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HIGH DIMENSIONAL EXPANDERS

Aඅൾඑൺඇൽൾඋ Lඎൻඈඍඓ඄ඒ

Abstract
Expander graphs have been, during the last five decades, the subject of a most

fruitful interaction between pure mathematics and computer science, with influence
and applications going both ways. In the last decade, a theory of “high dimensional
expanders” has begun to emerge. The goal of the current paper is to describe some
paths of this new area of study.

Introduction

Expander graphs are graphs which are, at the same time, sparse and highly connected.
These two seemingly contradicting properties are what makes this theory non trivial
and useful. The existence of such graphs is not a completely trivial issue, but by now
there are many methods to show this: random methods, Kazhdan property (T ) from
representation theory of semisimple Lie groups, Ramanujan conjecture (as proved by
Deligne and Drinfeld) from the theory of automorphic forms, the elementary Zig-Zag
method and “interlacing polynomials”.

The definition of expander graphs can be expressed in several different equivalent
ways (combinatorial, spectral gap etc. - see Lubotzky [1994], Kamber [2016b]). When
one comes to develop a high dimensional theory; i.e. a theory of finite simplicial com-
plexes of dimension d � 2, which resembles that of expander graphs in dimension
d = 1, the generalizations of the different properties are (usually) not equivalent. One is
led to notions like: coboundary expanders, cosystolic expanders, topological expanders,
geometric expanders, spectral expanders etc. each of which has its importance and ap-
plications.

In section 1, we recall very briefly several of the equivalent definitions of expander
graphs (ignoring completely the wealth of their applications). These will serve as point-
ers to the various high dimensional generalizations.

In section 2, we will start with the spectral definition. For this one needs “discrete
Hodge theory” as developed by Eckmann [1945]. In this sense the classical work of
Garland [1973], proving Serre’s conjecture on the vanishing of the real cohomology
groups of arithmetic lattices of p-adic Lie groups, can be considered as the earliest
work on high dimensional expanders. His “local to global” method which treats the
finite quotients of the Bruhat–Tits building has been rediscovered in recent years, with
many applications, some of them will be described in section 2.
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In section 3, we turn our attention to Gromov’s topological and geometric expanders
(a.k.a. the topological and geometric overlapping properties). These quite intuitive di-
rections were shown to be related to two much more abstract definitions of coboundary
and cosystolic (high dimensional) expanders. The last ones are defined using the lan-
guage of F2-cohomology. Here also a “local to global” method enables to produce topo-
logical expanders from finite quotients of Bruhat–Tits buildings of p-adic Lie groups.

Section 4 will deal with random simplicial complexes, while in section 5 we will
briefly mention several applications and connections with computer science.

1 A few words about expander graphs

Let X = (V; E) be a finite connected graph with sets of vertices V and edges E. The
Cheeger constant of X , denoted h(X), is:

h(X) = inf
A;B�V

jE(A; B)j

min(jAj; jBj)

where the infimum runs over all the possibilities of disjoint partitions V = A [ B and
E(A; B) is the set of edges connecting vertices in A to vertices in B .

The graph X is """-expander if h(X) � ".
Let L2(V ) be the space of real functions on V with the inner product hf; gi =P

v2V

deg(v)f (v)g(v) and L2
0(V ) the subspace of those which are orthogonal to the

constant functions. Similarly, L2(E) is the space of functions on the edges with the
standard inner product.

We fix an arbitrary orientation on the edges, and for e 2 E we denote its end points
by e� and e+. Let d : L2(V ) ! L2(E) be the map (df )(e) = f (e+) � f (e�) for
f 2 L2(V ) and ∆ = d �d : L2(V ) ! L2(V ) when d � is the adjoint of d . The
operator ∆ is called the Laplacian of the graph. One can show (cf. Lubotzky [1994,
Chap. 4]), that it is independent of the chosen orientation. One can check that

∆ = I � M

when M is the Markov operator on L2(V ), i.e.,

(Mf )(x) =
1

deg(x)
X

fyj(x;y)2Eg

f (y):

The smallest eigenvalue of∆ is 0 and it comes with multiplicity one if (and only if)
X is connected, which we will always assume. The eigenfunctions with respect to 0
are the constant functions and as ∆ is self adjoint, L2

0(V ) is invariant under ∆ and the
spectral gap

�1(X) = inf
�

h∆f; f i

hf; f i

ˇ̌̌
f 2 L2

0(V )

�
is the smallest eigenvalue of∆ acting on L2

0(V ).
The following result is a discrete analogue of the classical Cheeger inequality (and

its converse by Buser). This discrete version was proved by Tanner, Alon and Milman
(the reader is referred again to Lubotzky [ibid., Chap. 4] for a detailed history).
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Theorem 1.1. If X is a finite connected k-regular graph, then:

h2(X)

2k2
� �1(X) �

2h(X)

k

We are usually interested in infinite families of k-regular graphs (“sparse”). Such a
family forms a family of expanders (i.e., h(X) � " for the same " > 0, for every X )
if and only if �1(X) � "0 > 0 for the same "0 for every X . I.e., Theorem 1.1 says that
expanders can be defined, equivalently, either by a combinatorial definition or using the
spectral gap definition. Expressing this using the adjacency operator A rather than the
Laplacian ∆: being expanders means that the second largest eigenvalue �(X) of A is
bounded away from k, which is the largest one.

Strictly speaking the notion of expanders requires spectral gap only in one side of
the spectrum of A, but in many applications (e.g. if one wants to estimate the rate of
convergence of the random walk on X to the uniform distribution) one needs bounds
on both sides. Recall that �k is also an eigenvalue of A iff X is bi-partite. We can
now define: A k-regular connected graph is Ramanujan if all eigenvalues � of A are
either � = ˙k or j�j � 2

p
k � 1. By the well-known Alon–Boppana theorem, the

bound 2
p

k � 1 is the best one can hope for for an infinite family of k-regular graphs.
Let us recall that for the k-regular infinite tree T = Tk , the classical result of Kesten
asserts that the spectrum of the adjacency operator on L2(Tk) is exactly the interval
[�2

p
k � 1; 2

p
k � 1]. In a wayKesten’s result lies beyond the Alon–Boppana theorem

and there are many generalizations of this philosophy (cf. Grigorchuk and Żuk [1999]).
Ramanujan graphs were presented by Lubotzky, Phillips, and Sarnak [1988], Mar-

gulis [1988], Morgenstern and recently by Marcus, Spielman, and Srivastava [2015].
There are several other ways to define expanders. Let us mention here one which

has been observed only quite recently and has a natural extension to high dimensional
simplicial complexes.

