
Pඋඈർ. Iඇඍ. Cඈඇ඀. ඈൿ Mൺඍඁ. – 2018
Rio de Janeiro, Vol. 1 (391–424)

HARMONIC ANALYTIC GEOMETRY ON SUBSETS IN HIGH
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Abstract

We describe a recent evolution of Harmonic Analysis to generate analytic tools
for the joint organization of the geometry of subsets of Rn and the analysis of func-
tions and operators on the subsets. In this analysis we establish a duality between
the geometry of functions and the geometry of the space. The methods are used
to automate various analytic organizations, as well as to enable informative data
analysis. These tools extend to higher order tensors, to combine dynamic analysis
of changing structures.

In particular we view these tools as necessary to enable automated empirical
modeling, in which the goal is to model dynamics in nature, ab initio, through ob-
servations alone. We will illustrate recent developments in which physical models
can be discovered and modelled directly from observations, in which the conven-
tional Newtonian differential equations, are replaced by observed geometric data
constraints. This work represents an extended global collaboration including, re-
cently, A. Averbuch, A. Singer, Y. Kevrekidis, R. Talmon, M. Gavish, W. Leeb, J.
Ankenman, G. Mishne and many more.

1 Introduction

Wedescribe developments inHarmonicAnalysis on subsets ofRn, methodologieswhich
integrate geometry, combinatorics, probability and Harmonic analysis, both linear and
nonlinear. We view the emerging structures, as providing natural settings to enable data
driven Empirical models for observed dynamics.

Our initial focus is on methods applicable to discrete subsets viewed here as data
samples on a continuous structure, a varifold, an infinite dimensional metric space etc.
These samples could be generated through a discretization of a stochastic differential
equation or through observations of natural or human driven processes.

The challenges of high dimensions, and the need to process massive amounts of
seemingly unstructured clouds of points in Rn (sometimes data) forces us to introduce
automated analytic methodologies to reveal the geometry of natural data, understand
natural function spaces, or operators on such functions.
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A basic insight is that the geometry of a subset is intimately connected to the ge-
ometry of functions on its points, (or sometimes operators on functions) not just the
coordinate functions which are linear functions, or exponentials eix�w , with random w

or band limited functions and corresponding prolate functions or, more generally, the
eigenvectors of natural operators such as graph Laplacians on the subset.

We exploit the fact that eigenvectors of the Laplace Beltrami operator on a manifold
(or their discrete approximations), provide, both a high dimensional embedding of the
manifold, and a coordinate system, opening the door to analysis.

Some of these ideas are well known classically, for riemannian manifolds, where
the Laplace operator, Dirac operators, pseudo differential operators, enable the passage
from local properties, to global geometric invariants (as in Atiyah–Singer theories). In
Harmonic Analysis, well known theorems, of G. David, S. Semmes and Peter Jones,
show the equivalence of the existence of a bi-Lipschitz parameterization of a subset of
Rn and the boundedness of the restriction of Calderon Zygmund operators, as well as
some geometric multi-scale Carleson measure type deviation estimates.

The program described here, can be viewed as describing “unsupervised geometric
machine learning”, and parallels some of the goals and methodologies of Deep Neural
nets (such as variational auto encoders), and Recurrent Neural nets, where a variety of
algorithms strive to build generative models. for data clouds, see an overview by LeCun,
Bengio, and Hinton [2015]. The duality ( or triality) point of view described here can
be seen as complementary, and necessary to provide better understanding of internal
dependence structures.

One of our goals in this paper is to describe the interplay of such analytic tools with
the geometry and combinatorics of data and information. We will provide a range of
illustrations and application to the analysis of operators, as well as to the analysis of
documents, questionnaires, and higher dimensional data bases viewed as tensors.

As will become apparent, the data geometry, or document organization point of
view, can illuminate and inspire fundamental questions of geometry, such as duality
and Heisenberg principles in riemannian geometry, Carnot geometry etc, defining “dual
metric” structures on the set of eigenvectors of the Laplace operator, (or sub-Laplace
operator). Similarly the abstract organization of data bases, can inspire deep geometric
organization of operators, their decompositions and analysis (following the Calderon
Zygmund ‘hard’ Harmonic Analysis paradigm). In particular the tuning of the geome-
try to the nature of an operator, as well as the 3 tensor geometry that we discuss, could
illuminate the variable geometric structures, which arise in solving nonlinear partial
differential equations, defining “naturally evolving metric spaces”.

