we fix a
line bundle W ! X and the data we seek is:



KNOTS, THREE-MANIFOLDS AND INSTANTONS 617

• a U (N ) bundle E ! X with c1(E) = c1(W );

• a chosen isomorphism � : ΛNE ! L;

• an anti-self-dual PU(N ) connection A0 in the associated PU(N ) bundle of E.

The resulting moduli space of solutions (E; �; A0) depends on the Riemannian mani-
foldX and the choice of the classw = c1(W ) inH 2(X ;Z). The topology ofE is deter-
mined by w and the the instanton number, defined now as an appropriately normalized
Pontryagin number of the associated PU(N ) bundle. With a standard normalization,
the instanton number k is not an integer but satisfies a congruence

k = �

�
N � 1

2N

�
w � w (mod Z):

We writeMN;k(X)w for this moduli space of anti-self-dual connections with instanton
number k. It leads to polynomial invariants,

qwX;k : Ad(k)(X) ! Q;

generalizing the qX;k (defined using the N = 2 moduli spaces) and we can combine
these again as

qwX =
M
k

qwX;k : A(X) ! Q:

This extra generality is introduced not so much for its own sake, but because it serves
to avoid the difficulty that was mentioned in our discussion of the polynomial invariants
above. The difficulty is the possible presence of reducible connections A inE. We will
say thatE orw is admissible if there is an integer homology class � inH2(X) such that

(4) (w � �) is prime to N:

The relevance of admissibility is in the following result.

Proposition 2.1. If E is admissible and b2+(X) > 0, then the moduli space of anti-self-
dual connections contains no reducible solutions, for a generic metric on X . The same
is true for a generic path of metrics if b2+(X) > 1.

Remark 2.2. A prototype which captures part of this is the more elementary statement,
that ifE is aU (N ) bundle on a closed, oriented 2-manifold and the degree ofE is prime
to N , then the associated PU(N ) bundle E 0 admits no reducible flat connections. In
this way, reducible solutions can be avoided, and the invariants qwX can be generalized
to higher-rank bundles with admissible w.
Remark 2.3. In the case N = 2, the group PU(2) is SO(3) and elements of the mod-
uli spaceM2;k(X)w give rise to anti-self-dual SO(3) connections with second Stiefel–
Whitney class w mod 2. There is a distinction between the two setups however. The
automorphisms of the pair (E; �) are the bundle automorphisms of E that have determi-
nant 1 on each fiber. If H 1(X ;Z/2) is non-zero, then not every automorphism of the
associated PU(2) bundle E 0 lifts to a determinant-1 automorphism of E. The moduli
space of anti-self-dual SO(3) or PU(2) connections is the quotient ofM2;k(X)w by an
action of the finite groupH 1(X ;Z/2).
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2.4 Non-vanishing for the polynomial invariants. While Taubes’ results inform us
that MN;k(X) is non-empty for large enough k, one can now ask a different question
whose answer reflects the non-triviality of the moduli space in a different way: one can
ask whether the Donaldson invariants of X are non-zero; or equivalently, is the funda-
mental class [MN;k(X)] non-zero? Donaldson proved the following non-vanishing the-
orem for the polynomial invariants qX arising from the SU(2) instanton moduli spaces.

Theorem 2.4 (Donaldson [1990]). If X is the smooth 4-manifold underlying a simply-
connected complex projective algebraic surface, then the polynomial invariants qX;k
are non-zero for all sufficiently large k. In particular, qX;k(hd/2) is non-zero, where h
is the hyperplane class and d = d (k) is the dimension of the moduli space.

This result moves us from the simple non-emptiness of amoduli space to non-triviality
in homology. Donaldson’s proof uses the fact that, for the Kähler metrics adapted to
the complex-algebraic structure, the moduli spaces of instantons can be identified with
moduli spaces of stable holomorphic bundles, which are quasi-projective varieties. The
non-vanishing eventually derives from the positivity of intersections in complex geom-
etry.

The theorem generalizes to U (2) bundles and the corresponding invariants qw
X;k

for non-zero w. The authors believe that, using later results and constructions from
Gieseker and Li [1996], O’Grady [1996] and Kronheimer [2005], the restriction to
N = 2 can be dropped, and that the hypothesis that X is simply-connected is also
unnecessary.

2.5 Non-vanishing for symplectic 4-manifolds. The non-vanishing theorem for al-
gebraic surfaces was proved when Donaldson’s invariants were first introduced in Don-
aldson [1990]. A class of 4-manifolds that is in many ways closely related are the sym-
plectic 4-manifolds, i.e. those which carry a closed 2-form! for which!^! is a volume
form. Although the original proof of Theorem 2.4 does not extend to the symplectic case,
the more general theorem does hold:

Theorem 2.5. The non-vanishing statement of Theorem 2.4 continues to hold for the
larger class of symplectic 4-manifolds, with the role of the hyperplane class h now
played by the de Rham class [!] of the symplectic form.

