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DELOCALIZATION OF SCHRODINGER EIGENFUNCTIONS

NALINI ANANTHARAMAN

Abstract

A hundred years ago, Einstein wondered about quantization conditions for clas-
sically ergodic systems. Although a mathematical description of the spectrum of
Schrodinger operators associated to ergodic classical dynamics is still completely
missing, a lot of progress has been made on the delocalization of the associated
eigenfunctions.

1 Some history

One can date the birth of quantum mechanics back to Planck’s 1900 paper (Planck
[1900]), when he realized that the statistical model leading to the spectrum of the “black
body” had to be discrete, not continuous. To that effect, he introduced the “Planck con-
stant” &, but this was for him a mathematical artifact, without physical foundation. It
was Einstein [1905] who gave this notion a physical meaning, introducing the idea of
quantum of energy in the exchange of energy between electromagnetic field and matter
(later called photon). The amount of energy that can be exchanged between light of
frequency v and matter is discrete, “quantized”, it must be an integer multiple of iv.

This idea was applied to the planetary model of the atom by Bohr [1913]. Trying to
explain the discrete emission/absorption spectrum of the hydrogen, he used the Ruther-
ford model where the electron gravitates around the nucleus submitted to Coulomb at-
traction, and postulated the quantization of the kinetic momentum: it must be an integer
multiple of /. This in turn implied that the energy can only take a discrete set of values,
that fitted perfectly well with the experimental spectrum. However, setting up quanti-
zation rules for larger atoms turned out to be an inextricable task.

In 1917, Einstein wrote a theoretical paper with an aim to extend the quantization
rules to systems with higher degrees of freedom (Einstein [1917]). He modified some
rules given earlier by Epstein and Sommerfeld, and he noted that his new rules only
made sense if (using modern vocabulary) the system is completely integrable: that is, if
there exist some action/angle canonical coordinates, such that the actions are invariants
of motion (Einstein’s quantization rule is that the values taken by the action variables
have to be integer multiples of /). At the end of Einstein’s paper, there is a sentence that
looks incidental, but may be considered to be the starting point of a whole field of re-
search: “on the other hand, classical statistical mechanics is essentially only concerned
with Type b) [i.e. non integrable systems], for in this case the microcanonical average
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is the same as the time average”. The equivalence of time average with the average
over phase space is the property called “ergodicity”. Einstein’s point is the following:
if a classical dynamical system is ergodic, the quantization rules do not apply, so how
can we describe its spectrum ?

Facing the failure to find quantization rules even for an atom as simple as the he-
lium, entirely new rules of mechanics were set up by Heisenberg [1925]. One should
work only with observable quantities such as the position or the momentum (but for
instance, the trajectory of an electron is not observable); and these “observables” are
modelled by matrices (operators), subject to certain commutation rules. The momen-
tum observable p and the position observable ¢ must satisfy gp — pg = ihl, where h
is the reduced Planck constant 4 /27 . Time evolution is governed by the energy observ-
able H; Heisenberg gives a recipe to build the operator H starting from the classical
expression of energy. Any other observable A evolves according to the linear equation
ihi,—’: = [A, H], where [-, ] stands for the commutator of two operators. The physi-
cal spectrum of the system (emitted or absorbed energies) is given by the differences
E, — E,, where (E,) are the eigenvalues of H.

At the same time, a concurrent theory emerged. In 1923, De Broglie had formulated
the idea of wave mechanics: in the same way as light, considered to be a wave, was
discovered to have a discrete behaviour embodied by the photons, one could do the
reverse operation with the particles composing matter, and consider them to be waves
as well. In 1926 an evolution equation for a wave/particle of mass m evolving in a force
field coming from a potential V' was proposed by Schrodinger [1926a,b]:

Loy (R
(1) ihe - = (—%A-‘rV)I/I

where A is the Laplacian, and where ¢ = (¢, x) is a function of time ¢ and of the
position x € R? of the particle, called the wave function.

The linear partial differential equation (1) can be solved by diagonalizing the differ-
ential operator H = —%A + V. Assume, for instance, we can find an orthonormal

basis of the Hilbert space L?(R?) consisting of functions ¢, satisfying H¢, = E,dy,
with E, € R. Then the general solution of (1) is

l/f(l’x) = ch¢n(x)e_itEn/h

where the coefficients ¢, € C are given by the initial condition at # = 0. The physical
spectrum is again given by the differences E,, — E,,.

Both the Heisenberg and the Schrodinger theories yielded exact results for the hy-
drogen atoms, but also for larger ones. In fact, they can be shown to be mathematically
equivalent. But, as Schrodinger wrote it, mathematical equivalence is not the same
as physical equivalence (Schrodinger [1926c]). The wave function v is absent from
Heisenberg’s theory. Soon afterwards, Born gave a probabilistic interpretation of the
function v¥: |y (x, 7)|? represents the probability, in a measurement, to find a particle at
position x, at time #. This was in complete disagreement with Schrodinger’s intuition,
but this is the interpretation that has been retained.
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After 1925, Einstein’s question may be reformulated as follows: if a classical system
is ergodic, and if H is the energy operator governing the system from the point of view
of quantum mechanics, what are the patterns exhibited by the eigenvalues of the operator
H ? How is classical ergodicity transferred to the quantum system ?

One may broaden the question by asking about the properties of the wave functions,
that is, the eigenfunctions of H (solutions of Hp = E¢, E € R), or more generally
the solutions v (x, ¢) of the time-dependent solutions of (1). How are the probability
densities |1/ |? localized in space ?

In the mid-fifties, Wigner introduced Random Matrix Theory to deal with the scat-
tering spectrum of heavy nuclei. Although there is no doubt about the validity of the
Schrodinger equation, it seems impossible to effectively work with it, in view of the
high number of degrees of freedom of such systems. Wigner’s hypothesis was that the
spectrum of heavy nuclei resembles, statistically, that of certain ensembles of large ran-
dom matrices (the Gaussian Orthogonal Ensemble or the Gaussian Unitary Ensemble).
This turns out to fit the experimental data extraordinarily well (pictures may be found
in Bohigas [1991]).

Unexpectedly, the spectral statistics of Random Matrix Theory were discovered to
also fit extremely well with the spectra of certain Schrédinger operators with very few
degrees of freedom: the hydrogen atom in a strong magnetic field, as well as some 2-
dimensional billiards (in the latter case, the Schrodinger operator is just the Laplacian
in a bounded open set of R?, with Dirichlet boundary condition). See Delande [1991]
for illustrations. The common point of all these examples is that the underlying classi-
cal dynamical system is ergodic, or even chaotic, meaning a very strong sensitivity to
initial conditions. So, it seems that the answer to Einstein’s question could be that: if
the classical dynamics is ergodic, or sufficiently chaotic, then the spectrum of the cor-
responding Schrodinger operator looks like that of a large random matrix. This is what
is conjectured by Bohigas, Giannoni, and Schmit [1984]. However,:

* there is to this day no mathematical proof of this fact; the question may be consid-
ered fully open, except for the heuristic arguments given by Sieber and Richter
[2001], that seem impossible to make mathematically rigorous;

* there are some counter-examples to this assertion, given by Luo and Sarnak [1994];
and they come from very strongly chaotic classical dynamics, so the source of the
problem does not lie there.

The counter-examples are Laplacians on arithmetic hyperbolic surfaces (such as the
modular surface and finite covers thereof); they are believed to be “non-generic” in some
vague sense, and thus one may conjecture that the assertions above hold for “generic”
systems. But even in such a weakened form, the question is fully open.

On the other hand, the question of localization of wave functions, although very
difficult, has known steady progress in the last decade. In this paper, we will

* report on recent progress on delocalization of wave functions for chaotic systems,
in the semiclassical limit (limit of small wavelengths), Section 2;

« discuss delocalization of eigenfunctions on large finite systems, such as large fi-
nite graphs, or Riemann surfaces of high genus, Sections 3 and 4;
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« find a link between spatial delocalization and spectral delocalization on infinite
systems, Section 3.4;

* note that delocalization of eigenvectors of large random matrices has also under-
gone intensive study lately. Although these eigenvectors have no direct physical
interpretation, they are directly related to the Green function and were studied
in relation with the question of universality of the spectrum. The spectacular re-
cent progress on Wigner matrices and large random graphs will be mentioned
in Section 4.1 — in a largely non exhaustive manner, as we will focus on results
pertaining to delocalization of eigenvectors.

2 High frequency delocalization

In this section, we let (M, g) be a compact smooth Riemannian manifold of dimension d,
and A be the Laplace—Beltrami operator on M . It is a self-adjoint operator on the Hilbert
space L2(M, Vol), where Vol is the Riemannian volume measure. We diagonalize A:
it is known that there is a non-decreasing sequence Ao = 0 < A; < Ao <—> 400, and
an orthonormal basis (¢ )xen of L2(M, Vol), such that

Ak = —AkPr.