The following topics are interlaced in this presentation:

(a) Geometries of point clouds, and their graphs.

(b) From local to global, the role of eigenfunctions as integrators.

(c) Diffusion geometries in original coordinates, and organization in “intrinsic coordi-
nates”.

(d) Coupled dual geometries, Matrices of Data and Operators, duality between rows
and columns, tensor product geometries.
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(e) Harmonic Analysis, Haar systems, tensor Besov and bi-Hölder functions, Calderon
Zygmund decompositions.

(f) Sparse grids and efficient processing of data.

(g) Applications; to Mathematics, organization of operators, the dual geometries of
eigenvectors,

(h) Application to empirical modeling of natural dynamical systems through observa-
tions alone, defining intrinsic latent variables. Triality or, extensions of duality to
3 tensors.

2 Geometries of point clouds in Rn

2.1 Illustrative example. Usually when considering a data set, each item or docu-
ment is converted into a vector in high dimensional Euclidean space. For example a
text document could be converted to the vector, whose coordinates are, the list of occur-
rence frequencies of words in a lexicon. A particularly illuminating example carrying
the complexity of issues we wish to address is a Corpus of text documents represented
as a collection, or list of points in Rn.

They have to be organized according to their mutual relevance. We can view this list
either as a single cloud of documents or as a database matrix, in which each column is a
document and each row, is the list of probabilities of occurrence of a given word in the
various documents. We view the words as functions on the documents, and the docu-
ments as functions on the words. We will describe an ab initio geometric methodology
to jointly assemble the language and the documents into a “smooth” coherent structure,
in which documents are organized by context or topic, and vocabulary is organized con-
ceptually by contextual occurrences. We will later describe an adapted tensor geometry
and harmonic analysis of rows and columns that links concept and context by duality.

The naïve approach to use the distance (or similarity) between two documents through
their Euclidean distance or their inner product, is bound to fail, as already in moderate
dimensions most points are far away, or essentially orthogonal. The distances in high
dimensions are informative only when they are quite small, leading to the “connect the
dots” diffusion geometry.

For this example if the distribution of the vocabulary in two documents are extremely
close, we can infer that they deal with a similar topic. In this case we can link the two
documents and weigh the link by a weight reflecting the probability that the documents
are dealing with the same topic. This construction builds a graph of documents, as well
as a corresponding random walk (or diffusion process) on the graph. The analogy with
riemannian geometry, in which we have a local metric, which defines a Laplace operator
or a heat diffusion process is quite obvious, and will drive much of the initial discussion.

However; this approach to organize the documents as a cloud of points is by itself
faulty as it does not account directly for the conceptual similarity, and dependencies
between words, or between documents and their content. In order to untangle these
relations we view the collection of documents as a matrix in row columns duality.
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The columns are viewed as functions on the rows and the rows as functions on the
columns. We organize the columns into a hierarchy of topics, (a partition tree of sub-
sets.) These topical groups are then used to organize the vocabulary (rows) into a graph
by their co-occurrence in various document topics. This enables the organization of the
vocabulary into a hierarchy of conceptual groups, which themselves can be reused to
redefine the affinity between documents, ( this process can be iterated as long as we
gain in efficiency and precision of the representation) Coupling the construction of the
two partition tree Hierarchies – on the columns and the rows – takes us away from the
representation of the dataset as a point cloud in Euclidean space, towards representa-
tion of the dataset as a function on the product set frowsg � fcolumnsg. This natural
document organization is quite abstract and will be quantified below, in particular it
will become clear that the construction generalizes various methods of organization in
Numerical Analysis, and Harmonic Analysis, and extends naturally to higher order ten-
sorial structures.