Part of the history of this result is as follows. A non-vanishing theorem was proved
by Taubes [1994] for the Seiberg–Witten invariants of symplectic 4-manifolds, and the
above theorem should then follow from Witten’s conjecture Witten [1994] relating the
Donaldson invariants to the Seiberg–Witten invariants. A weakened version ofWitten’s
conjecture has been proved by Feehan and Leness [2015], building on ideas of Pydstri-
gach and Tyurin, and this work can be used to deduce Theorem 2.5 for a large class
of symplectic 4-manifolds. The general version of Theorem 2.5 was later proved more
cleanly, and without use of the Seiberg–Witten invariants: an argument was outlined
in Kronheimer and Mrowka [2010] and a variant is given in Sivek [2015]. These later
proofs make use of another theorem of Donaldson, on the existence of Lefschetz pencils
for symplectic 4-manifolds Donaldson [1999].
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3 Instanton homology for 3-manifolds

3.1 Formalities, and non-vanishing. The instanton homology groups of an oriented
3-manifold Y arise naturally when one seeks to understand the Donaldson invariants of a
4-manifoldX which is decomposed as a union of twomanifolds with common boundary
Y :

(5)
X = X+ [Y X�

@X+ = Y

@X� = �Y:

(We use �Y to denote Y equipped with the opposite orientation.) There are several
variants of Floer’s construction depending on, among other choices, the gauge group
and the coefficient ring, and some variants are applicable only to certain 3-manifolds
(such as homology spheres) or only allow certain bundles.

Floer’s first construction worked only for homology 3-spheres and structure group
SU(2). To each oriented connected homology 3-sphere Y it gave a finitely-generated
abelian group I(Y ). The simplest property of this invariant is that the instanton homolo-
gies of Y and �Y are related as the homology and cohomology of a complex, so that in
particular there is a perfect pairing

(6) I(Y ) ˝ I(�Y ) ! Z:

If we work with rational coefficients, as we often will, then these are dual vector spaces.
When a connected, oriented 4-manifold X is decomposed as in (5) where Y is a ho-

mology sphere and b2+(X˙) > 0 then the Donaldson invariant qX (3) can be expressed
in terms of the relative invariants of the two pieces X˙. These relative invariants take
the form of linear maps

qX+
: A(X+) ! I(Y )

qX�
: A(X�) ! I(�Y )

and the Donaldson invariant of the closed manifoldX is expressed using the pairing (6)
as

(7) qX (z) =
˝
qX+

(z+); qX�
(z�)

˛
;

where z = i+(z+)ii (z�) and i˙ : A(X˙) ! A(X) arise from the inclusion maps. This
pairing formula has a straightforward corollary:

Proposition 3.1. If qX ¤ 0 for some 4-manifoldX , and a homology 3-sphere Y can be
placed into X in such a way that X is decomposed into two pieces, each with b2+ > 0,
then it must be that I(Y ) ˝ Q is non-zero.

Remark 3.2. Unlike ordinary homology, the instanton homology groups are not Z-
graded. The version I (Y ) discussed here has a cyclic grading by Z/8. Some ver-
sions we will encounter later have not grading at all, as they arise as the homology
ker(d )/im(d ) for a differential d on an ungraded abelian group rather than a chain
complex.
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3.2 Sketch of the construction. The basic idea for instanton Floer homology Floer
[1988] can be motivated by thinking of solutions to the anti-self-duality equations on a
closed 4-manifold X , decomposed as above, but with a Riemannian metric containing
long cylinder [�L;L]�Y . By means of a gauge transformation on this cylinder we can
assume that a connectionA inE ! [�L;L]�Y is pulled back from path of connections
B(t), for t 2 [�L;L], in E ! Y . The anti-self-duality equation for A becomes the
equation

(8)
@B

@t
+ �FB :

In particular, translationally invariant solutions to the ASD equation (i.e. solutions with
@B
@t

= 0) are flat connections B on Y , so that FB = 0. A key observation in Floer
[ibid.] is that the above equation for a path B(t) is formally the downward gradient
flow for a functional – the Chern–Simons functional – on a space of connections on
the 3-manifold. To see this, consider for simplicity a trivial bundle on a 3-manifold Y .
We write a connection B as sum of the connection Γ coming from a trivialization and a
1-form with values in the Lie algebra su(N ):

B = Γ + b; where b 2 Ω1(Y ) ˝ su(N ):

In this form, the Chern–Simons function is given by

CS(B) = �
1

2

Z
Y

tr(b ^ db +
1

3
b ^ b ^ b):

The first variation of CS is given by

d

dt
CS(B + tˇ)jt=0 = �

Z
Y

tr(ˇ ^ (db +
1

2
b ^ b))

= �

Z
Y

tr(ˇ ^ FB);

so the stationary points are flat connections, FB = 0. If Y is given a Riemannian metric,
then the standard inner product on su(N )-valued one forms can be written

h˛; ˇi = �

Z
Y

tr(˛ ^ �ˇ):

With respect to this inner product, the gradient ofCS at the connectionB is �FB , which
verifies that the equation (8) is indeed the downward gradient flow.