If M has a boundary, we impose a boundary condition, for instance the Dirichlet con-
dition (i.e. we ask that ¢, vanishes on dM). The case when M is a billiard table, that
is, a bounded domain in R? with piecewise smooth boundary, already contains all the
difficulties of the subject: actually, the presence of a boundary induces additional tech-
nical difficulties, and all the theorems given below have been proven for boundariless
manifolds first.

In this part of the paper, we are interested in notions of delocalization defined in the
high-frequency limit Ay —> +o0. This is the same as the small wavelength limit, and
it is also known as a semiclassical limit, meaning that classical dynamics emerges from
quantum mechanics in this limit.

)

Figure 1: Plot of |¢y, (x, y)|? for the stadium billiard with odd-odd symmetry, for con-
secutive states starting from n = 319. Darker shades correspond to large values of the
eigenfunctions. Courtesy A. Bécker
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2.1 The role of the geodesic flow . The eigenfunction equation A¢y = —Ardi
may be rewritten as —#2A¢ = E¢ (with Ay = E#~2) to make a connection with
the Schrodinger operators from (1) (so the external potential V' vanishes here). If we
impose that £ stays away from 0, the limit Ay — +o0 is equivalent to # — 0; in
this régime, quantum mechanics should “converge to classical mechanics”. This was
actually a requirement of Schrédinger when he introduced his equation.

The Schrddinger operator —42A corresponds to a particle moving on M in absence
of any external force. In classical mechanics, this corresponds to the motion along
geodesics, in other words, the motion with zero acceleration. When M is a billiard,
the motion is in straight line, with reflection on the boundary. We denote by 7* M the
cotangent bundle of M ; this is the classical phase space. An element (x,&) € T*M
has a component x € M (the “position” of the particle) and § € T M (the “momen-
tum”). For (x,§) € T*M,and ¢t € R, we denote by g (x, ) € T*M the position and
momentum of the particle, after it has moved during time ¢ along the geodesic starting
at x with initial momentum &. The family (g');er : T*M —> T*M is a flow of
diffeomorphisms, meaning that g'+5 = g’ o g* and g° is the identity. This dynamical
system is called the geodesic flow. The motion along geodesics has constant speed, and
thus, the unit cotangent bundle S*M = {(x,&) € T*M, ||§||x = 1} is preserved by g’.

In the limit of small wavelengths, (Ax —> +00), the Schrodinger equation

Iy
— =iA
ot 4
moves the wavefronts along geodesics. What we mean is that, if we start with an initial

condition of the special form

l.S(x)

Ye(x) = x(x)el

with y and S smooth, and apply the unitary group e’¢’” (note the rescaling of time),
then e?€!2/€ is of the form

S(t.x)

) EAYE(x) = qi(x)el e + Oy(e)

where

+ S(t, x) satisfies the Hamilton—Jacobi equation %—f = |/dx S||?; which means that
at time 7 the “wavefront set” {(x, dxS(¢,x))} C T*M is the image under g’ of
the initial wavefront set {(x, dxS(x))};

* denoting G’ : x > mg'(x,dyS), where & : T*M —> M is the projection to
the position coordinate, we have

x:(y) = x(G™'y) |Gy |/

where |G y| is the Jacobian of the map G~* at y. This normalization factor is
related to the fact that the L? norm must be constant in time.
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Formula (2) is an approximate one, it has a remainder term O, (¢). It is called a BKW
approximation, as it was first obtained by Kramers [1926], Wentzel [1926], and Bril-
louin [1926]. Note that this description is usually only valid for small times; for larger
times, it might no longer be possible to write the set g’{(x,d,S(x))} in the form
{(x,dxS(t, x))} for some smooth function S(z,-), as caustics may appear.

Using (2), and the fact that eigenfunctions satisfy e!€’2¢, = e ' k¢, we can
hope to establish a relation between the behaviour of the eigenfunctions and the large-
time properties of the geodesic flow, however there are two main difficulties:

— a general function ¢ is not of the form (2), but can be written as a linear superposition
of such functions (with € ~ )k,:l/ % in the case of eigenfunctions). This may be seen
using the Fourier transform in local coordinates. It is extremely difficult to control how
the different terms will add up and interfere after applying e’<’2, for large ¢;

— the error term in (2) grows (usually exponentially) with ¢; so it is extremely delicate
to use the approximation (2) for large times.

2.2 L?-norms as measures of delocalization ? One of the first question that comes
to mind at the sight of Figure | is: how large can the eigenfunctions be, how strongly
can they be peaked, and at what points ? In this section we denote by ¢, any solution
of —A¢, = A¢,, normalized so that |[¢a]|z2 = 1. A general bound on the L*°-norm
is the following:

Theorem 1. (known as Hormander s bound)

d_
i lloo = O(ALTD/Y),

In a celebrated paper, C. Sogge gave a bound for all L? norms, 2 < p < +o0:

Theorem 2 (Sogge [1988]).

2202

lpallLr = O(A 27)

d
- w(p)=d (% — %) — 3 for 25 < p < too;

— d
s ulp) =45 (5 5) for2 < p = Jq

These bounds hold for any compact manifold M. Recall that d is the dimension of

M . Note the role of the critical value p, = %. The upper bounds are achieved on

the sphere S¢: with zonal spherical harmonics for p > p, (these spherical harmonics
are strongly peaked at 2 poles), and with highest weight spherical harmonics for p < p,
(these spherical harmonics are peaked in the vicinity of a circle). So, in all the L?-norms,
the sphere is a case where eigenfunctions are most strongly peaked. For p > p., several
results give a partial converse, showing that manifolds where the L#-bound is saturated
must have a “pole”, that is, a point where many geodesics loops go through:

If x € M,let £, C S;M be the set of directions that loop back to x, i.e.

£y ={veSIMIA>0g(xv)eSiM}.
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We denote by o, the Lebesgue measure on the sphere Sy M.

Theorem 3 (Sogge and Zelditch [2002, 2016a,b]). » Assume there exists a subse-
quence Ap, —> +o0c and C > 0 such that ||¢Ank loo > CA“S> . Then there
exists x such that ox(£x) > 0;

» If M is real analytic, the existence of such subsequence Pry, 1S equivalent fo the
existence of x such that £, = S;M, and the first return map 1y : SyM —
S¥M possesses an absolutely continuous invariant probability measure. (More-
over, in that case, there exists to > 0 such that g (x,v) € S¥M forallv € S¥M,
that is, there is a common return time).

* If M is real analytic and dim M = 2, the existence of such subsequence ¢A”’k is

equivalent fo the existence of x € M and ty > 0 such that g (x,v) = (x,v) for
allve SIM.

What about our original question ? is it true that, if the geodesic flow is chaotic, eigen-
functions will be much less peaked ? To be more specific, we shall mostly be interested
in manifolds with negative sectional curvatures. It is then known that the geodesic flow
has the Anosov property, which is a very strong and very well understood form of chaos:
the geodesic flow is not only ergodic, it has strong mixing properties, is measurably iso-
morphic to a Bernoulli system, exhibits exponential sensitivity to initial conditions,...
On a negatively curved manifold, there are only countably many closed geodesic, and
what’s more, through a point x there pass at most countably many geodesic loops. Thus,
Theorem 3 implies that ||@; || Lo = 0 (k@) (the big O if Theorem 1| becomes a little

0).

One can in fact go further:

Theorem 4. (i) (Bérard [1977]) If d = 2 and M has no conjugate points, or if d > 2
and M has non-positive sectional curvature, for p = +00,

P
=0 .
llpallr (\/@)

(i’) (Bonthonneau [2017]) Statement (i) actually holds if M has no conjugate points,
foralld > 2.

(i) (Hassell and Tacy [2015]) (i) holds for all p > p..

(iii) (Blair and Sogge [2017b, 2015]) If M has non-positive sectional curvature, for
D < pe, there exists o(p,d) > 0 such that

252
||¢A||LP =0 (W)

(iv) (Blair and Sogge [2017a]) Statement (iii) still holds for p = p..

(iii) and (iv) were previously proven by Hezari and Riviére [2016] for negatively
curved manifolds and for a density 1 sequence of eigenfunctions.
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Although this logarithmic improvement constitutes a great progress, it is far from
reaching our goal of saying that eigenfunctions are “spread around” if the geodesic flow
is chaotic. In fact, after all it is only assumed that the curvature is non-positive, so the
results hold already for flat tori (where the geodesic flow is completely integrable), and
has not much to do with the long-term chaotic behaviour of the geodesic flow.

2.3 The Shnirelman theorem and the Quantum Unique ergodicity conjecture .
As another indicator of delocalization, we can study the probability measure
|x (x)]?d Vol(x). Ideally, the aim is to show that it is close to the uniform measure
(say, asymptotically as A, —> +00); or, maybe less ambitiously we could ask whether
the measure |@x (x)|2d Vol(x) can be large on “small” sets (sets of small dimension for
instance). The Quantum Ergodicity theorem gives a first and almost complete answer
in case the geodesic flow is ergodic, with respect to the Liouville measure.