2.2 Calculus. The first fundamental point is that there is a natural reformulation of
the basic concepts of Differential Calculus (or PDE) in terms of eigenvectors of appro-
priate linear transformations that will enable us to go from this local or infinitesimal
description to an integrated global view of a data cloud. More generally it explains the
ability to build data driven empirical models, without the use of calculus. We start from
a simple reformulation of the fundamental theorem of calculus, which is an observation
of Amit Singer. A basic problem already posed by Cauchy is the following:

Sensor Localization Problem. Assume we know some of the distances
between a set of points in Euclidean space and assume these distances are
known to determine the system, how does one map the points?

Think of the particular example where you know the distances of each city of a coun-
try to a few nearest neighbors: how would one manage to condense that information
into a map of that country? There is a trivial answer: if enough local triangles with
known lengths are given, then we can compute a local map which can be assembled
bit by bit like a puzzle: this can be thought of as an analogue of integration. A more
powerful method is obtained by writing each point pi as the center of mass of its known
neighbors, i.e.

pi =
X

pj ∼pi

wijpj where
X

j

wij = 1:

Observe that these equations are invariant under rigid motion and scaling. This tells
us that the vector of x�coordinates of all points is an eigenvector corresponding to
eigenvalue 1 of the matrixW . Similarly, the vector of y�coordinates and the vector all
of whose coordinates are 1 are also in the same space. We thus see easily that the solution
to the sensor localization problem is obtained by finding a basis of this eigenspace and
expressing three points in this basis (using their mutual distances). Similarly, if we are
given a set of points (n; f (n)) 2 R2 and we know the differences jf (n) � f (n � 1)j
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and jf (n) � f (n � 2)j, then we can determine f (which is a simple variant of the
fundamental theorem of Calculus).

2.3 Diffusion. We now return to point clouds in Rn. We can define a notion of local
affinity, or similarity between elements of a set of points fp1; : : : ; png � Rn via the
matrix

Aij =
exp(�jpi � pj j2/")Pn

k=1 exp(�jpi � pkj2/")
:

This matrix can be interpreted as collecting the transition probabilities of a Markov
process. " > 0 is a parameter controlling the scale of influence (with small " making
a transition to very close neighbors likely while " large allows for medium- and long-
range transitions). Alternatively, it may be preferable to consider a notion of similarity
given by

Aij =
exp(�jpi � pj j2/")

!i!j

where the weights !i ; !j are chosen such that A is Markov matrix in both rows and
columns (seeN.Marshall andCoifman [2017]). Later wewill correct it, or select a graph
structure optimized for efficient analysis of functions on the data cloud, or to discover
intrinsic riemannian metrics. It is easy to verify that in the case that the points are
uniformly distributed on a smooth submanifold of Euclidean space∆ = (I �A)/" is an
approximation (in a weak topology ) of the Laplace–Beltrami operator on the manifold.
Moreover, eigenvectors of A approximate the eigenvectors of the Laplace operator and
powers ofA correspond to diffusion on the manifold scaled by ". See Belkin and Niyogi
[2001], Lafon [2004], and Marshall and Coifman [2017].

Another more generic (non manifold) example consists of data generated through a
stochastic Langevin equation, (a stochastic gradient descent differential equation) this
kind of data can be also organized as above, with ∆ = (I � A)/� approximating the
corresponding Fokker Plank operator. Coifman [2005] and Coifman, Lafon, Lee, Mag-
gioni, Nadler, Warner, and Zucker [2005]

We can diagonalizeA and use the eigenvectors ofA to define powers of the diffusion

At (pi ; pj ) =

nX
k=1

�t
k�k(pi )�k(pj ):

This one-parameter family of diffusion defines an embedding Φt in Rn as follows:

Φt (pi ) =
˚
�t

k�k(pi ) : 1 � k � n
	
:

We see that this embedding can be computed to any precision by restricting the eigen-
vector expansion to the first few eigenvectors (depending on the decay of the eigenval-
ues (�k)). This enables a lower-dimensional embedding of the data through what we
call the diffusion map. The eigenvectors can also provide natural local coordinates on
the manifold, see Jones, Maggioni, and Schul [2008]. In the case of stochastic data
the eigenfunctions approximate the eigenvectors of the Fokker Plank operator, they are
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supported on the main diffusion trails, and reveal latent variables. See Nadler, Lafon,
Coifman, and I. G. Kevrekidis [2006]

The diffusion distance at time t is given, in the bi-stochastic symmetric case as

d 2
t (p; q) = At (p; p) + At (q; q) � 2At (p; q) = jΦt (p) � Φt (q)j

2

Where At represents the t power of A or the diffusion at time t.