Let X be a finite connected k-regular graph, with adjacency matrix A, denote k =

q + 1 and

�(X) = maxfj�j

ˇ̌̌
� e.v. of A; � ¤ ˙kg:

So X is Ramanujan iff �(X) � 2
p

q. If X is bipartite, write V = V0 [ V1 where V0

and V1 are the two sides, and if not V = V0 = V1. Let

L2
00(X) = ff 2 L2(V )

ˇ̌̌ X
v2Vi

f (v) = 0; for i = 0; 1g:

So, �(X) is the largest (in absolute value) eigenvalue of A when acting on L2
00(X). For

� 2 [2
p

q; q + 1] write � = q1/p + q(p�1)/p for a unique p 2 [2; 1], so � = 2
p

q

when p = 2.
Now, let � : T = Tk ! X be a covering map. For a fixed t0 2 T , let Sr = ft 2

T
ˇ̌̌
distance(t; t0) = rg and for f 2 L2

00(X) and t 2 T , let f̃ (t) = 1
jSr j

P
s2Sr

f (�(s))

if r = dist(t; t0), i.e. f̃ is the averaging of the lift of f around t0.
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Theorem 1.2 (Kamber [2016b]). �(X) � � if and only if f̃ 2 Lp+"(T ) for all f 2

L2
00(X); t0 2 T , and " > 0. As a corollary X is Ramanujan iff

f̃ 2 L2+"(T ); 8t0; 8f; 8":

2 High dimensional expanders: spectral gap

As described in section 1, the notion of expander graphs can be expressed via a spectral
gap property of the Laplacian. This aspect has a natural high dimension version, but to
present it one needs the language of real cohomology. Let us start by recalling the basic
notations.

2.1 Simplicial complexes and cohomology. A finite simplicial complexX is a finite
collection of subsets, closed under inclusion, of a finite setX (0), called the set of vertices
of X . The sets in X are called simplices or faces and we denote by X (i) the set of
simplices of X of dimension i (i -cells), which are the sets in X of size i +1. So X (�1)

is comprised of the empty set,X (0) - of the vertices,X (1) - the edges,X (2) - the triangles,
etc. Let d = dimX = maxfi jX (i) ¤ ¿g and assume X is a pure simplicial complex
of dimension d , i.e., for every F 2 X , there exists G 2 X (d) with F � G. Throughout
this discussion we will assume that X (0) = fv1; : : : ; vng is the set of vertices and we
fix an order v1 < v2 < : : : < vn among the vertices. Now, if F 2 X (i) we write
F =

˚
vj0 ; : : : ; vji

	
with vj0 < vj1 < : : : < vji

. If G 2 X (i�1), we denote the oriented
incidence number [F : G] by (�1)` if F nG =

˚
vj`

	
and 0 if G ª F . In particular, for

every vertex v 2 X (0) and for the unique face ¿ 2 X (�1), [v : ¿] = 1.
If F is a field then C i (X; F) is the F -vector space of the functions from X (i) to

F . This is a vector space of dimension
ˇ̌
X (i)

ˇ̌
over F where the characteristic functions˚

eF

ˇ̌
F 2 X (i)

	
serve as a basis.

The coboundary map ıi : C i (X; F) ! C i+1 (X; F) is given by:

(ıi f ) (F ) =
X

G2X(i)

[F : G]f (G) :

So, if f = eG for some G 2 X (i), ıi eG is a sum of all the simplices of dimension i +1

containing G with signs ˙1 according to the relative orientations.
It is well known and easy to prove that ıi ı ıi�1 = 0. Thus B i (X; F) = im ıi�1 -

“the space of i -coboundaries” is contained in Zi (X; F) = ker ıi - the i -cocycles and
the quotientH i (X; F) = Zi (X; F)/B i (X; F) is the i -th cohomology group ofX over
F .

In a dual way one can look at Ci (X; F) - the F -vector space spanned by the sim-
plices of dimension i . Let @i : Ci (X; F) ! Ci�1 (X; F) be the boundary map defined
on the basis element F by: @F =

P
G2X(i�1) [F : G] � G, i.e. if F =

˚
vj0 ; : : : ; vji

	
then @i F =

Pi
t=0 (�1)t ˚

vj0 ; : : : ; cvjt
; : : : ; vji

	
. Again @i ı@i+1 = 0 and so the bound-

aries Bi (X; F) = im @i+1 are inside the cycles Zi (X; F) = ker @i and Hi (X; F) =

Zi (X; F)/Bi (X; F) gives the i -th homology group of X over F . As F is a field, it is
not difficult in this case to show that Hi (X; F) ' H i (X; F).



HIGH DIMENSIONAL EXPANDERS 709

In the next section, we will need the case F = F2 - the field of two elements, but for
the rest of Section 2 we work with F = R. In this case C i (X; R) has the natural struc-
ture of aHilbert space, where forf; g 2 C i (X; R); hf; gi =

P
F 2X(i)

deg(F )f (F )g(F ),

when deg(F ) = #fG 2 X (d)
ˇ̌̌
G � F g. Now, Ci (X; R) is the dual of C i (X; R) in a

natural way and we can identify them and treat the operators ∆up
i = ı�

i ıi ;∆
down
i =

ıi�1ı�
i�1 and∆i = ∆up

i +∆down
i as operators from C i to C i , all are self-adjoint with

non-negative eigenvalues. One may check that

(ı�
i f ) (G) =

1

deg (G)

X
F 2X(i+1)

[F : G] deg (F )f (F )

for f 2 C i+1 (X; R) and G 2 X (i), so in the regular case ı�
i is equal to @i+1 up to

a constant multiple. Define Zi = ker ı�
i�1 and Bi = im ı�

i (so in the regular case
Zi = Zi ; Bi = Bi ). The following proposition, going back to Eckmann [1945], is
elementary:

Proposition 2.1 (Hodge decomposition). C i = B i ˚Hi ˚Bi when Hi = Ker(∆i ) is
called the space of Harmonic cycles. In fact Hi ' H i (X; R). Note that ∆up

i vanishes
on Zi = B i ˚ Hi .

Definition 2.2. The i -dimensional spectral gap of X is

�(i)(X) = min
�
�

ˇ̌̌
� e.v. of ∆up

i

ˇ̌̌
(Bi )?

�
One may check that (B i )? = Zi , and as∆up

i = ı�
i ı ıi , we have

�(i)(X) = inf
f 2(Bi )?

�
jh∆up

i f; f ij

hf; f i

�
=

�
inf

f 2Zi

�
kıf k

kf k

��2

Also, ∆up
i vanishes also on Hi , so �(i)(X) > 0 implies H i (X; R) = f0g, and the

converse is also true.

For a k-regular graph (B0)? = Z0 = L2
0(X) and so �1(X) that was defined in

section 1 for a graph X , is �(0)(X) in the notations here. We define:

Definition 2.3. A pure d -dimensional simplicial complex will be called "-spectral ex-
pander if for every i = 0; : : : ; d � 1; �(i) � ".

Recall that the Alon–Boppana theorem asymptotically bounds the spectral gap of k-
regular graphs by that of their universal cover, the k-regular tree. In higher dimension
the situation is more involved:

Theorem 2.4 (Parzanchevski and Rosenthal [2017]). For an infinite complex X , let
�(i)(X) be the bottom of the spectrum of ∆up

i (X) on (B i )?. Let fXng be a family of
quotients of X , such that the injectivity radius of Xn approaches infinity. If zero is not
an isolated point in the spectrum of∆up

i (X), on (B i )?, then

lim inf
n!1

f�(i)(Xn)g � �(i)(X):
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Note that zero cannot be an isolated point in the spectrum of the Laplacian of an
infinite graph, since the constant function is not in L2. However, for complexes of
higher dimensional this can happen, and in this case the Alon–Boppana principle can
be violated (see Parzanchevski and Rosenthal [2017, Thm. 3.10] for an example).