Recall, this means that for any L'-function a : S*M — R, for Lebesgue almost-
every (xo, &) € S* M, the time average % fOT aog!(xo, &n)dt convergesas T —> +00
to the phase-space average [.,, a dL where L is the normalized Liouville measure on
S*M (i.e. the Lebesgue measure, the uniform measure), arising naturally from the
symplectic structure on 7* M.

Quantum Ergodicity Theorem (Shnirelman theorem).

Theorem 5 (Snirel'man [1974], Colin de Verdiére [1985], and Zelditch [1987]). Let

(M, g) be a compact Riemannian manifold, with the metric normalized so that Vol(M ) =
1. Call A the Laplace—Beltrami operator on M. Assume that the geodesic flow of M

is ergodic with respect to the Liouville measure. Let (Px )xen be an orthonormal basis

of L?>(M, g) made of eigenfunctions of the Laplacian

A¢r = —Ar Pk, Ak < Agp1 — +o0.

Let a be a continuous function on M. Then

1 2

O W,

kAr<A

— 0
A—>+400

(P, adr)L2(m) — /M a(x)d Vol(x)

where the normalizing factor is N (A) = |{k, A < A}|.

Note that (¢k, a¢k L2(M) = fM |¢k |2d Vol(x).

Remark 6. The Cesaro limit (3) implies that there exists a subset S C N of density 1
such that

) (fr.adr) T nes [M a(x)d Vol(x).

In addition, using the fact that the space of continuous functions is separable, one
can actually find S C N of density 1 such that (4) holds for alla € C°(M). In
other words, the sequence of measures (|¢x (x)|>d Vol(x))nes converges weakly to the
uniform measure d Vol(x).
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Actually, the full statement of the theorem says that there exists a subset S C N of
density 1 such that

Q) (e, Apk) —> o’(A)dL

n—>+o0,n€S Jg*pp

for every pseudodifferential operator A of order 0 on M. On the right-hand side, c°(A)

is the principal symbol of A, that is a function on the unit cotangent bundle S* M . Equa-
tion 4 corresponds to the case where A is the operator of multiplication by the function
a.

The theorem has subsequently been extended to manifolds with boundary by Gérard
and Leichtnam [1993] and Zelditch and Zworski [1996]. It applies, in particular, to the
stadium billiard in Figure 1, where the billiard flow has been proven by Bunimovich
to be ergodic. The observation of large samples of eigenfunctions reveals that, indeed,
most eigenfunctions are uniformly distributed over the stadium, but some of them look
very localized inside the rectangle, and some of them also exhibit some mild enhance-
ment in the neighbourhood of unstable periodic orbits, a phenomenon called “scarring”
by physicists (Heller [1991]).

The theorem was also extended to general Schrodinger operators (or even pseudodif-
ferential operators) in the limit 4 — 0 by Helffer, Martinez, and Robert [1987]; more
recently, to systems of differential operators acting on sections of vector bundles — such
as Dirac operators, Dolbeault Laplacians,... (Bolte and Glaser [2004], Jakobson and
Strohmaier [2007], and Jakobson, Strohmaier, and Zelditch [2008]). The case of metrics
with jump-like discontinuities has been elucidated (Jakobson, Safarov, and Strohmaier
[2015]), as well as the case of pseudo-riemannian Laplacians on 3-dimensional contact
manifolds (Colin de Verdiére, Hillairet, and Trélat [2015]). “Small scale quantum er-
godicity”, that is, the possibility to use in (3) a test function @ whose support shrinks
as Ay —> —o00, has been explored in Hezari and Riviére [2016] and Han [2015] on
negatively curved manifolds, and on flat tori in Han [2017] and Lester and Rudnick
[2017].

Quantum Unique Ergodicity conjecture. One may wonder whether the full se-
quence converges in (5), without having to extract the subsequence S. Figure 1 (or larger
samples of eigenfunctions) suggests that this is not the case for the billiard stadium,
where we see a sparse sequence of eigenfunctions that are not at all equidistributed.

This was proven by Hassell [2010] (for “almost all” stadium billiards, meaning, for
Lebesgue-almost-all lengths of the stadium).

On the other hand, Rudnick and Sarnak’s Quantum Unique Ergodicity (QUE) con-
jecture (Rudnick and Sarnak [1994]) predicts that if M is a compact boundaryless man-
ifold with negative sectional curvatures, then one has convergence of the full sequence
in (5), in other words the whole sequence of eigenfunctions becomes equidistributed as
A —> +o00. The conjecture has been proved by Lindenstrauss in the setting of “Arith-
metic Quantum Unique Ergodicity”, where M is an “arithmetic” hyperbolic surface,
and where the ¢, are assumed to be eigenfunctions, not only of the Laplacian, but also
of the Hecke operators (Lindenstrauss [2006], Bourgain and Lindenstrauss [2003], and
Brooks and Lindenstrauss [2014]).
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Arithmetic Quantum Unique Ergodicity will not be discussed with enough detail in
this text, but the results have been presented at previous ICM’s; we refer to Sarnak
[2003], Einsiedler and Lindenstrauss [2006], Lindenstrauss [2010], and Soundararajan
[2010a] for a more adequate overview.

For general negatively curved manifolds, the conjecture is open, but in the last 20
years significant progress has been made:

2.4 Entropy and support of semiclassical measures. In this section, M is assumed
to have negative sectional curvature, and dimension d.

Let us come back to the diagonal matrix elements (¢,, A¢, ) appearing in (5), where
A is a pseudodifferential operator of order 0. By a general compactness argument, one
may always extract subsequences so that (¢, , Ap,, ) converge for all A. The limit
is of the form [ M o"(A)du, where p is a probability measure on S*M. A measure
obtained this way is obtained, according to sources, “microlocal defect measure”, “semi-
classical measure”, or “microlocal lift” associated with the sequence ¢, . The Quantum
Unique Ergodicity conjecture described above is equivalent to proving that p has to be
the Liouville measure, for every subsequence (¢, ). But without aiming that far, we
can try to characterize specific properties of the measure . A priori, we only know that
M has to be invariant under the geodesic flow: that is, gﬁu = p forallt € R. Thisis a
consequence of the eigenfunction property and of the classical/quantum correspondence
as A —> 00, as seen in Section 2.1.

Theorem 7. Anantharaman [2008] Assume M is a compact Riemannian manifold with
negative sectional curvature. Assume (¢n, , Ady, ) converges to |. S*M o (A)du for all
A. Then pu has positive entropy.

This is the Kolmogorov—Sinai entropy of dynamical systems. We do not give its
definition here, but state a few facts to help understand the implications of the theorem.
To each invariant probability measure v of a dynamical system (here the geodesic flow),
one can associate a non-negative number /i g s (v), having the following properties:

« if v is carried by a periodic trajectory, then hgs(v) = 0;

* vi> hgs(v)isaffine: hgs(avy + (1 —a)ve) = ahgs(v1) + (1 —a)hgs(v2),
for any invariant measures v1, ve, for o € [0, 1];

* (Pesin—Margulis—Ruelle inequality) if the dynamical system is sufficiently smooth,

(©) s < [ Zx, dv(p)

where the numbers )(j-(,o) are the positive Lyapunov exponents of a point p —
defined v-almost everywhere, by the Oseledets theorem — that give the rate of
exponential instability of the trajectory of p.

* in the case of the geodesic flow on a negatively curved manifold, there is equal-
ity in (6) if and only if v is the Liouville measure L (Ledrappier and Young
[1985a,b]);



DELOCALIZATION OF SCHRODINGER EIGENFUNCTIONS 351

« in the case of the geodesic flow on a negatively curved manifold, of constant
curvature —1 and dimension d (so that S*M has dimension 2d — 1), there are
d — 1 positive Lyapunov exponents, they do not depend on p and have the value
1. Thus, (6) can be written as

(7 hgs(v) =d —1,
with equality if and only if v is the Liouville measure L.
Let us give two more transparent corollaries to Theorem 7:

Corollary 1. Let T' C S*M be the union of all points lying on a periodic trajectory
on the geodesic flow (recall, if M has negative curvature, there are countably many
periodic geodesics). Let | be as in Theorem 7. Then u(T') < 1.

Otherwise, u would have zero entropy. In the physics literature, an eigenfunction that
is enhanced near an unstable periodic classical trajectory is said to have a scar (Heller
[1991]). In the mathematics literature, a sequence of eigenfunctions is said to be strongly
scarred if the corresponding semiclassical measure p is supported on some periodic
trajectory. Our theorem thus shows that this is not possible on a negatively curved
manifold (however, it does not rule out a partial scar, that is to say that i (T") > 0).