Floer’s construction applies the ideas of Morse theory to the Chern–Simons func-
tional. In the case of a finite-dimensional compact manifold B carrying a Morse func-
tion f , the ordinary homology ofB can be computed as theMorse homology of f . This
is the homology of a complex whose generators correspond to critical points of f and
whose boundarymap records intersection numbers between ascending a descending sub-
manifolds. After a generic perturbation, these intersection numbers can be interpreted
as counting gradient flow lines between critical points of adjacent index.
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When this framework from finite dimensions is applied to the Chern–Simons func-
tional on the space of gauge-equivalence classes of connections on Y , the relation with
ordinary homology is lost. The “instanton homology” which results is something new.
It is the homology of a complex whose generators are critical points of the (perturbed)
Chern–Simons functional and whose boundary map counts gradient flow lines. In line
with the discussion above, the critical points are flat SU(N ) connections on Y (corre-
sponding to representations of �1(Y ) in SU(N )) and the boundary map counts solutions
of the anti-self-duality equations on the cylinder.

Floer’s original construction ignores the trivial connection, and the assumption that
Y is a homology sphere is used in a crucial manner to prove that I (Y ) is independent
of the choice of metric on Y and the perturbation. This restriction on Y also means
that the non-trivial representations of �1(Y ) in SU(2) are all irreducible. It follows
then from the construction of I(Y ) as a Morse homology that if there are no irreducible
representations, i.e. no critical points for CS used in the construction of I(Y ), then I(Y )
is trivial. So Proposition 3.1 has the following straightforward corollary:

Corollary 3.3. If qX ¤ 0 for some 4-manifold X , and a homology 3-sphere Y can be
placed into X in such a way that X is decomposed into two pieces, each with b2+ > 0,
then there is a non-trivial homomorphism � : �1(Y ) ! SU(2).

In particular (from the case that Y is S3), if a 4-manifold admits a connected sum
decomposition X = X1#X2 where b2+(Xi ) > 0, then qX = 0, which is an earlier
vanishing theorem due to Donaldson.

As a tool to prove existence of non-trivial homomorphisms, the Corollary is useful,
but it is not a completely general tool. For example, it is not known which homology
3-spheres can be embedded in complex algebraic surfaces or in symplectic 4-manifolds.
(See Theorem 2.4 and Theorem 2.5.)

In a positive direction, it is shown Y. Eliashberg [2004], Etnyre [2004], and Kron-
heimer and Mrowka [2004b] that 3-manifolds carrying a taut foliation can always be
embedded in a symplectic 4-manifold. The argument combines deep and difficult work
of Y. M. Eliashberg and Thurston [1998] and Giroux [2002]. One can deduce:

Corollary 3.4. If the homology 3-sphere Y admits a taut foliation, then there is a non-
trivial homomorphism � : �1(Y ) ! SU(2).

As indicated earlier (Question 1.5), the general case of a 3-manifold with non-zero
fundamental group remains open.

3.3 Using U (N ) bundles. The instanton homology we have just described is the
first version which Floer defined. Rather than work with homology spheres where the
unique reducible connection can be excluded, Floer observed that there is an alternative
setup for 3-manifolds with b1(Y ) ¤ 0 where reducible flat connections can be avoided
entirely. One works with 3-manifolds that carry an SO(3) bundle whose the second
Stiefel–Whitney class ! 2 H 2(Y ;Z/2) has non-zero evaluation on some integral ho-
mology class. Almost the same, as we did for Donaldson’s invariants in section 3.3, we
may fix a line bundleW ! Y and work with triples (E; �; A0), whereE a U (2) bundle,
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� is an isomorphism Λ2E ! W , and A0 is a connection in the associated bundle PU(2).
We define admissibility for W – or equivalently for its first Chern class w = c1(W ) –
just as in the 4-dimensional situation, equation (4). In the admissible case there are no
reducible flat connections A0. (See Remark 2.2.)