2.2 Garland method. The seminal paper of Howard Garland [1973] (see also Borel
[1975]), can be considered as the first paper on high dimensional expanders. It gave
examples of spectral expanders, by a method which bounds the eigenvalues of the sim-
plicial complex by the eigenvalues of its links. Garland’s method has been revisited in
recent years with various simplifications and extensions. Let us give here one of them,
but we need more definitions: If F is a face of X of dimension i , the link of F in X

denoted `kX (F ), is

`kX (F ) := fG 2 X
ˇ̌̌
F [ G 2 X; F \ G = ¿g:

One can easily check that if X is a pure simplicial complex of dimension d ,
dim(`kX (F )) = d � i � 1.

Garland’s method can be conveniently summarized by the following theorem. Note
that if dim(X) = d and dim(F ) = d � 2, then `kX (F ) is a graph.

Theorem 2.5 (Gundert and Wagner [2016]). If dim(X) = d and for every face F of
dimension d � 2, �(0)(`kX (F )) � ", then

�(d�1)(X) � 1 + d " � d:

So, Garland’s method enables to give a fairly good bound on �(d�1)(X) if all links
of d � 2 faces are very good expanders. One can use the result to bound also �(j )(X)

for j � d � 1, by replacing X with its j + 1 skeleton, i.e., the collection of all the
faces of X of dimension at most j + 1. In fact, even more: if the links of the (d � 2)-
faces are excellent expander graphs and the 1-skeleton is connected, then the complex
is spectral expander (cf. Oppenheim [2018]). In the next subsection, we will explain
Garland’s motivation and results. But in recent years his method have been picked
up in various different directions. Most of them have to do with vanishing of some
cohomology groups.

One of the nicest applications of Garland’s method is the work of Żuk [2003], Pansu
[1998] and Ballmann and Świątkowski [1997]. The starting point of these works is the
well-known result that a discrete groupΓ has Kazhdan property (T ) iffH 1(Γ; V ) = f0g

for every unitary representation ofΓ on any Hilbert space. These authors used Garland’s
work to deduce such a vanishing result for H 1 if Γ acts cocompactly on an infinite
contractible simplicial complex of dimension 2 all of whose vertex links are very good
expanders. The most amusing is Zuk’s method which enables (sometimes) to deduce
property (T ) from a presentation of Γ by generators and relations. For example it shows
property (T ) for some random groups (see also Kotowski and Kotowski [2013]). This
is very different than the way Kazhdan produced the first groups with property (T ) and
it shows that property (T ) is not such a rare property.
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A work of a similar flavor but in a different direction is the work of De Chiffre,
Glebsky, Lubotzky, and Thom [2017]. Recall first (vaguely) the basic definition of
“group stability”: Consider the degree n unitary group U (n) with an invariant metric
dn. We say that a group Γ presented by a finite set of generators S with finitely many
relationsR, is (U (n); dn)-stable if every almost representation � of Γ intoU (n) is close
to a representation �̃. By “almost” we mean that �(r) is very close to the identity for
every r 2 R and “close” means that �(s) and �̃(s) are close w.r.t. dn, for every s 2 S .
One can study these questions w.r.t. different distance functions, e.g., the one induced
by the Hilbert–Schmidt norm, the operator norm or the L2-norm, a.k.a. the Frobenius
norm.

Let us stick to the L2-norm. In De Chiffre, Glebsky, Lubotzky, and Thom [ibid.]
it is shown that if H 2(Γ; V ) = f0g for every unitary representation of Γ, then Γ is
(U (n); dL2)-stable. Then the Garland method is used (along the line of the results men-
tioned above for H 1) to produce many examples of L2-stable groups by considering
actions on 3-dimensional infinite simplicial complexes, whose edge-links are excellent
expanders. This implies that many high rank cocompact lattices in simple p-adic Lie
groups are (U (n); dL2)-stable. The most striking application is proving that there ex-
ists a group which is not L2-approximated (the reader is referred to De Chiffre, Glebsky,
Lubotzky, and Thom [ibid.] for the definitions and exact results and to Thom [2018] for
background and applications).

In Gundert and Wagner [2016], they used the Garland method to estimate the eigen-
values of random simplicial complexes - see also Section 4. For some stronger versions
of Garland’s method - see Oppenheim [2017, 2018] and the references therein.

2.3 Bruhat–Tits buildings and their finite quotients. LetK be a non-Archimedean
local field, i.e., K is a finite extension of Qp , the field of p-adic numbers, or K is
Fq((t))-the field of Laurent power series over a finite field Fq . Let O be the ring of
integers of K; M the (unique) maximal ideal of O, and Fq = O/M the finite quotient
where q = p` for some prime p and ` 2 N. Let Ge be a K-simple simply connected
group of K-rank r , e.g., Ge = SLn in which case r = n � 1, and let G = Ge(K).

Bruhat and Tits developed a theory which associates with G an infinite (if r � 1)
contractible simplicial complex B = B(G) of dimension r . Here is a quick description
of it: G has r + 1 conjugacy classes of maximal compact subgroups (cf. Platonov
and Rapinchuk [1994, Theorem 3.13, p. 150]) and a unique class of maximal open pro-
p subgroups, called Iwahori subgroups. The vertices of B are the maximal compact
subgroups (so they come with r + 1 “colors” according to their conjugacy class) and a
set of i + 1 such vertices form a cell if their intersection contains an Iwahori subgroup.
This is an r-dimensional simplicial complex whose maximal faces can be identified
with G/I when I is a fixed Iwahori subgroup (for more see Bruhat and Tits [1972],
Platonov and Rapinchuk [1994] and Lubotzky [2014] for a quick explicit description of
B (SLn(Qp)). The case of B (SL2(K)), which is a (q + 1)-regular tree, is studied in
detail in Serre [1980]).

Let Γ be a cocompact lattice in G, i.e., a discrete subgroup with Γ n G compact.
Assume, for simplicity, that Γ is torsion free, a condition which can always be achieved
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by passing to a finite index subgroup. Such Γ is always an arithmetic lattice if r � 2 by
Margulis arithmeticity Theorem (Margulis [1991]) and, at least if char(K) = 0, there
are always such lattices by Borel and Harder [1978]. When we fix K and G and run
over all such lattices in G, for example, over the infinitely many congruence subgroups
of Γ, we obtained a family of bounded degree simplicial complexes, i.e. every vertex
is included in a bounded number of faces. These simplicial complexes, give the major
examples of “high dimensional expanders” discussed in this paper.