From the definition of entropy, one can also prove:

Corollary 2. The support of & has Hausdorff dimension > 1.

Note that the fact that the dimension is > 1 is trivial since u is invariant under the
geodesic flow.

With Nonnenmacher, we later obtained a more quantitative version if the curvature
is constant.

Theorem 8 (Anantharaman and Nonnenmacher [2007b]). Assume M is a compact Rie-
mannian manifold of dimension d, with constant sectional curvature —1. Then W has
d—

entropy greater than R

By the aforementioned properties of entropy, the QUE conjecture in constant nega-
tive curvature is equivalent to proving that u has entropy d — 1, so we fall short of a
factor 1/2. There are toy models of quantum chaos where it is known that the lower
bound % is sharp, i.e. there are sequences of eigenfunctions that are not equistributed
and have exactly half the maximal entropy: see the quantum cat map and the quan-
tum baker’s map (Faure, Nonnenmacher, and De Biévre [2003] and Anantharaman and
Nonnenmacher [2007a]).

Corollary 3. The support of i has Hausdorff dimension > d.

As a comparison, the dimension of the full phase space T* M is 2d, and of the energy
layer S*M is 2d — 1.

Corollary 4. Let I' C S*M be the union of all points lying on a closed trajectory on
the geodesic flow. Let pu be as in Theorem 7, with M of constant negative curvature.
Then n(I') < 1/2.
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Indeed, let us decompost  as u = ap1 + (1 — o) e, where 4 is carried by T, so
that igs (1) = 0. So hgs () = (1 — a)hgs(uz2). The result says that this has to be
> %; but the entropy of 1o is smaller than the maximal entropy d — 1, so necessarily
o < 1/2. For the toy model of the quantum cat map, Corollary 4 had been proven by
Faure and Nonnenmacher [2004] without using entropy.

In variable curvature, the generalization of Theorem 8 should be that the entropy of
M is greater than % /. S*M Z?;} )(;-rd W, where )(7 are the Lyapunov exponents. How-
ever our method in Anantharaman and Nonnenmacher [2007b] gives a slightly less
good bound; the predicted lower bound in variable curvature has only been obtained
for d = 2, by Riviere [2010]. Again, by Ledrappier and Young [1985a], proving QUE
is equivalent to getting rid of the factor 1/2 in Riviére’s result.

Theorem 9 (Dyatlov and Jin [2017]). w has full support, that is, u(2) > 0 for any
non-empty open set X C S*M.

Note that Theorems 7 and 9 are somehow independent. There are measures with
positive entropy and not full support (for instance, measures supported by geodesics
avoiding an open set {2 may have a large entropy). And there are measures having
full support but zero entropy (for instance, a measure putting positive weight on each
periodic geodesic). Both results leave open the question whether  can be a convex
combination of the Liouville measure and a measure carried on a closed geodesic. Such
limit measures appeared in the aforementioned toy models of quantum chaos, see the
work by Faure, Nonnenmacher, and De Bi¢vre [2003].

2.5 Some questions on non-compact manifolds. We have chosen to limit the scope
of this text to compact manifolds (and thus, “delocalization” is understood in the limit
of small wavelength, but does not deal with what happens at infinity). There are of
course many interesting questions related to delocalization phenomena on non-compact
manifolds, that we briefly review in this paragraph.

In keeping with the rest of this paper, let us consider the Laplacian on a non-compact
riemannian manifold M (most questions also make sense for general Schrodinger oper-
ators).

2.5.1 Absolutely continuous spectrum . In the context of infinite systems, the word
“delocalization” is often used to mean that the Laplacian has no pure-point spectrum (this
means that eigenfunctions are not square-integrable), or even stronger, purely absolutely
continuous spectrum, in some region of the spectrum.

As we will see in Section 4.3, one can sometimes prove that this implies a form of
“quantum ergodicity” for eigenfunctions on large compact manifolds approximating M
(see Theorem 22 for a precise statement). For the moment, this theorem is restricted to
the case where M is the hyperbolic disc, where the spectrum of the Laplacian is explicit
and can be seen (by direct computation) to be purely absolutely continuous. In general, it
turns out to be very difficult to find examples of M having purely absolutely continuous
in some interval of the L2-spectrum, outside of the world of locally symmetric spaces.
For instance, starting from X a compact riemannian manifold with variable negative
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sectional curvature, and taking M = X to be its universal cover, it seems that nothing
is known about the nature of the spectrum of the Laplacian on M, although one would
be naturally inclined to guess that is has absolutely continuous spectrum.

2.5.2 Large frequency delocalization on non-compact manifolds. If ¢, is a solu-
tion of —A¢y = A¢, on M (with A € R) one could ask the question of the behaviour
of the measures |¢; (x)|?d Vol(x), in the limit A —> 400, even if M is non-compact.
More precisely, it seems reasonable to restrict these measures to a compact set before
studying this limit.

When M is a finite volume hyperbolic surface — so that the ends of M are hyperbolic
cusps — the question was studied by Zelditch [1991], for ¢, generalized eigenfunctions
corresponding to the absolutely continuous spectrum: the so-called Eisenstein series. A
“quantum ergodicity” theorem was proven. It was strengthened to a “quantum unique
ergodicity” result by Jakobson [1994], when M is the modular surface. When M has
variable curvature in a compact subset, but still has hyperbolic cusps, quantum ergodic-
ity was proven more recently in Bonthonneau and Zelditch [2016]. Note that for infinite
volume, convex-cocompact manifolds, quantum (unique) ergodicity for the Eisenstein
series has been studied in Dyatlov and Guillarmou [2014], Guillarmou and Naud [2014],
and Ingremeau [2017] but the phenomena are quite different, as it is not the Liouville
measure that appears at the semiclassical limit, but a family of measures indexed by the
boundary at infinity.

Back to the case of finite volume hyperbolic surface, an example of special interest
in number theory is the modular surface and its congruence covers. In this case, M has
an infinite sequence of discrete eigenvalues embedded in the continuous spectrum (see
the survey papers by Sarnak [1995, 2003] for more details and references). “Arithmetic
quantum ergodicity” is the study of the joint L2-eigenfunctions of the Laplacian and of
the so-called “Hecke operators”. In this context, Arithmetic Quantum Unique ergodicity,
that is, the convergence of the full sequence of probability measures |¢; (x)|?d Vol(x)
to a multiple of the uniform measure, was proven by Lindenstrauss [2006]. Since the
modular surface is not compact, there can be escape of mass to infinity, and thus it is
not clear that the limit of the measures |¢; (x)|2d Vol(x) is still a probability measure.
Escape of mass was ruled out by Soundararajan [2010b].

Having discrete spectrum embedded in the continuous spectrum is non-generic. For
general hyperbolic surfaces, the discrete spectrum is turned into the “resonance spec-
trum”; resonances are poles of the analytic continuation on the resolvent restricted to
C°(M) (Selberg [1990] and Borthwick [2007]). Generically, resonances are not real.
Naturally attached to resonances, there are non-L2-eigenstates called “resonant states”.
The question of quantum ergodicity for resonant states is to this date fully open, and
seems extremely difficult.
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3 Large scale delocalization

In the mathematical physics literature, it is believed that the spectrum of the Laplacian,
as well as its eigenfunctions, should exhibit universal features that depend only on qual-
itative geometric properties of the space. Localization/delocalization of eigenfunctions
is believed to bear close relation with the nature of spectral statistics: localization is sup-
posedly associated with Poissonian spectral statistics, whereas delocalization should be
associated with Random Matrix statistics (GOE/GUE). In the field of quantum chaos,
the former notion is often associated with integrable dynamics and the latter with chaotic
dynamics (Berry and Tabor [1977] and Bohigas, Giannoni, and Schmit [1984]). How-
ever, specific examples show that the relation is not so straightforward: see Luo and
Sarnak [1994], Sarnak [1995, 1997], and Marklof [2003]. Understanding how far one
can push these ideas is one amongst many reasons for studying models of large graphs
as toy models, as was done for instance in Keating [2008], Kottos and Smilansky [1997,
1999], and Smilansky [2007, 2010].

It seems that “quantum graphs” have been studied before discrete graphs in the con-
text of quantum chaos. By “quantum graphs”, we mean 1-dimensional CW-complexes
with A = j—ng on the edges and suitable matching conditions on the vertices; the most
natural ones being the “Kirchhoff” matching condition where it is asked that the func-
tions are continuous at the vertices, and that the sum of their derivatives at a vertex
vanish. On a fixed quantum graph, it is known that the analogue of Shnirelman’s the-
orem never holds in the large frequency limit A — 400, thanks to the work of Colin
de Verdiere [2013]. See also Berkolaiko, Keating, and Winn [2004], Keating, Marklof,
and Winn [2003], Gnutzmann, Keating, and Piotet [2010], and Berkolaiko, Keating, and
Smilansky [2007] for other results pertaining to eigenvalue or eigenfunction statistics
on compact quantum graphs.