We arrive at instanton homology groups Iw(Y ), labeled by admissible classes w. A
pairing formula similar to equation 7 holds in this context. Suppose again that X is
decomposed along Y as in (5), and suppose now that v is a class in H 2(X ;Z) whose
restriction, w, to Y is also admissible. Then we have relative invariants,

q
v+
X+

: A(X+) ! Iw(Y )

q
v�

X�
: A(X�) ! Iw(�Y )

and a pairing formula,

(9) qvX (z) =
˝
q
v+
X+
; q
v�

X�

˛
;

where z = i+(z+)i�(z�) as before.
Along the same lines as Proposition 3.1, we now have:

Proposition 3.5. Let Y be given, and let w be an admissible class on Y . Suppose that
Y can be embedded as a separating hypersurface in X in such a way that the class
w extends to a class v 2 H 2(X ;Z), and suppose that the Donaldson invariant qvX is
non-zero. Then the instanton homology group Iw(Y ) ˝ Q is non-zero.

As in the case of a homology 3-sphere (see Corollary 3.4), one can deduce that if Y
admits a taut foliation, then Iw(Y ) is non-zero for any admissible w, and there exists
a representation � : �1(Y ) ! SO(3) with w2(�) = w mod 2. Unlike the case of
homology 3-spheres however, irreducible 3-manifolds with non-zero Betti number all
carry taut foliations, by a deep existence result due to Gabai [1983]. So we have:

Corollary 3.6. If Y is irreducible with b1 ¤ 0 and w is any admissible class, then
Iw(Y ) ˝ Q is non-zero.

In this way we arrive at an existence result for representations that is sufficiently
general to deduce the necessary and sufficient condition, Theorem 1.6.

4 Sutured manifolds

In Kronheimer and Mrowka [2010], the authors found a much more efficient proof of
Corollary 3.6 and Theorem 1.6. The original arguments outlined above used the exis-
tence of a taut foliation, which had been proved by Gabai [1983] using his theory of
sutured manifolds. The later argument in Kronheimer and Mrowka [2010] uses Gabai’s
sutured manifold theory more directly. This strategy is inspired in part by the construc-
tion of sutured Heegaard Floer homology by Juhász [2008] and its precursors in the
work of Ni [2007] and Ghiggini [2008]. On the gauge theory side, the non-vanishing
theorem for Donaldson invariants and the difficult proof of the relation between Donald-
son and Seiberg–Witten invariants is replaced by work of Muñoz [1999] in computing
of the instanton homology groups of S1 �Σg . We will explain how some of this works,
beginning with Gabai’s work.
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(a) (b) (c)

Figure 6: An example of sutured manifold decomposition: a sutured solid torus
is decomposed along an embedded disk. The new sutured manifold (center) is
isomorphic to a standard sutured ball (right). Red and green indicateR+ andR�,
while blue curves are sutures.

4.1 Sutured manifold decompositions. An important idea in 3-manifold topology
going back to Haken [1961] and Waldhausen [1968] and further developed by Gabai
is that of surface decomposition: cutting a 3-manifold along a surface may result in a
simpler 3-manifold. In order to organize a sequence of surface decompositions of man-
ifolds with boundary, Gabai defined a notion of sutured manifold. This is an oriented
3-manifold with boundary, Y , together with a decomposition of its boundary into two
parts,

@Y = R+ [R�;

intersecting along a union of simple closed curves  � @Y . These simple closed curves
are the sutures. The simplest example is a 3-ball, with its boundary divided into upper
and lower hemispheres, meeting at the equator (Figure 6c). We can always orient  by
first orienting R+ as the boundary of Y and then orienting  as the boundary of R+.

A decomposing surface S for a sutured manifold (Y; ) is an oriented embedded
surface S � Y with @S � @Y . It is required that S and @Y meet transversally, so
that @S a union of simply closed curves in @Y ; and each of these is required to either
meet the sutures  transversally, or to coincide with a component of  as an oriented 1-
manifold. If a component of @S is disjoint from  , then it is required that this circle does
not bound a disk inR˙ nor a disk in S . Given such a decomposing surface, one obtains
a new sutured manifold Y 0 by cutting Y open along S and smoothing the corners. The
new decomposition of @Y 0 as R0

+ [R0
� is defined by setting

R0
+ = R+ [ S+ R0

� = R� [ S�

where S+ is the copy of S in @Y 0 picked out by the oriented normal to S � Y . The
process of forming (Y 0;  0) from (Y; ) in this way is called a sutured manifold decom-
position. (See Figure 6.)

The following is a slightly special case of one of Gabai’s central results about sutured
manifolds.

Theorem 4.1 (Gabai [1983]). Let Y be a closed irreducible 3-manifold, regarded as a
sutured manifold without boundary. Suppose that the Betti number b1(Y ) is non-zero.
Then we can find a sequence of sutured manifolds, starting with Y , each obtained from
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the previous one by sutured manifold decomposition, and ending with a disjoint union
of 3-balls with one equatorial suture each:

(10) (Y;¿) = (Y 0; 0)  (Y 1; 1)  � � �  (Y k ; k) =

ma
1

(B3; equator):

Furthermore, for the first decomposition in the sequence, the decomposing surface
S � Y can be chosen to be any connected genus-minimizing surface: a surface that
achieves the minimum genus among all oriented surfaces in the same homology class.
Conversely, the genus-minimizing property for the first cut is a necessary condition for
the existence of such a decomposition ending with standard 3-balls.