Garland’s method described in the previous subsection was developed by him in
order to prove a conjecture of Serre asserting that if r � 2, H i (Γ; R) = f0g for every
Γ as above and every 1 � i � r � 1. Indeed, the vertex links of the building B are
the associated spherical building over the finite field Fq (for example, for Ge = SLn,
this is the flag complex of the proper subspaces of Fn

q ). For such buildings, for every
cell F 2 X (i); 0 � i � d � 2, one has �(0) (`k(F )) ! 1 when q ! 1 (e.g. for
Ge = SL3, we get the (q + 1)-regular “points to lines graph” of the projective plane
P (F3

q ), for which one can check that �1 = 1�
1p
q
. See Garland [1973], Ballmann and

Świątkowski [1997], and Evra and Kaufman [2016]). One therefore can deduce from
Theorem 2.5 that if q � q(Ge), then �(i)(X) > "0 for every i = 1; : : : ; r � 1 and every
finite quotient X of B = B(G). In particular, all these quotients are spectral expanders
as defined in Definition 2.3.

This also implies Serre’s conjecture if q is sufficiently large (see Definition 2.2).
Serre’s conjecture has been proved in full since then (cf. Casselman [1974] and Borel
and Wallach [1980, Chap. XI]) by representation theoretic methods, but Garland’s
method has its own life in various other contexts.

In Section 1, Theorem 1.2, we saw that expander graphs can also be defined as “Lp-
expanders” for a suitable 2 � p 2 R. This definition can be extended to high dimen-
sional simplicial complexes and is especially suitable in the context of this subsection.

Let B be one of the Bruhat–Tits buildings described above and � : B ! X the cov-
ering map. Let f 2 L2

0(X
(r)), i.e. a function orthogonal to the constants on the r-cells

of X (one can consider also i -cells for 0 � i � r , but we stick to these for simplicity
of the exposition, the reader is referred to Kamber [2016a] for a more general setting).
Now, using the notion of W -distance on B(r), when W is the affine Weyl group of G,
one can define for a fixed t0 2 B(r), a function f̃ on B(r) - the r-faces of B, as follows:
For t 2 B(r), let f̃ (t) = 1

jSt j

P
s2St

f (�(s)) when S` = fs 2 B(r)
ˇ̌̌
W -distance (s; t0) =

W -distance (t; t0)g:

Definition 2.6. We say that X is Lp-expander if for every t0 and f as above f̃ 2

Lp+"(B(r)) for every " > 0.

Applying Oh’s result Oh [2002] which gives the exact rate of decay of the matrix co-
efficients of the unitary representations of G, the so-called “quantitative property (T )”,
Kamber deduced that X as above are always Lp-expanders when p = p(G) according
to the following table.

W Ãn B̃n C̃n D̃n; n even D̃n; n odd Ẽ6 Ẽ7 Ẽ8 F̃4 G̃2

p 2n 2n 2n 2(n � 1) 2n 16 18 29 11 6
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Let us stress that this is not just an abstract result. From this fact, we can deduce
non-trivial inequalities on the eigenvalues of various “Hecke operators” acting on the
faces of X . The reader is referred to Kamber [2016a] for more in this direction.

2.4 Ramanujan complexes. Ramanujan graphs stand out among expander graphs as
the optimal expanders from a spectral point of view (cf. Valette [1997]). These are the
finite connected k-regular graphs X for which every eigenvalue � of the adjacency ma-
trix A = AX satisfies either j�j = k or j�j � 2

p
k � 1. The first constructions of such

graphs were presented as an application of the works of Deligne (in characteristic zero)
and Drinfeld (in positive characteristic) proving the so called Ramanujan conjecture for
GL2 (see Lubotzky [1994] for a detailed survey). Recently, a new (non-constructive)
method has been presented in Marcus, Spielman, and Srivastava [2015].

It is therefore not surprising that following thework of L. Lafforgue [2002] (for which
he got the FieldsMedal) extendingDrinfeld’s work fromGL2 to GLd , general d , several
mathematicians have started to develop a high dimensional theory of Ramanujan simpli-
cial complexes, cf. (Cartwright, Solé, and Żuk [2003], Li [2004], Lubotzky, Samuels,
and Vishne [2005b], Lubotzky, Samuels, and Vishne [2005a], Sarveniazi [2007]). One
may argue what is “the right” definition of Ramanujan complexes (see the above ref-
erences and Kang, Li, and Wang [2010], Kang [2016], First [2016], Kamber [2016a],
Lubetzky, Lubotzky, and Parzanchevski [2017]). This topic deserves a survey of its
own. Here we just briefly point out some directions of research which came out in the
work of several mathematicians.

In the context of X = Γ n B where B a Bruhat–Tits building associated with G =

Ge(K) as in section 2.3, and Γ a cocompact lattice acting on it, the most sensible defini-
tion seems to be the following:

Definition 2.7. In the notation above, Γ n B is called a Ramanujan complex if every
infinite dimensional irreducible I -spherical G-subrepresentation of L2(Γ n G) is tem-
pered.

Recall that I is the Iwahori subgroup defined above, a representation is I -spherical
if it contains a non-zero I -fixed vector and it is tempered if it is weakly-contained in
L2(G).

This definition can be expressed also in other ways; it isL2-expander in the notations
of Kamber [2016a] andDefinition 2.6 above. It can also be expressed in a combinatorial-
spectral way. For the group SL2, in which caseB is a (q+1)-regular tree andX = ΓnB
is a (q + 1)-regular graph, this definition is equivalent to the graph being Ramanujan
graph. Ramanujan complexes are also optimal among high-dimensional expanders (see
Li [2004], Lubotzky, Samuels, and Vishne [2005b] and Parzanchevski and Rosenthal
[2017]). For most applications so far (such as the geometric and topological expanders
to be presented in section 3) one does not need the full power of the Ramanujan property
and quantitative Property (T ) (à la Oh [2002], see §2.3) suffices. On the other hand the
study of the cut-off phenomenon of Ramanujan complexes in Lubetzky, Lubotzky, and
Parzanchevski [2017] did use the full power of the Ramanujan property. The same
can be said about the application of Ramanujan graphs and Ramanujan complexes to
the study of “golden gates” for quantum computation (see Parzanchevski and Sarnak
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[2018] and Evra, Parzanchevski, and Sarnak [n.d.]), where the Ramanujan bounds give
a distribution of elements in SU (2) with “optimal entropy”.

The Ramanujan graphs of Lubotzky, Phillips, and Sarnak [1988] (a.k.a. the LPS-
graphs) have also been used to solve other combinatorial problems. For example they
give the best (from a quantitative point of view) known examples of “high girth, high
chromatic number” graphs. After finding the appropriate high dimensional notions of
“girth” and “chromatic number”, these results can indeed be generalized to the Ramanu-
jan complexes constructed in Lubotzky, Samuels, and Vishne [2005a], (see Lubotzky
andMeshulam [2007], Golubev and Parzanchevski [2014], Evra, Golubev, and Lubotzky
[2015]).

Ramanujan graphs can be characterized as those graphs whose associated zeta func-
tions satisfy “the Riemann Hypothesis (RH)” - see Lubotzky [1994], for an exact for-
mulation and references. An interesting direction of research is to try to associate to
high dimensional complexes suitable “zeta functions” with the hope that also in this
context the “Ramanujaness” of the complex can be expressed via the RH. For this di-
rection or research - see Storm [2006], Kang and Li [2014], Deitmar and Kang [2014],
Kang, Li, and Wang [2010], Kang [2016], Kamber [2016a] and Lubetzky, Lubotzky,
and Parzanchevski [2017].