In what follows, instead of the high-frequency limit, we consider the limit where the
size of the graph goes to infinity (“large scale limit””). We focus on discrete graphs and
the eigenfunctions of their adjacency operators — although similar questions for large
quantum graphs should also be explored in the future. We mostly focus on discrete
regular graphs, but in Section 3.4 also report on recent progress concerning non-regular
graphs.

3.1 Overview of the problem. Consider a very large graph G = (V, E). Are the
eigenfunctions of its adjacency matrix localized, or delocalized ? These words are used
in a variety of contexts, with several different meanings.

For discrete Schrodinger operators on infinite graphs (e.g. for the celebrated Ander-
son model describing the metal-insulator transition), localization can be understood in
a spectral, spatial or dynamical sense. Given an interval / C R, one can consider

* spectral localization : pure point spectrum in 7,
* exponential localization : the corresponding eigenfunctions decay exponentially,

* dynamical localization : an initial state with energy in / which is localized in a
bounded domain essentially stays in this domain as time goes on.
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On the opposite, delocalization may be understood at different levels :
* spectral delocalization : purely absolutely continuous spectrum in /7,

* ballistic transport : wave packets with energies in / spread on the lattice at a
specific (ideally, linear) rate as time goes on.

Here we want to discuss notions of spatial delocalization. Since the wavefunctions
corresponding to absolutely continuous spectrum are not square-summable, a natural
interpretation of spatial delocalization is to consider a sequence of growing “boxes”
or finite graphs (G ) approximating the infinite system in some sense, and ask if the
eigenfunctions on (G y) become delocalized as N — oo. Can they concentrate on
small regions, or, on the opposite, are they uniformly distributed over (Gy) ? Large,
finite graphs are also a subject of interest on their own. Actually, an infinite system is
often an idealized version of a large finite one.

Recently, the question of delocalization of eigenfunctions of large matrices or large
graphs has been a subject of intense activity. Let us mention several ways of testing
delocalization that have been used. Let My be a large symmetric matrix of size N x
N, and let (¢ j)j-vzl be an orthonormal basis of eigenfunctions. The eigenfunction ¢;

defines a probability measure ny:l |¢; (x)]?8. The goal is to compare this probability
measure with the uniform measure, which puts mass 1/N on each point.

* £°° norms: Can we have a pointwise upper bound on |¢; (x)|, in other words, is
|¢;llco small, and how small compared with 1/ VN ?

* £P norms: Can we compare ||¢; ||, with N*/7=1/2 2 In De Luca, Altshuler,
Kravtsov, and Scardicchio [2014], a state ¢; is called non-ergodic (and multi-
fractal) if | ¢ || , behaves like N/ (P) with f(p) # 1/p —1/2.

* Scarring: Can we have full concentration (3" ¢, [¢j(x)|*> > 1 — €) or partial

concentration (3" ,.c ¢, (x)|> > €) with A a set of “small” cardinality ? We

borrow the term “scarring” from the term coined in the theory of quantum chaos

by Heller [1991].

* Quantum ergodicity: Given a functiona : {1,..., N} — C, can we compare
>, a(x)|g;(x)* with > a(x) ? This criterion is borrowed again from quan-
tum chaos, it is inspired from the Shnirelman theorem 5. It was applied to dis-
crete regular graphs in Anantharaman and Le Masson [2015] and Anantharaman
[2017]. Quantum ergodicity means that the two averages are close for most j. If
they are close for all j, one speaks of quantum unique ergodicity.

As was demonstrated in a recent series of papers by Yau, Erdds, Schlein, Knowles,
Bourgade, Bauerschmidt, Yin, Huang... adding some randomness may allow to settle
the problem completely, proving almost sure optimal £*°-bounds and quantum unique
ergodicity for various models of random matrices and random graphs, such as Wigner
matrices, sparse Erd6s—Rényi graphs, random regular graphs of slowly increasing or
bounded degrees: see Erdds, Schlein, and Yau [2009a,b], Bourgade and Yau [2013],
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Erdds, Knowles, Yau, and Yin [2013], Bauerschmidt, Knowles, and Yau [2017], Bauer-
schmidt, Huang, Knowles, and Yau [2015], and Bauerschmidt, Huang, and Yau [2016]:
see Section 4.1. The completely different point of view adopted in Brooks and Linden-
strauss [2013] and Anantharaman and Le Masson [2015] is to consider deterministic
graphs and to prove delocalization as resulting directly from the geometry of the graphs.

3.2 Entropy. The paper by Brooks and Lindenstrauss [2013] has pioneered the study
of the spatial distribution of eigenfunctions of the Laplacian on large deterministic (¢ +
1)-regular graphs (that is, such that each vertex has the same number of neighbours,
denoted by g + 1).

Consider a sequence of (¢ + 1)-regular connected graphs (Gny)nen = (Va, En).
Consider the adjacency operator defined on functions on Vy by

® @y f(x) =) f(y)
x~y
where x ~ y means x and y are related by an edge. The discrete Laplacian is
©) Anf(x) =Y (f(0) = F(x).
x~y
For regular graphs these two operators are essentially the same:
(10) Ry —(g+1)I = An.

Theorem 10 (Brooks and Lindenstrauss [ibid.]). Let (Gy) be a sequence of (¢ + 1)-
regular graphs (with q fixed), Gy = (Vy, En) with Vy = {1,..., N}. Assume that'
there exists ¢ > 0,8 > 0 such that, for any k < cIn N, for any pair of vertices x,y €
VN,

(11) [{paths of length k in G from x to y}| Eqk(%).

Fix € > 0. Then, if ¢ is an eigenfunction of the discrete Laplacian on Gy and if
A C Vy is a set such that

dlp)P=e Y g,

X€EA x€Vy
then |A| > N% — where o > 0 is given as an explicit function of €, § and c.

This theorem is reminiscent of Theorems 7 and 8 about the entropy of eigenfunctions
in the large frequency limit. It is stronger than saying that the entropy

Hy () = ——— 3" o (o) In [p(x)

log N

is bounded from below by a positive constant.

A careful reading also reveals that the proof shows some logarithmic upper bound
on the L>-norm of eigenfunctions: ||¢|leo = O((log N)~/4). Very recently, Brooks
and Le Masson have announced an improvement of the power 1/4 under a stronger
assumption than (11): see Brooks and Le Masson [2017].

IThis assumption holds in particular if the injectivity radius is > ¢ In N. The interest of the weaker
assumption is that it holds for typical random regular graphs, see McKay, Wormald, and Wysocka [2004].
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3.3 QE on regular graphs. In Anantharaman and Le Masson [2015], a general state-
ment of “quantum ergodicity” was obtained for the first time in the large scale limit,
namely for the discrete Laplacian on large regular graphs. We consider a sequence
Gy = (Vn, En) of (q + 1)-regular graphs, and now assume the following:

(EXP) The sequence of graphs is a family of expanders. More precisely, there exists
B > 0 such that the spectrum of (¢ + 1)@y on £2(Vy) is contained in {1} U [-1 +
B,1—p]forall N.

Note that 1 is always an eigenvalue, corresponding to constant functions. Our as-
sumption implies in particular that each G is connected and non-bipartite. It is well-
known that a uniform spectral gap for @ y is equivalent to a Cheeger constant bounded
away from 0, which means that the graph is very connected (see for instance Diaconis
and Stroock [1991], Section 3).

(BST) For all R,
[{x € VN, p(x) < R}
% 0
N N—00

where p(x) is the “injectivity radius” of x, that is to say, the largest integer r such that
the ball B(x,r) is a tree.

(BST) can be rephrased by saying that our sequence of graphs converges, in the
sense of Benjamini and Schramm [2001], to the (¢ + 1)-regular tree. In particular,
this condition is satisfied if the girth goes to infinity. In what follows we denote by
X the (¢ + 1)-regular tree. Condition (BST) implies the convergence of the spectral
measure, according to the Kesten—-McKay law (Kesten [1959] and McKay [1981]). Call

()LgN), e /\%V)) the eigenvalues of @ ; on Gy ; then, for any interval I C R,

Liym

~—WjA el A)dA

vl ent = [ mo
where m(1) is a probability density corresponding to the spectral measure of a Dirac
mass §, for the operator @ on £2(X). This measure can be characterized by its moments,

(12) [ #mGydn = 6. @58,

where Q% is the adjacency operator on X; this is also the number of paths X, starting at
o and returning to o after k steps. We won’t need the explicit expression of m here, but
let us mention that it is smooth and positive on (—2,/7, 2,/¢) and vanishes elsewhere.
This implies that most of the eigenvalues )L;N) are in (—2.,/q.2,/q), an interval strictly
smaller than [—(q + 1), ¢ + 1].