This result provides a broad framework for proving existence results for structures
on an irreducible 3-manifold Y , by starting with existence (of whatever structure) on
the trivial (Y k ; k), and working back up to Y . In Gabai’s work this framework is used
to prove the existence of taut foliations, and in our context it can be used to prove that
the instanton homology Iw(Y ) is non-zero (Corollary 3.6). What needs to be done is:

1. extend the definition of instanton homology Iw(Y ) to the case of sutured mani-
folds;

2. show that the rank of the instanton homology of sutured manifolds is monotone
decreasing in any sequence of decompositions such as (10);

3. show that the instanton homology has non-zero rank for the disjoint union of
sutured balls.

Once one has item (1) of the above three, the remaining pieces fall into place quite
easily. The non-trivial ingredient needed for the definition in (1) is what we turn to next.

4.2 Munoz’ computation of Iw(S 1 � Σ) and its consequences. In Muñoz [1999]
Munoz gave a description of the instanton homology Iw(S1�Σ), whereΣ is a surface of
genus g � 1 andw is the 2-dimensional cohomology class Poincaré dual to S1�fpointg.

In general, ordinary homology classes h in a 3-manifold Y give rise to operators ĥ on
Iw(Y ). This can be seen as arising naturally from the formalism of Donaldson’s invari-
ants, as follows. Weworking with coefficients in a field and consider (roughly speaking)
the relative Donaldson invariants of the 4-manifoldZ = [�1; 1]�Y as defining a linear
map

A(Z) ! Iw(@Z) ˝ Q;

or equivalently
A(Y ) ! Iw(�Y ) ˝ Iw(Y ) ˝ Q:

The algebra A(Y ) containsH�(Y ) as a linear subspace, and Iw(�Y ) is dual to Iw(Y ),
so we obtain the operators we seek:

ĥ : Iw(Y ) ˝ Q ! Iw(Y ) ˝ Q; h 2 H�(Y ):
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If we have two homology classes h1 and h2 then the corresponding operators commute
in the graded sense.

Munoz’ work can be used to determine the spectrum, and indeed joint spectrum, of
the operators coming from H�(S

1 � Σ). Let s 2 H2(S
1 � Σ) be the homology class

of (point) � Σ and y 2 H0(S
1 � Σ) be the homology class of a point.

Theorem 4.2. Then the simultaneous eigenvalues of the action of ŝ and ŷ on Iw(S1 �

Σg) ˝ C are the pairs of complex numbers
�
im(2k); (�1)m2

�
for all the integers k in

the range 0 � k � g � 1 and all m = 0; 1; 2; 3. Here i denotes
p

�1.
Furthermore the generalized eigenspace corresponding to (2g � 2; 2) is one-dimen-

sional hence simple.

As a corollary of this one can deduce an result for a general 3-manifold Y . If we have
a 2-dimensional homology class s represented by a connected surfaceS in Y , with genus
g > 1, and a point y thought of as a 0-dimensional homology class, then the following
holds.

Theorem 4.3. For any admissible class w 2 H 2(Y ) with w � s = 1, the simultaneous
eigenvalues of the action of ŝ and ŷ on Iw(Y )˝ C are contained in the pairs that arise
in the case of the product manifold S1 � S . That is, they are pairs of complex numbers�

im(2k); (�1)m2
�

where k is in the range 0 � k � g � 1.

We return now to a sutured manifold (Y; ), which we shall suppose satisfies the
condition that Juhász [2008] calls balanced, namely we require that �(R+) = �(R�),
that no component of Y is a closed 3-manifold, and that every component of @Y contains
a suture. The first of these conditions holds automatically for the sutured manifolds
(Y i ;  i ) in Theorem 4.1, and one can arrange that the other two mild conditions hold
from Y 2 onwards. For such balanced sutured manifold one can form (not uniquely) a
closure Ȳ as follows.