3 Geometric and Topological expanders

In this chapter we will describe a phenomenon which is truly high dimensional; the geo-
metric and topological overlapping properties which lead to geometric and topological
expanders. The latter call for coboundary and cosystolic expanders.

3.1 Geometric andTopological overlapping. Our story beginswith a result of Boros
and Füredi [1984], at the time two undergraduates in Hungary, who proved the follow-
ing result, as a response to a question of Erdős: If P is a set of n points in R2, then there

exists a point z 2 R2 which is covered by
�

2
9

� o(1)

��
n
3

�
of the

�
n
3

�
affine triangles

determined by these points. Shortly afterward Bárány [1982] proved the d -dimensional
version: For every d 2 N; 9 0 < Cd 2 R, such that if P � Rd with jP j = n, then
there exists z 2 Rd which is covered by at least Cd

�
n

d+1

�
of the

�
n

d+1

�
affine simplices

determined by these points.
While 2/9 is optimal for d = 2, it is not known what are the optimal Cd ’s, neither

what is their rate of convergence to 0, when d goes to infinity.
Bárany’s result can be rephrased as: Let∆(d)

n be the complete d -dimensional simpli-
cial complex on n vertices (i.e. the collections of all subsets of [n] of size at most d +1)
and f : ∆

(d)
n ! Rd an affine map. Then there exists z 2 Rd which is covered by at

least Cd

�
n

d+1

�
of the images of the d -dimensional faces.

In Gromov [2010], Gromov proved the following amazing result: Bárany’s theorem
above is true for every continuous map f : ∆

(d)
n ! Rd . In fact, he proved it with

constants Cd 2 R which were better than what was known before for affine maps. The
reader is encouraged to draw the 2-dimensional case to realize how surprising and even
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counter-intuitive this theorem is! Gromov also changed the point of view on these types
of results; rather than thinking of them as properties of Rd , think of them as properties
of the simplicial complex X . Let us now define:

Definition 3.1. A d -dimensional pure simplicial complex X is said to be "-geometric
(resp. "-topological) expander if for every affine (resp. continuous) map f : X ! Rd ,
there exists z 2 Rd such that "-proportion of the images of the d -cells in X (d), covers
the point z.

So Bárany (resp., Gromov) Theorem is the claim that ∆(d)
n , the complete simpli-

cial complex of dimension d on n vertices, is Cd -geometric (resp., Cd -topological)
expander.

Let us look for a moment at the case of dimension one to see whywe call this property
“expander”: If X = (V; E) is an expander graph and f : X ! R any continuous map,
choose a point z 2 R such that the two disjoint sets

A = fv 2 V
ˇ̌̌
f (v) < zg and B = fv 2 V

ˇ̌̌
f (v) > zg

are of size approximately jV j

2
. By the expansion property, there are many edges in E

which connect A and B . The image of each such an edge under f must pass through z

by the mean value theorem. Hence X is also a topological expander.
We should mention that a topological expander graph X does not have to be an ex-

pander graph. Moreover, it does not even have to be connected. For example, assume
X is a union of a large expander graph and another small (say of size o(jX j)) connected
component. Then X is a topological expander even though it is not an expander graph.

Anyway, Gromov and Bárany Theorems refer to the complete simplicial complexes:
note how difficult is the case d � 2 and how trivial it is to prove that the complete graph
is an expander. Gromov also proved that some other interesting simplicial complexes
are d -dimensional topological expanders, e.g., the flag complexes of d +2 dimensional
vector spaces over finite fields or more generally spherical buildings of simple alge-
braic groups over finite fields (cf. Lubotzky, Meshulam, and Mozes [2016]). All these
examples are not of bounded degree. Recall (see also Definition 4.1 below) that we
say that a family of d -dimensional simplicial complexes are of bounded degree (resp.
bounded upper degree) if for every vertex v (resp., every face F of dimension d � 1)
the number of faces containing it is bounded. The non trivial aspect of expander graphs
in dimension one is the construction of such graphs of bounded degree.

Gromov [2010] put forward the basic questions: Let d � 2, are there bounded degree
d -dimensional geometric/topological expanders?

The existence of geometric expanders of bounded degree was shown by Fox, Gro-
mov, V. Lafforgue, Naor, and Pach [2012] in several ways - most notably are two: the
random method which we will come back to in section 4 and the second is by show-
ing that for a fixed d , if q is a large enough (depending on d ) and fixed, the Ramanujan
complexes described in section 2.4 are geometric expanders of bounded degree. Amore
general version was given by Evra [2017] .

Theorem 3.2. Given 2 � d 2 N, there exists q0 = q0(d ) and " = "(d ) such that
for every q > q0, if K is a non-Archimedean local field of residue degree q and Ge a
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simple K-algebraic group of K-rank d , then the finite quotients of B = B(Ge(K)) - the
Bruhat–Tits building associated with G = Ge(K) - are all "-geometric expanders.

Theorem 3.2 is deduced in Evra [2017] in a similar way as the proof in Fox, Gromov,
V. Lafforgue, Naor, and Pach [2012] using a “mixing lemma” and a classical convexity
result of Pach [1998]. The mixing lemma is deduced there from Oh’s “quantitative
property (T ) (Oh [2002]). The language of Lp-expanders described in section 2 gives a
systematic way to express this. (Compare also to Parzanchevski, Rosenthal, and Tessler
[2016]). The fact that we have an " = "(d )which is independent of q, provided q > q0,
(which is more than one needs in order to answer Gromov’s geometric question) is due
to the fact that for a fixed d 2 N, one has the same p in the table in section 2.3. which
works for all groups of rank d .

The question of bounded degree topological expanders is much more difficult and
will be discussed in the next subsections.

3.2 Coboundary expanders. As of now there is only one known method (with sev-
eral small variants) to prove that a simplicial complex X is a topological expander. This
is via “coboundary expander” which requires the language of cohomology as introduced
in section 2.1, but this time with F2-coefficients.

Let X be a finite d -dimensional pure simplicial complex, define on it a weight func-
tion w as follows: for F 2 X (i) let

w(F ) =
1�

d+1
i+1

�
jX (d)j

ˇ̌̌
fG 2 X (d)

jG � F g

ˇ̌̌
:

One could work with a number of different weight functions, but this one is quite pleas-
ant, for example, it is a probability measure on X (i); one easily checks thatP
F 2X(i)

w(F ) = 1. Now for f 2 C i (X; F2), denote kf k =
P

w(F )
fF 2X(i)jf (F )¤0g

: We

can now define the important notion of “coboundary expanders” - a notion which was
independently defined by Linial and Meshulam [2006] and Gromov [2010] (in both
cases without calling it coboundary expanders).

Definition 3.3. Let X be as above:

(a) For 0 � i � d � 1, define the i th coboundary expansion hi (X) of X as:

hi (X) = min
f 2C i nBi

kıi f k

k[f ]k

where [f ] = f + B i is the coset of f w.r.t. the i -coboundaries and k[f ]k =

min
g2[f ]

kgk. (Note that k[f ]k is the “normalized distance” of f from B i ). Let

h(X) = minfhi (X)ji = 0; : : : ; d � 1g.