The main result of Anantharaman and Le Masson [2015] and Anantharaman [2017]
is stated below as Theorem 11.

Theorem 11 (Anantharaman and Le Masson [2015]). Let (Gny) = (Vy,En) be a
sequence of (q + 1)-regular graphs with |Vy| = N. Assume that (G ) satisfies (BST)
and (EXP).
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Let (¢£N , ¢(N)) be an orthonormal basis of eigenfunctions of ® y in £2(Vy).
Letay : VN — C be a sequence of functions such that sup y supyey,, lan (x)| <
1. Define {ay) = NerVN an(x).
Then
L[ (N) ) ?
N Z ‘<¢_,~ AN Ne2(vy) — (aN)) — 0.
j=1

N —+o00

Equivalently, for any § > 0,

(N)

(13) %HjeuNwijmwmmwm—wNw>%(—e 0.

N—+o00

Note that (qb(N) a N(;S_S.N) )e2(vy) is the scalar product between qb](.N) anda N¢](.N) , its

explicit expression is Y ¢y, an(x )|¢(N)( )|2. The interpretation of Theorem 11 is
that we are trying to measure the d1stance between the two probability measures on Vy,

1
Z |¢1(.N)(x)|25x and v Z Ox (uniform measure)

xeVn xeVn

in a rather weak sense (just by testing the function ap against both). What (13) tells us
is that for large N and for most indices j, this distance is small.

3.4 Non-regular graphs: from spectral to spatial delocalization. The results de-
scribed up to now only deal with regular graphs. The proofs always use, in some way
or the other, the explicit Fourier analysis infinite regular trees. The aim of the paper
by Anantharaman and Sabri [2017a] was to extend the quantum ergodicity theorem to
eigenfunctions of discrete Schrodinger operators on quite general large graphs. A par-
ticularly interesting point of the result below is that it gives a direct relation between
spectral delocalization of infinite systems and spatial delocalization of large finite sys-
tem. The result may be summarized as follows (with proper additional assumptions to
be described later):

“If a large finite system is close (in the Benjamini—Schramm topology) to an infinite
system having purely absolutely continuous spectrum in an interval I, then the eigen-
functions (with eigenvalues lying in 1) of the finite system satisfy quantum ergodicity.”

We consider a sequence of connected graphs without self-loops and multiple edges
(GN)Nen. We assume each vertex has at least 3 and at most d neighbours.

We denote by Vy and Ey the vertices and edges of Gy, respectively. We assume
[VN| = N and work in the limit N —> oo. Define the adjacency operator Qy :
CYN — CVN by

@nS)v) =) f(w)
w~v
where v ~ w means v and w are nearest neighbours. The central object of our study are
the eigenfunctions of @ y, and their behaviour (localized/delocalized) as N —> +o0.
We shall assume the following conditions on our sequence of graphs:
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(EXP) The sequence (G ) forms an expander family.
More precisely, for a non-regular graph, let us define the Laplacian (generator of the
simple random walk) Py : CYN — C~ by

(14) (PN f)(x

where dy (x) stands for the number of neighbours of x. (EXP) means that the Lapla-
cian Py has a uniform spectral gap, that is, the eigenvalue 1 of Py is simple, and the
spectrum of Py is contained in [—1 + 8,1 — B] U {1}, where 8 > 0 is independent of
N.

Note that 1 is always an eigenvalue, corresponding to constant functions. Our as-
sumption implies in particular that each Gy is connected and non-bipartite. It is well-
known that a uniform spectral gap for Py is equivalent to a Cheeger constant bounded
away from 0 (see for instance Diaconis and Stroock [1991], Section 3).

Our second assumption is that (G y ) has few short loops:

(BST) For all r > 0,

lim {x € Vvt poy(x) <1}
N —o0 N

=0,

where pg , (x) is the injectivity radius at x, i.e. the largest p such that the ball Bg,, (x, p)
is a tree.

The general theory of Benjamini—Schramm convergence (or local weak convergence
Benjamini and Schramm [2001]), allows us to assign a limit object to the sequence
(Gn), which is a probability distribution on the set of rooted graphs (modulo isomor-
phism). More precisely, up to passing to a subsequence, assumption (BST) above is
equivalent to the following assumption.

(BSCT) (Gx) converges in the local weak sense to a random of rooted tree [T, o].

Let us denote P the law of {[T", 0]}; thus PP is a probability measure on the space of
rooted trees.

Call ()L(N)) the eigenvalues of @ 5 on £2(Vy ). Assumption (BSCT) implies the
convergence of the empirical law of eigenvalues: for any continuous y : R — R, we
have

N
(15) S a0 E (8. x(@5)8)) = / (t)dm(t),

where Q7 is the adjacency matrix of T, it is a self-adjoint operator on £2(T"). Here E
is the expectation with respect to P. The measure m is called the integrated density of
states in the theory of random Schrddinger operators.

The forthcoming assumption is rather technical to state; it says - in a strengthened
manner - that there is an interval / in which the spectrum of Q3 is absolutely continuous
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(for P-almost every [T, 0]). Let [T, 0] be a rooted tree (chosen randomly according to
the law IP). Given x, y € T, and y € C \ R, we introduce the Green function

97 (x,y) = (8x. (@3 —¥) " 8y)ez(x) -

Given v,w € T with v ~ w, we denote by T (/%) the tree obtained by removing
from the tree T the branch emanating from v that passes through w. We denote by
@3 wiw) the corresponding adjacency matrix, and by gvlw) (+,+;y) the corresponding
Green function. We then put ¢, (v) := =) (v, v; ).

(Green) There is a non-empty open set /, such that for all s > 0 we have

sup E ( Z |Im§('}+”’°(y)|_s) <o0.

}»61,7705(0,1) y:y~o

To understand the implications of (Green), define the (rooted) spectral measure of
[T, 0] by

(16) to(J) = (86, 17 (R5)B5) for Borel J C R.

It can be shown that Assumption (Green) implies that sup; ¢; , o E(|S” (0, 0)|?) < oc.
As shown by Klein [1998], this implies that for P-a.e. [T, 0], the spectral measure (i,
is absolutely continuous in /, with density % Im $**%(0, 0). Hence, (Green) implies
that P-a.e. operator Qg has purely absolutely continuous spectrum in /. This is a
natural assumption since we wish to interpret Theorem 12 as a delocalization property
of eigenfunctions. Negative moments such as (Green), with s < 0, were used in the
work by Aizenman and Warzel [2012] to show ballistic transport for the Anderson model
on the regular tree, that is, a form of delocalization for the time-dependent Schrodinger
equation.

Let us state the main abstract result.

Let I be the open set of Assumption (Green), and let us fix an interval /; (or finite
union of intervals) such that /; C 1. We write Gy as a quotient INY \Z}\N/ where 6\1\7 isa
tree (the universal cover of Gy). For X, y vertlces of GN, and y € C\ R, we introduce
the Green function of the adjacency matrix Q@ N of Gy

(17) (% F) = (65, (@N —v)7'85) o )

Theorem 12 (Anantharaman and Sabri [2016]). Assume that (Gn, W ) satisfies (BSCT),
(EXP) and (Green).

Call (k( )) the eigenvalues of @y on L*(Vy), and let ((;S(N )N be a corre-
sponding orthonormal eigenbasis.

Foreach N, leta = ay be a function on Vy with supy sup,ey,, lan(x)] < 1.

Then

Lo 1 (V) (2 N _
lim lim D0 al)le (@)1= ) AR, (X)) =0

/\,(jN)GIl xeVn xeVy
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for some family of probability measures uf,v on Vy, indexed by a parameter y € C \ R,
defined as follows:

) (x) =

Here, x € a}isaliftofx e Vy.

Equivalently, for any € > 0, we have

(18)

L)@ N) (2 N

—|3Ay el Z a(x)|¢; ' (x)|° — Z a(x)u (x)| > € — 0.

N { Xy XV AL 4ing N—>+00,1040
Theorem 12 is not relevant unless we can compare the probability measures /Lf,v

with the uniform measure. A good test is to choose ay = 1, , the characteristic

function of a set Ay C Vu of size &~ aN for some o € (0,1). In the special case
where (G ) is regular, the universal cover Gy does not depend on N (it is the (¢ + 1)-
regular tree); the Green function g;, (X,¥) coincides with the limiting Green function
G7 (%, 7) on the regular tree. Moreover, §” (%, ¥) = 67 (0, 0) forall ¥ € Gy. It follows
that Mf,v is the uniform probability measure on Vy (for every y). So (18) implies that
[RIFN N¢§.N) |I? ~ o for most ¢>](-N). This shows that most ¢>J(.N) are uniformly distributed,
in the sense that if we consider any Ay C Vi containing half the vertices, we find half
the mass of |¢](-N) 2.