Choose an oriented connected surfaceT whose boundary admits an orientation-reversing
diffeomorphism @T !  . Extend this diffeomorphism to a diffeomorphism � of
[�1; 1] � @T with a tubular neighborhood (in @Y ) of  . Then form the new 3-manifold
with boundary

Ỹ = Y [� [�1; 1] � @T:

Note that our assumptions imply that the boundary of Ỹ has two connected components
R̄˙ formed from R˙ and ˙1 � T . The balanced assumption implies that R̄+ R̄� have
the same Euler characteristic, and since these are connected these surfaces are diffeo-
morphic. Choosing a diffeomorphism  we construct an closed, connected 3-manifold

Ȳ = Ỹ j 

where the two boundary components are glued together using  . The original sutured
manifold Y can be obtained from the closed manifold Ȳ by a sequence of two sutured
manifold decompositions, decomposing first along R̄ and then along the annuli [�1; 1]�

@T .
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Formed in this way, the closure Ȳ contains a distinguished non-separating connected
surface R̄ carrying a homology class r 2 H2(Ȳ ). Let w be an admissible class with
w � r = 1, and consider the application of Theorem 4.3 to the operators

r̂ ; ŷ : Iw(Ȳ ) ˝ C ! Iw(Ȳ ) ˝ C:

According to the theorem, the integers that arise in the spectrum of r̂ are bounded above
by 2g � 2. We make the following definition:

Definition 4.4. The sutured instanton homology of the sutured manifold (Y; ), written
SHI(Y; ) is defined to be the simultaneous eigenspace for the pair (2g � 2; 2) for the
operators (r̂ ; ŷ) on Iw(Ȳ ) ˝ Q for any closure Ȳ .

In showing that this definition is good (i.e. is independent of the choice of closure) an
important role is played by last clause of Theorem 4.2. Note in particular that it tells us
that the dimension of SHI(Y; ) is 1 in the case that the sutured manifold is (B3; equator)
or a union of such, for in this case we can take the closure to be S1 � R̄.

Returning to the three-step plan (1)–(3) from the end of section 4.1, we see that
what remains for a proof of the non-vanishing theorem, Corollary 3.6, is item (2) there.
That is, one must show that if (Y; ) is decomposed along S to obtain (Y 0;  0), then
SHI(Y 0;  0) has rank no larger than the rank of SHI(Y; ). The idea of the proof here
is to construct a particular closure Ȳ for Y so that S becomes a closed surface S̄ , and
consider the operators ŝ that it gives rise to on SHI(Y; ). One then seeks to identify
SHI(Y 0;  0) with an eigenspace of the operator ŝ, thus exhibiting it as a subspace of
SHI(Y; ).

Note that in nearly all cases, this line of proof gives a considerable strengthening of
the non-vanishing theorem, Corollary 3.6. As a very simple example:

Corollary 4.5. Let Y be an irreducible 3-manifold containing a non-separating con-
nected surface S of genus at least 2 which is genus-minimizing in its homology class s.
Then Iw(Y ) has rank at least 4, for every admissible w with w � s = 1.

Proof. Consider the operators (ŝ; ŷ) again. The proof of non-vanishing shows that the
simultaneous eigenspace for the pair (2g � 2; 2) for ŝ is non-zero. For formal reasons,
the eigenspaces of the pair (i r(2g � 2); (�1)r2) are all of the same dimension, and if
2g � 2 is non-zero then these four pairs are distinct.

4.3 Sutured manifolds and knots. As Juhasz observed in Juhász [2008], one can
use the sutured manifold formalism to define an instanton homology for knots. For sim-
plicity, let us consider a classical knotK in S3, and let Y be the “knot complement”: the
manifold with torus boundary obtained by removing from S3 an open tubular neighbor-
hood of K. Let  be the union of two disjoint meridional curves on @Y , with opposite
orientations. In this way we associate a sutured manifold (Y; ) toK � S3, and the su-
tured instanton homology of (Y; ) is an invariant, which we can call the knot instanton
homology KHI(K).

To understand this knot invariant better, one can describe an explicit closure Ȳ in this
case, using an annulus for the auxiliary surface T . To describe this closure, consider
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the 3-torus T 3 as S1 � T 2, and let � � T 3 be the circle S1 � fpointg. Remove an
open neighborhood of � and glue the resulting torus boundary to the boundary of knot
complement Y . The gluing should be chosen so that the longitudinal curves in @Y are
glued to the meridional curves of � and vice versa. In this closed 3-manifold Ȳ , the
distinguished surface R̄ � Ȳ is a standard torus disjoint from Y . Note if we are given
a Seifert surface for K (an oriented surface with boundary a longitude of K), then we
obtain a closed surface S � Ȳ as the union of the Seifert surface and the punctured
torus T 2 n fpointg.

Following Juhász [ibid.], one can show that the invariant KHI can be used to detect
the unknot:

Proposition 4.6. For a classical knot K, the dimension of KHI(K) is greater than or
equal to 1, with equality if and only if K is the unknot.

Proof. Unwrapping the definitions we see that KHI(K) is the simultaneous eigenspace
for the eigenvalues (0; 2) of the operators (r̂ ; ŷ). Since r̂ has genus 1, this is simply
the eigenspace of ŷ for the eigenvalue 2. In the case of the unknot, Ȳ is a 3-torus,
the instanton homology Iw(Ȳ ) has rank 2, and the +2 and �2 eigenspaces of ŷ are
both 1-dimensional. For a non-trivial knot, the dimensions are larger, by the argument
of Corollary 4.5, for there is a genus-minimizing surface S � Y of genus at least 2,
obtained from a Seifert surface for K as described above.