(b) The complex X is said to be "-coboundary expander if h(X) � ".

A few remarks are in order here:
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(i) The reader can easily check that if X is a k-regular graph, then h(X) = 2
k

� h(X)

where h(X) is the Cheeger constant of the graph as defined in section 1. So, indeed
the above definition extends the notion of expander graphs.

(ii) The definition of "i , and especially the fact that the minimum runs over f 2

C i n B i looks unnatural at first sight, but if we recall that k[f ]k is exactly the
“norm” of the element in f +B i which is closest toB i , we see that this corresponds
to going over (B i )? when we consider real coefficients. Moreover as pointed out
in section 2, over R,

h∆up
i f; f i

hf; f i
=

kıi f k

kf k

and so the definition of hi here is “the characteristic 2 analogue” of the spec-
tral gap defined in Definition 2.2. For the connection between the spectral gap
and the coboundary expansion - see Steenbergen, Klivans, and Mukherjee [2014],
Parzanchevski, Rosenthal, and Tessler [2016] and Gundert and Szedlák [2015].

(iii) Also here it is easy to see that hi (X) > 0 iff H i (X; F2) = f0g.

A basic result proved independently in Linial and Meshulam [2006], Meshulam and
Wallach [2009] and Gromov [2010] is:

Theorem 3.4. for the complete d -dimension complex∆(d)
n ; hi (∆

(d)
n ) � 1� od (1) for

every i = 0; : : : ; d � 1.

Here is Gromov fundamental result on the connection between coboundary expanders
and topological expanders:

Theorem 3.5. Coboundary expanders are topological expanders, namely, for every
d 2 N and 0 < " 2 R, there exists "1 = "1(d; ") > 0 such that if X is a d -dimensional
complex which is an "-coboundary expander then it is an "1-topological expander.

Now, combining Theorem 3.5 with Theorem 3.4, one deduces that∆(d)
n are topolog-

ical expanders as mentioned in section 3.1.
But these are of unbounded degree. Naturally, as the finite quotients of the high rank

Bruhat–Tits building are spectral and geometric expanders, one tends to believe that
they are also topological expanders. This is still an open problem. Let us say right away
that in general these quotients (and even the Ramanujan complexes) are not coboundary
expanders. As was explained in Kaufman, Kazhdan, and Lubotzky [2016] for many of
the lattices Γ in simple p-adic Lie groups, H 1(Γ n B; F2) ¤ f0g since it is equal to
H 1(Γ; F2) = Γ/[Γ;Γ]Γ2 (since B is contractible) and the latter is often non-zero. Thus
hi (Γ n B) = 0 and Γ n B is not a coboundary expanders.

Still, one can overcome this difficulty. For this we need another definition:

Definition 3.6. A d -dimensional complex X is called "-cosystolic expander, if for ev-
ery i = 0; : : : ; d � 1, one has �i (X) � " and �i (X) � " when:

�i (X) = min
f 2C i nZi

kıi (f )k

kdf ek
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where df e = f + Zi and

kdf ek = minfkgk

ˇ̌̌
g 2 df eg

and
�i = min

f 2Zi nBi
kf k:

For later use, let us denote �(X) = min�i (X) and �(X) = min �i (X). So, X is
"-cosystolic expansion if �(X) � " and �(X) � ". So, X is “"-cocycle expander”; it
may not be coboundary expander if H i ¤ f0g (for some i = 0; : : : ; d � 1) but at least
every representative of a non-trivial cohomology class is “large”.

An extension of Gromov’s Theorem 3.5 is given in Dotterrer, Kaufman, and Wagner
[2016]:

Theorem 3.7. Cosystolic expanders are topological expanders.

It is natural to conjecture that the Ramanujan complexes and more generally the
quotients of the high rank Bruhat–Tits buildings, while not coboundary expanders, in
general, are still cosystolic expanders. But also this is open. What is known is a some-
what weaker result which still suffices to answer, in the affirmative, Gromov’s question
on the existence of bounded degree topological expanders. The following theorem was
proved by Kaufman, Kazhdan, and Lubotzky [2016] for d � 3 and by Evra and Kauf-
man [2016] for general d .

Theorem 3.8. Fix 2 � d 2 N, then there exists " = "(d ) > 0 and q0 = q0(d )

such that if K is a local non-Archimedean field of fixed residue degree q > q0 and
G = Ge(K) with Ge simple K-group of K-rank d , then the (d � 1)-skeletons Y of the
finite (d -dimensional) quotients X of the Bruhat–Tits building B = B(G) form a family
of bounded degree (d � 1)-dimensional "-cosystolic expanders.

As this Theorem holds for every d , it solves Gromov’s problem, but in a somewhat
unexpected way. We do believe that X in the theorem are also cosystolic expanders and
not just Y .

Evra and Kaufman [ibid.], give a quite general combinatorial criterion to deduce a
result like Theorem 3.8. They prove that if X is a d -dimensional complex of bounded
degree all of whose proper links (i.e. `kX (F ) for every face F ¤ ¿) are coboundary
expanders, and all the underlying graphs of all the links (including `kX (¿) = X ) are
“very good” expander graphs, then the (d � 1)-skeleton of X is a cosystolic expander.
The reader is referred to Evra and Kaufman [ibid.] for the exact quantitative formulation.
It is in spirit an “F2-version” of Garland’s local to global method described in section 2.2.
It will be interesting to strengthen this result to the same level as Garland’s, i.e., to
assume only that the proper links are coboundary expanders and connected and X is
connected. It will be even more interesting if one could deduce (even with the current
hypothesis) thatX itself is a cosystolic expander. This will show that the d -dimensional
Ramanujan complexes are topological expanders and not merely their (d �1) skeletons
as we now know.
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The issue discussed in this section is only the tip of the iceberg. There are many
more interesting problems (see Gromov [2010], Gromov and Guth [2012]) e.g. every
d -dimensional complex can be embedded in (2d+1)-dimensional Euclidean space, but
only some can be embedded in 2d . Prove that high dimensional expanders (in some or
any of the definitions) can not.

4 Random simplicial complexes

As mentioned briefly above, the easiest way to prove existence of bounded degree ex-
pander graphs is by random methods. One may hope that this can be extended to the
higher dimensional case of d -dimensional simplicial complexes. But, here the problem
is much more difficult. In fact, as of now, there is no known “random model” for d -
dimensional simplicial complexes of bounded degree (in the strong sense - see below)
which gives high dimensional topological expanders. This is surprising as the existence
of such topological expanders is known by now by (Kaufman, Kazhdan, and Lubotzky
[2016], Evra and Kaufman [2016]) as was explained in section 3. One may start to
wonder if such a model exists at all, or maybe topological bounded degree expanders of
high dimension are very rare objects. Perhaps there is a kind of rigidity phenomenon ana-
logue to what is well known by now in Lie theory and locally symmetric spaces: While
there are many different Riemann surfaces (parameterized by Teichmüller spaces), the
higher dimensional case is completely different and rigidity results say that there are
“very few” and mainly the ones coming from arithmetic lattices.