For general models, we cannot assert that /Lf,v (An) = aif [Axy]| ~ aN. Still, we
prove that there exists ¢, > 0 such that for any Ay C Vy with |[Ay| > aN, we have

19 e
) noér(lo,l)l\lfrggoirellﬂﬂmo( N) > 2¢q

Combined with (18), this implies

Corollary 13. Forany o € (0, 1), there exists ¢, > 0 such that for any Ay C Vy with
|[An| = aN, we have

1 2
ﬁ#{AEN)GIZH]lAN@-N)H <ca} — 0.

N—+00

Hence, while in the regular case we had |15, ¢>§-N) | ~ a for most ¢§N), in the

general case, we can still assert that |1, ¢1(-N) 2 > ¢¢ > 0 for most ¢§-N). This
corollary indicates that our theorem can truly be interpreted as a delocalization theorem.
We also prove that that for any continuous F : R — R, we have uniformlyin A € I,

1 N Im GA+ino (0,0)
(20) N Z F (N/”/Hinu(x)) N:er (F (E (Im GA+imo (0’0)))) .

xeVn

This says that the empirical distribution of (N /Lflv ino (x)) (when x is chosen uniformly

ImS” (0,0)

atrandom in V) converges to the law of ( E(mo (0,0) ) This is a second way of saying
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that 2’ in, (x) is of order 1/N: when multiplied by N, it has a non-trivial limiting
distribution.

Remark 14. The results proven in Anantharaman and Sabri [2017a] actually hold
for more general Schrédinger operators than adjacency matrices: one can consider
weighted Laplacians (with conductances on the edges) and add a potential; in other
words, on each Gy, we can consider a discrete Schrodinger operator ¥ . The limiting
object in assumption (BSCT) is now a random rooted tree [T , 0] endowed with a ran-
dom Schrédinger operator K. Assumption (Green) has to be modified, replacing the
adjacency matrix @ by the operator K. Similarly, in the statement of the theorem, the
Green functions g,{, to be considered are those of ¥ y lifted to the universal cover Z;\N/

Remark 15. In particular, our result applies to the case where the limiting system
([F,0],R) is T = X (the (¢ + 1)-regular tree) with an arbitrary origin o, and ¥ =
Ke = @ + €W where W is a random real-valued potential on X. More precisely the
values W(x) (x € X) are i.i.d. random variables of common law v. This is known as
the Anderson model on X. It was shown by Klein [1998] that the spectrum of ¥ is a.s.
purely absolutely continuous on I = (=2./q+6,2./q—§), provided € is small enough
(depending on §). This just assumes a second moment on v. Under stronger regularity
assumptions on v, one can show that Assumption (Green) holds on I (see Ananthara-
man and Sabri [n.d.], following Aizenman and Warzel [2012]). Examples of sequences
of expander regular graphs G y with discrete Schrédinger operators ¥y converging to
([%, 0], ®e) are given in Anantharaman and Sabri [2017b].

Remark 16. Examples of sequences of non-regular graphs satisfying our three assump-
tions were investigated in Anantharaman and Sabri [n.d.]. In the examples considered
there, the limiting trees T are trees of finite cone type, roughly speaking, those are
trees where the local geometry can only take a finite number of values. If Q is the ad-
Jacency matrix of such a tree, we showed in Anantharaman and Sabri [ibid.] that the
spectrum o of Q is a finite union of closed intervals, and that there are a finite num-
ber of points y1, ...,y in o such that Assumption (Green) holds on any I of the form
o\ (y1=8y1+8U...Uye—8,y¢+6]) (forany § > 0). We showed — extend-
ing Remark 15 — that on such trees, Assumption (Green) remains true after adding a
small random potential to Qy. Finally, we showed the existence of sequences (Gy)
converging to 5 and satisfying the (EXP) condition.

4 Perspectives and link with other work

4.1 Random regular graphs. Itisimportant to stress the fact that Theorem 11 holds
for deterministic sequences of graphs. For any sequence (Gy ) satisfying the assump-
tions of the theorem, the conclusion holds for any observable a. As already noted, the
result only says something about the delocalization of “most” eigenfunctions, where
the “good” eigenfunctions exhibiting delocalization may depend on the choice of the
observable a.
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In the past years, there has been tremendous interest in spectral statistics and de-
localization of eigenfunctions of random sequences of graphs and Schrédinger opera-
tors. Many papers consider random regular graphs, with degree going slowly to infinity
or fixed, sometimes adding a random i.i.d potential (Tran, Vu, and Wang [2013], Du-
mitriu and Pal [2012], Bauerschmidt, Knowles, and Yau [2017], Bauerschmidt, Huang,
Knowles, and Yau [2015], Geisinger [2015], Bauerschmidt, Huang, and Yau [2016],
and Geisinger [2015]). A (labelled) random regular graph on N vertices is produced as
follows: given the vertex set {1, ..., N}, consider all the ways to draw edges between
those vertices, that produce a (¢ + 1)-regular graph (without self-loops and multiple
edges); note that (g + 1)N has to be an even integer. Pick a graph at random for the
uniform probability measure on all possible configurations.

The very impressive papers Bauerschmidt, Knowles, and Yau [2017], Bauerschmidt,
Huang, Knowles, and Yau [2015], and Bauerschmidt, Huang, and Yau [2016] show
“quantum unique ergodicity” for the adjacency matrix of random regular graphs: given
an observableay : {1,...,N} — R, for most (¢ + 1)-regular graphs on the vertices
{1,..., N} wehave that Z _jan(x )|¢,(' (x)|? is close to {(ay ) for all indices j, with
an excellent control of the remainder term:

Theorem 17 (Bauerschmidt, Huang, and Yau [2016]). Let w be such that \/q > (@ +
1)22w+45.

(i) With probability > 1 — o(N~°*®) on the choice of the graph,
(lOg N)121

VN

for all eigenfunctions associated to eigenvalues such that |A; = 2.,/q| > (log N)™3/2,

(it) (Quantum Unique Ergodicity for random regular graphs) Given an observable
any :{1,...,N} — R, we have, with probability > 1 — 0(N_“’+8) on the choice of
the graph, for N large enough,

250
@1 Za o™ ()2 - <aN>‘s% Y lan (x)[2,

¢jlloo =

Jfor all eigenfunctions associated to eigenvalues Aj € (=2./q + €,2./q — €) (bulk
eigenvalues).
In particular, ifay = W, where Ay C {1,..., N}, we find

A 1 N250
T Jp ) () - AN Qe MR e

XEAN N N

(Note in passing that @ > 8 implies that g > 2128),

So the £°°-norm of bulk eigenfunctions is as small as can be, and QUE takes place
on sets of size |[Ay| > (log N)3°Y. By comparison, in Theorem 11, for graphs whose
girth goes to oo, our proof would never do better than

Ny 2 AN 1
D18y ()PP - < [An].
xeAy ! N v Nlog N
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So Theorem 17 is a considerable strengthening of (18), that only said something for
most indices j and for |A x| > N /2. This possibility to prove QUE is, of course, due to
the fact that ay is probabilistically independent of the choice of the graph; in Theorem
11 and (18), ay could depend on the graph. It might well be that a positive proportion
of graphs contradicts QUE, if we were allowed to choose observables a y depending on
the graph (this is a completely open question). Note also that if we are given a deter-
ministic sequence of regular graphs (for instance, say, the Ramanujan graphs defined
by Lubotzky, Phillips, and Sarnak [1988]), we do not know if Theorem 17 applies to it,
as it is an almost sure conclusion.

Remark 18. Note that we emphasized Theorem 17 from Bauerschmidt, Huang, and
Yau [2016] because our main concern here is the delocalization of eigenfunctions. The
main focus of Bauerschmidt, Huang, and Yau [ibid.] is however on the universality of
the local spectral statistics for random regular graphs. This would deserve a separate

paper.

The recent paper by Backhausz and Szegedy [2016] proves a very important result,
saying that for almost all random regular graphs Gx on N vertices, and all eigenvec-
tors qb;N)s, the value distribution of «/Nqu (x) as x runs over {1,..., N} is close to
some Gaussian (0, 012-) with 0 < o; < 1. More generally, for any R > 0, picking x
uniformly at randomin {1, ..., N'} and looking at the values of (v/N¢; (¥))y.d(y.x)<R
in the vicinity of x in Gy, the obtained random function is close in distribution to a gaus-
sian process on Bx (0, R). The covariance function has to be of the form oqu)/\j (d(x,y))
where @ ; is the spherical function of parameter A ; on the (¢ + 1)-regular tree X. Prov-
ing that o; = 1, or even just that 6; # 0, is a challenge; it would amount to proving
that eigenfunctions cannot be localized on o( N ) vertices. Theorem 10 does not say this,
it only says that eigenfunctions cannot be localized on N* vertices. Our Theorem 11,
or the random version Theorem 17 do not say this either, because we can only test one
observable a at a time. The indices j for which (18) holds, or the set of graphs satis-
fying (21), depend on ay . If we wanted to have a common set that does the job for all
observables (whose number is exponential in N'), we would need to have exponential
error bounds in (18) or (21).