Since instanton homology is defined ultimately in terms of flat connections, one can
use the above proposition to deduce that, if K is a non-trivial knot, then the SU(2) or
SO(3) representations of the knot group �(K) is strictly larger than the case of the
unknot. In this way, one can derive Theorem 1.2 from the first section.
Remark 4.7. In the Heegaard Floer homology setting, Juhasz’s construction recovers
the simplest version of the Heegaard knot homology of Ozsváth and Szabó [2004] and
Rasmussen [2003]. On the basis of the few existing calculations in the instanton case,
one can conjecture that the rank of SHI(K) is equal to the rank of the Heegaard knot
homology group.
Remark 4.8. The generalized eigenspaces of the operator defined by S give a direct sum
decomposition of KHI(K). There is also a Z/2 grading, so it makes sense to compute
the Euler characteristic of the summands. In this way one recovers the coefficients of
the Alexander polynomial, just as one does in the case of the Heegaard knot homology.
Remark 4.9. There is work of Daemi and Xie [2017] on generalizing the sutured instan-
ton homology SHI by using the gauge groups SU(N ). The essential step is in establish-
ing an appropriate replacement for the results of Munoz.

5 Instanton homology for knots, links and spatial graphs

We have explained above that Theorem 1.6, which asserts the existence of a non-abelian
representation of the fundamental group of a 3-manifold in SO(3), can be seen as a
corollary of a non-vanishing theorem for the instanton Floer homology group Iw(Y )
(Corollary 3.6). The non-vanishing theorem can be proved using sutured manifold de-
compositions, as outlined in section 4; and from these results about sutured manifolds,
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we deduced results about representations of �(K) for knots and links such as Proposi-
tion 4.6 via the knot homology group KHI(K).

There is a more direct approach to defining an instanton homology group for knots,
which we will outline next. Although the invariant defined by this approach turns out
to be isomorphic to KHI(K), the alternative approach plays dividends in its extra flexi-
bility.

5.1 Instanton homology for orbifolds. Our strategy is to define an instanton Floer
homology group for a certain class or orbifolds, and the class we have inmind are closed,
oriented 3-dimensional orbifolds O whose singular set is a knot or link and whose non-
trivial local stabilizers are all Z/2. Thus our class includes the orbifolds that appear
in the statement Theorem 1.3 in the introduction. The material here is drawn from
Kronheimer and Mrowka [2012].

There is no particular difficulty in studying bundles, connections and the anti-self-
duality equations on orbifolds. To avoid reducible connections we need to work again
withU (2) bundles with fixed determinant, as in subsection 3.3. At points of the singular
set, where the stabilizer is Z/2, the local model will be the quotient of a smooth U (2)

bundle over the ball, and we ask that the action on the fiber of the bundle be by the
element

� =

�
1 0

0 �1

�
:

The first Chern class of such an orbifold bundle E is a class dual to a relative 1-cycle
w (thought of geometrically as a 1-manifold in the smooth part of O with possible
endpoints on the singular part).

As long asw is admissible one can define an instanton homology group Iw(O)much
as before. The critical points of the Chern–Simons functional are flatPU(2) connections
on the complement of the singular set whose monodromy around the meridional links
has order 2 and whose Stiefel–Whitney class is w mod 2.

Recall that, for a classical linkK in S3, we write Orb(S3; K) for the orbifold whose
singular set is K. A first Chern class w on Orb(S3; K) will be admissible if it is dual
to an arc joining two components of K, because such a w evaluates to 1 on an oriented
surface separating the components. To achieve admissibility in general, we adopt the
following device. Given classical knot or link K, we form a new link by taking the
union of K with a small meridional loop L, linking K at chosen point x 2 K. We take
w to be the admissible class dual to an arc joining the new loop L to K. We may then
define:

(11) I \(K) = Iw(K [ L):

If K has more than one component, then the choice of the point x may be material, but
we still omit x from the notation.

To understand the definition a little, observe that when K is an unknot, the union
K [L is a Hopf link. It is not hard to verify in this case that there is exactly one critical
point of the Chern–Simons functional on the corresponding orbifold with the correct
determinant w. This flat connection corresponds to the Klein 4-group representation of
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the fundamental group of the complement, �(K [ L) = Z ˚ Z. This unique critical
point is the generator for I \(K). Having just one generator, I \(K) is infinite cyclic.

Although the definition is different, the same techniques of cut-and-paste topology
that are used in the construction of sutured instanton Floer homology can be used to
show that the two approaches yield the same result, for knots:

Proposition 5.1. For a knot K, the homology groups KHI(K) and I \(K) are isomor-
phic.