Let us now leave aside such a speculation and give a brief background and a short
account of the known results:

Erdős and Rényi initiated the study of random graphs in their seminal paper Erdős
and Rényi [1960]. Their model is the following: Let n 2 N and p 2 [0; 1], the random
model X(n; p) is the graph X with vertex set [n] = f1; : : : ; ng and where for every
1 � i ¤ j � n, the edge fi; j g is in X with probability p, independently of all other
edges. They then study the properties of such graphs when n ! 1 (and p can be
changed with n). For example, their first famous result is that p0 = logn

n
is a threshold

for the connectedness of X 2 X(n; p). Namely, for every " > 0, if p � (1 � ") logn
n

then almost surely (a.s.) such an X is not connected, i.e. Prob. (X 2 X(n; p) : X

connected) �!
n!1

0. On the other hand, if p � (1 + ") logn
n

then X is a.s. connected.

Why is p = logn
n

the threshold? Recall the “coupon collector problem” which asserts
that if elements of [m] = f1; : : : ; mg are chosen independently at randomwith repetition,
it will take t = m logm steps to choose them all. In our process p

�
n
2

�
edges are chosen,

and hence 2p
�

n
2

�
vertices. Now, if p <

logn
n

then less than 2 logn
n

n2

2
= n logn vertices

are chosen. So w.h.p there is an isolated vertex! The amazing point in the Erdős–Rényi
result is the fact that once we cross the threshold, not only are there no isolated vertices,
but the graph is connected, and, in fact, even an expander.

This was the starting point of a very elaborate (and very important) theory of random
graphs studying more and more delicate properties of such X 2 X(n; p).

In Linial and Meshulam [2006] Linial and Meshulam initiated such a theory for 2-
dimensional simplicial complexes. A theory which shortly afterward was extended in
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Meshulam and Wallach [2009] to the general d -dimensional case. The model stud-
ied Xd (n; p) (nowadays called the Linial–Meshulam model for random d -dimensional
simplicial complexes) is the following: X 2 Xd (n; p) is a d -dimensional complex
with [n] as the set of vertices, X contains the full (d � 1)-skeleton, i.e., every subset of
[n] of size at most d is in X and a subset of size d + 1 is in X with probability p, in-
dependently of the other d -cells. So X1(n; p) is exactly the Erdős–Rényi model. Now,
for d � 2, such an X is always connected. But, note that X 2 X1(n; p) is connected
if and only if H 0(X; F2) = f0g, so Linial, Meshulam and Wallach study for d � 2

and X 2 Xd (n; p), when H d�1(X; F2) = f0g and proved the following far reaching
generalization of the Erdős–Rényi theorem.

Theorem 4.1 (Linial and Meshulam [2006] for d = 2, Meshulam and Wallach [2009]
for all d ). The threshold for the homological connectivity, i.e. the vanishing of
H d�1(X; F2) for X 2 Xd (n; p) is p0 = d logn

n
.

The heuristic here for d logn
n

is similar to the one above: The process picks p
�

n
d+1

�
d -cells and hence (d + 1)p

�
n

d+1

�
(d � 1)-cells. So, if p <

d logn
n

less than (d +

1)d logn
n

�
d

d+1

�
�

�
n
d

�
log(

�
n
d

�
) (d � 1)-cells are chosen and so there is a (d � 1)-cell �

with no d -cell containing it. Hence the coboundary of e� - the characteristic function of
� - is zero, i.e. e� 2 Zd�1(X; F2). On the other hand e� is not a coboundary (note that in
the complete d -dimensional complex ı(e� ) ¤ 0, so it is not even a cocycle) and hence
H d�1(X; F2) ¤ f0g. Again the interesting aspect of the Linial–Meshulam–Wallach
result is that once the threshold is passed, not only does H d�1(X; F2) vanish, but X is
even a coboundary expander.

A nice theory of random complexes has started to emerge (see Kahle [2014] and
the references therein). As our main interest here is in expanders, we refer mainly to
Linial and Meshulam [2006], Meshulam and Wallach [2009], and Dotterrer and Kahle
[2012], noting that the results there imply (just like in the case of graphs) that above
the threshold the complexes are not only homologically connected but also coboundary
expanders and therefore topological expanders. The papers Gundert andWagner [2016]
and Knowles and Rosenthal [2017] bring in a very detailed study of the spectrum of the
higher dimensional Laplacians∆i action on C i (X; R) for random X .

But our main interest is in bounded degree complexes. Recall that Bollobás [1980]
and others (see Wormald [1999] for a comprehensive survey) have developed a theory
of random k-regular graphs (for a fixed k) which also got a lot of attention. This model,
for k � 3, gives almost surely expander graphs of bounded degree.

One would like to have such a model for d -dimensional complexes. But first, what
do wemean by bounded degree? There are two natural meanings in the literature, which
coincide for d = 1.

Definition 4.1. A pure d -dimensional simplicial complex X is of degree at most k if
every vertex of it is contained in at most k cells of dimension d (and so in at most 2d � k

cells of any dimension). It is of upper-degree at most k, if every face of dimension d �1

is contained in at most k cells of dimension d .

A natural model of bounded degree simplicial complexes Y d (n; k) is given in Fox,
Gromov, V. Lafforgue, Naor, and Pach [2012]: Assume, for simplicity, that (d+1)jn and
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take a random partition of [n] into n
d+1

subsets each of size d+1. Choose independently
k such partitions and let Y be the simplicial complex obtained by taking its cells to be
all these k n

d+1
subsets as well as all their subsets. The case d = 1 boils down to the

standard model of Bollobás.

Theorem 4.2 (Fox, Gromov, V. Lafforgue, Naor, and Pach [ibid.]). For every fixed
d 2 N; 9k0 = k0(d ), such that for every k � k0, a complex Y 2 Y d (n; k) is almost
surely d -dimensional geometric expander.

This theorem is very promising at first sight, but unfortunately, Y 2 Y d (n; k) is
typically neither coboundary expander nor topological expander. To visualize this think
about the d = 2 case: When k is fixed and n very large, for a typical Y 2 Y 2(n; k),
every edge of Y is contained in at most one triangle. So, homotopically Y looks more
like a graph and one can map it into R2 with only small size overlapping points.

So, altogether, this is a nice model which certainly deserves further study (e.g. what
is the threshold for k0 = k0(d ) in Theorem 4.3?) but it will not give us the stronger
versions of expansion (topological, cosystolic, coboundary etc.). As hinted at the begin-
ning of this section, it is still a major open problem to find a random model (if such at
all exists) of d -dimensional bounded degree simplicial complexes which will give, say,
topological expanders.

The situation with bounded upper degree is better: In Lubotzky and Meshulam
[2015] Lubotzky andMeshulam gave a model for 2-dimensional complexes of bounded
upper degree (using the theory of Latin squares) and it was shown to produce cobound-
ary expanders (and so also topological expanders). This was generalized to all d by
Lubotzky, Luria, and Rosenthal [2015], with a slight twist of the construction, replac-
ing the Latin squares by Steiner systems and using the recent breakthrough of Keevash
[2014] on existence of designs. Let us briefly describe the general model W d (n; k).