4.2 From graph Laplacians to Hecke operators. What do these discrete results
teach us about the problem we were originally interested in, namely the eigenfunctions
of the Laplace—Beltrami operators on a riemannian manifold ? A natural question that
comes to mind is to try to adapt Theorem 11 to sequences of graphs that are finer and
finer triangulations of some given Riemann surface. With the appropriate choice of
conductances on the edges, the corresponding discrete Laplacians approximate the con-
tinuous Laplacian. Atthe present time, we are unable to say anything about such graphs,
because they have many loops and this is excluded by the hypotheses of Theorem 11.
But let us throw a look in a different direction, that of “Arithmetic quantum ergodic-

L T}

ity”.
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Consider S?, the 2-dimensional sphere with its usual, round metric. The eigenfunc-
tions of Ag: are spherical harmonics, i.e. restrictions to S> C R? of harmonic homo-
geneous polynomials in 3 variables. Harmonic homogeneous polynomials of degree ¢
give rise to eigenfunctions of Ag: for the eigenvalue —£(¢ + 1) (the dimension of the
eigenspace is 2¢ + 1).

The Laplacian Ag2 commutes with the infinitesimal rotation

5 1 0 i
12 i 2 aXQ 2 8x1

Note that Ji is a differential operator of order 1, and that its principal symbol is the
kinetic momentum around the vertical axis.

The basis (¢n) = (Y;")e=0,lm|<¢ of joint eigenfunctions of Ags and Jio cannot
satisfy the conclusions of Theorem 5. In fact, using the same notation as in Section 2.4,
let us consider a subsequence (¢, ) such that (¢, , Ad,, ) converges for all A; the limit
is of the form fS*M 0°(A)du, where p is a probability measure on S* M. The fact that
¢n, 1s an eigenfunction of Jy is converted into the property that  is carried by a level
set of the kinetic momentum (which is a submanifold of positive codimension in S*M);
thus u cannot be the Lebesgue measure.

Because the spectrum of the Laplacian has huge multiplicities, one can wonder whether
other bases of eigenfunctions on the sphere satisfy Theorem 5. Zelditch had the idea
of considering random eigenbases (Zelditch [1992]). He showed that “almost every”
choice of eigenbasis satisfies Theorem 5 (this was strengthened to Quantum Unique
Ergodicity by VanderKam [1997]).

Brooks, Le Masson, and Lindenstrauss [2015] showed quantum ergodicity for an ex-
plicit basis of eigenfunctions of Agz, that are also eigenfunctions of a kind of “discrete”

Laplacian on S?: for g1, ..., g a finite set of rotations in SO(3),
k
Tif (x) = D _(f (%) + f (87" x))
j=1

commutes with Agz.

Theorem 19 (Brooks, Le Masson, and Lindenstrauss [ibid.]). Assume that g1, ..., gk
generate a free subgroup of SO (3).

For each !, let (w](-e))ifll be an orthonormal family of eigenfunctions of —Ag2 of
eigenvalue L({ + 1), that are also eigenfunctions of Ty.

Then for any continuous function a on S?, we have

20+1
1 +

20+1 Z

j=1

2

— 0.
{—>00

/ a ()l (x)2d Vol (x) - / a(x)dVol(x)
M

M

Restricting T to the space of spherical harmonics of degree £ is shown to be roughly
the same as letting Ty act on a discretization of the sphere by an £~'-net. This is the
same as studying the Laplacian on a 2k-regular graph with N ~ {2 vertices, and if
g1, - -, 8k generate a free subgroup, this graph has few short loops. Thus, Theorem 19
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is similar to Theorem 11. The theorem on regular graphs can serve as a canvas to prove
Theorem 19.

Remark 20. T} is not a pseudodifferential operator, so the argument sketched above to
show that the basis (Y]")¢>0,1m|<¢ could not satisfy quantum ergodicity does not apply
here.

Remark 21. We note that for very special choices of rotations — rotations that corre-
spond to norm n elements in an order in a quaternion division algebra, the operators Ty,
are called Hecke operators. It has been conjectured by Bocherer, Sarnak, and Schulze-
Pillot [2003] that such joint eigenfunctions satisfy the much stronger quantum unique
ergodicity property. This conjecture is still open.

The idea of adapting a result on discrete graphs to the realm of Hecke operators on
arithmetic manifolds had already been used in Brooks and Lindenstrauss [2014]. In
2000, Bourgain and Lindenstrauss had considered the measures p obtained in Theo-
rem 7, when the eigenfunctions (¢, ) are joint eigenfunctions of A and of the infinite
family of Hecke operators on an arithmetic hyperbolic surface (e.g., the modular sur-
face). They were able to show that u has positive entropy on almost-every ergodic com-
ponent, and this fact was a key ingredient in the proof of Arithmetic Quantum Unique
Ergodicity by Lindenstrauss [2006]. In Brooks and Lindenstrauss [2014], the authorthe
authors used the fact that a Hecke operator, restricted to a net in the manifold M, acts
similarly to the discrete Laplacian on a regular graph with few short loops, to adapt
Theorem 10 and show that u has positive entropy on almost-every ergodic component,
using only one Hecke operator.

In the next paragraph, we mention another continuous adaptation of Theorem 11:
instead of thinking of discrete Laplacians living in a riemannian manifold and restricted
to a finer and finer net, we look at riemannian manifolds that get larger and larger:

4.3 Quantum ergodicity on Riemann surfaces of high genus. Theorems 11 and 12
were dubbed as “quantum ergodicity” theorems in reference to the historical Theorem
5. However, we already noted a difference in the meaning of these results. Theorem
5 holds in the high-frequency régime, whereas the graph-results deal with the large-
scale régime. So, a continuous analogue of Theorem 11 would be to consider compact
Riemannian manifolds whose volume goes to infinity. Such a result was obtained by
Le Masson and Sahlsten for Riemann surfaces of high genus:

Theorem 22 (Le Masson and Sahlsten [n.d.]). Let (Sn) be a sequence of hyperbolic
surfaces, whose genus (equivalently, volume) goes to oo.

(EXP) Assume the first eigenvalue A1 (N ) of —A on Sy is bounded away from 0 as
N — 0.

(BSH)Assume there are few short geodesics; in other words, (Sn) converges in the
Benjamini—Schramm sense to the hyperbolic disc: for any R > 0,

. Vol{x € Sy, p(x) < R}
lim =

0
N—>+o0 Vol(Swn)

where p(x) means the injectivity radius at x.
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Fix an interval I C (1/4, +00).
Let (¢i(N)) be an orthonormal basis of eigenfunctions of the Laplacian on Sy .

Leta =ap : Sy —> C be such that |a(x)| < 1 forall x € Sy. Then

2

[ atipmPax - @] =0

1
lim ———
N—s+o0 Vol(Sy) A‘%&I

where (a) = m [s, a(x)dx.

We note that (1/4, +00) is the L?-spectrum of the Laplacian on the hyperbolic disc.
This spectrum is purely absolutely continuous. So, like in the graph case, we are working
with the sequence of compact Sy converging to an infinite-volume simply connected
manifold, with purely absolutely continuous spectrum. It would be interesting to find
more examples of such manifolds (and to extend Theorem 22 to that more general set-
ting), but we have already mentioned in Section 2.5.1 the difficulty of proving absolutely
continuous spectrum.

A tremendously interesting question would to put this result in the framework of
random Riemann surfaces:

¢ does Quantum Unique Ergodicity hold for large random Riemann surfaces, in the
spirit of Theorem 17 ?

« for a typical random Riemann surface, is the value distribution of the eigenfunc-
tions (d)i(N)) asymptotically gaussian, similarly to the case of random regular
graphs recently treated by citeBaSz16 ? This would come very close to justi-
fying the Random Wave Ansatz of Berry [1977] — the latter was formulated in
the high-frequency régime, but a version in the large-scale limit would also be of
high interest.

The most natural notion of random Riemann surface of genus g is obtained by putting
the Weil-Petersson volume measure on their moduli spaces. The volume of the moduli
space of Riemann surface of genus g was computed by Mirzakhani (see Mirzakhani
[2010, 2013] and references therein), and she could give its asymptotic behaviour as
g —> +o00o. She showed that a random Riemann surface has a uniform spectral gap
in the spectrum of the Laplacian, as g —> +o00; this is similar to what is known for
random regular graphs. She also obtained asymptotic information about the law of the
length of the shortest closed geodesic and the shortest separating geodesic. However,
this model of random Riemann surfaces does not seem flexible enough to allow for a
direct transposition of the wonderful result of Backhausz and Szegedy [2016]. This is
a very intriguing topic to explore.
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