As a trivial corollary, the orbifold version also detects knottedness:

Corollary 5.2. For a knotK in S3, the rank of I \(K) is at least 1, with equality if and
only K is the unknot.

5.2 Khovanov homology. An advantage of the orbifold approach to the definition
of I \(K) is that it allows a straightforward approach to functoriality. A cobordism
between classical links K0 and K1 is an embedded surface Σ in [0; 1] � S3, meeting
the boundary transversely in K0 and K1 at the two ends. Without any requirement of
orientability, such a cobordism gives rise to a homomorphism I \(K0) ! I \(K1).

This functoriality is the starting point in making an unexpected connection between
this instanton homology and a knot homology group from a quite different stable, namely
the Khovanov homology groups introduced in Khovanov [2000]. The Khovanov homol-
ogy Kh(K) for a classical knot or link is a “categorification” of the Jones polynomial. It
has a definition which is entirely algebraic, and eventually elementary, but Kh(K) and
its generalizations have turned out to have deep connections with geometry, in several
directions. In our particular context, we have the following result:

Theorem 5.3 (Kronheimer andMrowka [2012]). For a classical knot or linkK, there is
a spectral sequence whose E2 page is the (reduced variant of) the Khovanov homology
of K and which abuts to the orbifold instanton homology, I \(K).

Like I \(K), the reduced Khovanov homology has rank 1 if K is the unknot. From
Corollary 5.2 we and the existence of the spectral sequence, we therefore obtain:

Corollary 5.4. For a knot K in S3, the rank of the reduced Khovanov homology is at
least 1, with equality if and only K is the unknot.

It is an open question whether the Jones polynomial itself is an unknot-detector. Al-
though many geometric techniques can be used to characterize the unknot algorithmi-
cally (starting with Haken’s work in Haken [1961]), the above corollary stands some-
what apart, because of the origins of Khovanov homology in quantum algebra and rep-
resentation theory.

An interesting avenue to pursue is to replace U (2) in the orbifold setup with U (N )

and to explore the relationship to generalizations such as Khovanov–Rozansky homol-
ogy Khovanov and Rozansky [2008]. See Daemi [2014] and Xie [2016].

5.3 Instanton homology for spatial graphs. We return to the material of section 1.4,
to consider a trivalent spatial graph K � S3. As we did for knots and links, we can
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apply instanton Floer homology to the associated orbifold O = Orb(S3; K). Allowing
trivalent vertices in K leads to new issues, related in particular to the possibility of the
Uhlenbeck bubbling phenomenon occurring at orbifold points corresponding to vertices
of K. In order to have a well-defined instanton homology, it turns out to be necessary
to use a ring of coefficients of characteristic 2.

Following this line, the authors defined in Kronheimer and Mrowka [n.d.] an invari-
ant of trivalent spatial graphs K which takes the form of a Z/2 vector space J ](K).
This variant of instanton homology arises from a Chern–Simons functional whose set
of critical points can be identified with the space of SO(3) representations R(K) con-
sidered at (1). (In particular, this is essentially an SO(3) gauge theory, not the type of
U (2) gauge theory used in the definition of Iw(Y ) before.)

Once again, by reducing the question to one about the instanton homology of a su-
tured manifold (essentially the complement of K) one can prove a non-vanishing theo-
rem for graphs that are spatially bridgeless in the sense of section 1.4:

Theorem 5.5. If K � R3 is a spatially bridgeless trivalent graph, then the instanton
homology group J ](K) is non-zero.

An immediate corollary is that the space of representations R(K) is non-empty,
which is the statement of Theorem 1.11 in the introduction.

As mentioned in section 1.4, the space of SO(3) representations R(K) contains the
set of representations, �(K) ! V4, into the Klein 4-group, which are in one-to-one
correspondence with Tait colorings of K. It is difficult to compute J ](K), but an ex-
amination of the simplest examples prompts this question.

Question 5.6. For a spatial trivalent graph K that is planar (that is, embedded in a
plane R2 in R3), is it the case that the dimension of J ](K) is equal to the number of
Tait colorings?

It is known that, if the answer is no, then a minimal counterexample can have no
bigons, triangles or squares Kronheimer and Mrowka [ibid.]. Various equivalent forms
of the question are given inKronheimer andMrowka [2016] andKronheimer andMrowka
[2017]. It is also known Kronheimer and Mrowka [ibid.] that the number of Tait color-
ings is a lower bound for the dimension of J ](K). Because of the connection between
Tait coloring the edges and four-coloring the regions of a planar trivalent graph (see sec-
tion 1.4 again), an affirmative answer to the question would provide a new proof that
every planar map can be four-colored.
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