Let r � q � n be natural numbers and � 2 N. An (n; q; r; �)-design is a collectionS

of q-element subsets of [n] such that each r-element subset of [n] is contained in exactly
� elements of S . Given n; d 2 N, an (n; d )-Steiner system is an (n; d +1; d; 1)-design,
namely, a collection S of subsets of size d + 1 of [n], such that each set of size d is
contained in exactly one element of S . Using the terminology of simplicial complexes,
an (n; d )-Steiner system can be considered as a d -dimensional simplicial complex of
upper degree one. Recently, in a groundbreaking paper Keevash [ibid.], Peter Keevash
gave a randomized construction of Steiner systems for any fixed d and large enough
n satisfying certain necessary divisibility conditions (which hold for infinitely many
n 2 N). From now on, we will assume that given a fixed d 2 N, the value of n satisfies
the divisibility condition from Keevash’s theorem.

Keevash’s construction of Steiner systems is based on randomized algorithm which
has two stages. We will explicitly describe the first stage and use the second stage as a
black box.

Given a set of d -cells A �
� [n]

d+1

�
, we call a d -cell � legal with respect to A if there

is no common (d � 1)-cell in � and in any cell in A. Non-legal cells are also called
forbidden cells.

In the first stage of Keevash’s construction, also known as the greedy stage, one
selects a sequence of d -cells according to the following procedure. In the first step, a
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d -cell is chosen uniformly at random from
� [n]

d+1

�
. Next, at each step a legal d -cell (with

respect to the set of d -cells chosen so far) is chosen uniformly at random and is added
to the collection of previously chosen d -cells. If no such d -cell exists the algorithm
aborts. The procedure stops when the number of (d � 1)-cells which do not belong to
the boundary of the chosen d -cells is at most nd�ı0 for some fixed ı0 > 0 which only
depends on d . In particular, if the algorithm does not abort the number of steps is at
least (

�
n
d

�
� nd�ı0)/(d + 1) � nd/(2(d + 1)!).

In the second stage, Keevash gives a randomized algorithm that adds additional d -
cells in order to cover the remaining (d � 1)-cells that are not contained in any of the
d -cells chosen in the greedy stage. We do not need to go into the details of this algorithm.
The important thing for us is that with high probability the algorithm produces an (n; d )-
Steiner system.

Fix k 2 N and let S1; : : : ; Sk be k independent copies of (n; d )-Steiner systems
chosen according to the above construction, and let W be the d -dimensional simplicial

complex whose d -cells are
kS

i=1

Si , so W contains the complete (d � 1)-skeleton and it

is of upper degree at most k.
We can now state the main result of Lubotzky, Luria, and Rosenthal [2015]:

Theorem 4.3. Fix d 2 N, there exists k0 = k0(d ) and " = "(d ), such that for every
k � k0, a random complex W 2 W d (n; k) is almost surely an "-coboundary expander,
and hence also a topological expander.

It will be of great interest to study various other properties of this model. For example,
find the threshold for k0(d ) (the estimates obtained from Lubotzky, Luria, and Rosen-
thal [ibid.] are huge and it will be very interesting to give more realistic upper bound,
note that for d = 1; k0(d ) = 3). Another interesting problem is to study �1(W )-the
fundamental group of W ; when is it hyperbolic? has property (T )? trivial? The model
W behaves w.r.t. the model X as Bollobás’ model w.r.t. Erdős–Rényi, and this suggests
many further directions of research on these bounded upper degree complexes.

5 High dimensional expanders and computer science

In recent years high dimensional expanders have captured the interest of computer sci-
entists and various connections and applications have popped up. Most of these works
are in their infancy. We will give here only a few short pointers on these developments,
with the hope and expectation that the future will bring much more.

Probabilistically Checkable Proofs: The PCP theorem, proven in the early 90’s
(cf. Arora and Safra [1998] and Arora, Lund, Motwani, Sudan, and Szegedy [1998]),
is a cornerstone of modern computational complexity theory stating that proofs can
be written in a robust locally-testable format. PCPs are related to many areas within
theoretical computer science ranging from hardness of approximation to delegation and
efficient cloud computing.

The basic PCP theorem can be proven using an expander-graph-based construction
Dinur [2007]. For stronger PCPs, e.g. with unique constraints, or shorter proof length,



HIGH DIMENSIONAL EXPANDERS 723

or with lower soundness error, stronger forms of expansion seem to be needed, in partic-
ular high dimensional expansion might play a pivotal role. Dinur and Kaufman [2017]
explore replacing the standard direct product construction (also known as parallel repeti-
tion Raz [1998]) by a much more efficient bounded-degree high dimensional expanders
as constructed in Lubotzky, Samuels, and Vishne [2005b,a]. Direct products are ubiq-
uitous in complexity, especially as a useful hardness amplification construction, and
bounded-degree high dimensional expanders may potentially be useful in many of those
settings.

Locally testable codes: LTCs are an information-theoretic analog of PCPs. These er-
ror correcting codes have the additional property that it is possible to locally test whether
or not a received word is close to being a codeword. Unlike many problems in coding
theory, this is a property that random codes do not have. This makes it even more
challenging to settle the problem whether LTCs can have both linear rate and distance.
The current best construction comes from a PCP and its rate is inverse poly-logarithmic
Ben-Sasson and Sudan [2008] and Dinur [2007]. High dimensional expanders naturally
yield locally testable codes, whose parameters are unfortunately sub-optimal.

Property testing: The central paradigm in property testing is the interplay between
local views of an object and its global properties. The object can be a codeword, an
NP-proof, or simply a graph. This theory generalizes both PCPs and LTCs and has
significant practical applications. It was an unexpected discovery that high dimensional
expanders (and especially the cohomological/coboundary expanders mentioned above)
fit very naturally into this theory Kaufman and Lubotzky [2014]. Specifically, theorems
about high dimensional expanders readily translate to results on property testing.

Quantum computation and quantum error correcting codes: Sipser and Spiel-
man [1996] showed how extremely good expander graphs yield excellent LDPC error-
correcting codes. However, the existence of LDPC quantum error-correcting codes
(even inexplicitly) remains a major open problem. Recent work by Guth and Lubotzky
[2014] is a step in this direction, which is related to our topic: Every simplicial complex
gives a “homological error correcting code” (see Bombin and Martin-Delgado [2007],
Zémor [2009]) but in general they are of poor quality. High dimensional coboundary
expanders are related to local testability of codes (see Aharonov and Eldar [2015]).

Another basic problem in quantum computation seeks a finite universal set of quan-
tum gates that can efficiently generate an arbitrary unitary matrix in U (n) to desired ac-
curacy. This is solved by Kitaev and Solovay’s classical algorithm, but non-optimally.
The generators of Lubotzky–Phillips–Sarnak’s Ramanujan graphs Lubotzky, Phillips,
and Sarnak [1987] fare better, but come with no efficient generative algorithm. Follow-
ing the breakthrough of Ross and Selinger [2016], the case n = 2 is essentially solved
in a recent work by Parzanchevski and Sarnak [2018] who came up with optimal (a.k.a.
golden) gates and an explicit generative algorithm based on Ramanujan graphs. In on-
going work they use higher dimensional Ramanujan complexes to find such “golden
gates” for higher n Evra, Parzanchevski, and Sarnak [n.d.].
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