3 Harmonic-Analysis of Databases-Matrices, and Tensors

3.1 Matrix organization in high dimensional Data analysis. Our claim is that when
dealing with a subset of Rn where n is large but the subset locally is of much lower
dimension, exhibiting local correlations, for example if the subset is a subset of a Var-
ifold, or the cloud is formed by stochastic orbits of dynamical systems, one wishes to
understand and encapsulate the local constraints. Moreover linear functions such as the
coordinates are not linear as functions on the set. In fact any collection of functions can
provide us more coordinates. In particular, band limited functions such as exp(ihx; �i)
where j�j < C are quite informative in revealing the geometry. More general plane
waves as generated through deep neural nets can serve similar modeling functions.

As illustrated before on the example of a Corpus of text documents. It becomes
productive to view the points as a matrix of data, or a discretized version of a kernel,
both rows and columns could correspond to real-world variables or entities of enduring
interest. The values of n (dimension) and p (number of points) are often of comparable
magnitude, may both be large, and in an asymptotic analysis, may both be allowed to
grow to infinity. The correlation or codependence structure of both rows and columns is
of interest, this has been a main point of analysis, when viewing the data as a matrix of
an operator, such as a Green operator, or an eigendecomposition transform, discussed
below.

3.2 Matrix organization in numerical analysis. A bottleneck in many numerical
analysis tasks involves the need to store very large matrices, apply them to vectors and
compute functions of the operators they represent. For example the Fast Fourier Trans-
form and the Fast Multipole Methods are explicitly based on exploiting the known
geometrical organization of the row set and the column set of the transformation. A
corresponding paradigm in Harmonic Analysis is the organization of an operator as in
Calderon–Zygmund theory, ( Here we derive automatically the C-Z organization di-
rectly from the kernel of the operator or the data matrix).

Consider V. Rokhlin’s Fast Multipole Method algorithm Greengard and Rokhlin
[1987], which organizes a matrix

Mi;j = kxi � yj k
�1

of electrostatic or gravitational interactions between a known set of sources fxi g � R3

and a known set of receivers fyj g � R3, by exploiting the known geometry of the
source set (the column set, say) and the receiver set (the row set). A similar approach
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yields fast wavelet transforms of linear operators Alpert, Beylkin, Coifman, and Rokhlin
[1993]. There, too, the known organization of matrix rows and columns leads to effi-
cient algorithms for storing, applying and computing functions of certain linear opera-
tors. Suppose however that we wish to apply an analog of the Fast Multipole method

Figure 1: Geometric unravelling of a scrambled matrix (random labels) of poten-
tial interactions (b). Charges are on the spiral, receivers in the plane. Our matrix
organization reveals the two geometries and their internal structures.

to a given matrix of electrostatic interactions,Mi;j = kxi � yj k�1, where the sets fxi g

and fyj g themselves are unknown. The order in which rows and columns are given
is meaningless, yet the locations fxi g and fyj g remain encoded in M . (Figure 1) In
this context, the theory developed below leads to data agnostic organizational methods
which are able, even for some oscillatory potentials, such as M (xi ; yj ) = Mi;j =

cos(100kxi � yj k)kxi � yj k�1 to recover the underlying coupled source and receiver
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“geometric optics”, (in the case of points sampled on a surface or a curve ), and further-
more leads to orthonormal bases enabling the implementation of a corresponding fast
transform, analogous to Alpert, Beylkin, Coifman, and Rokhlin [1993], the `1 norm of
matrix coefficients in this basis measures the compression rate it is able to achieve: It
can be easily proved that this norm controls the mixed smoothness of the matrix.

3.3 Setup. LetM be a matrix, we denote its column set by X and its row set by Y .
M can be viewed as a function on the product space, namely

M : X � Y ! R

Our first step in processingM , regardless of the particular problem, is to simultaneously
organize X and Y , or in other words, to construct a product geometry on X � Y in
which proximity (in some appropriate metrics) implies predictability of matrix entries.
Equivalently, we would like the functionM to be “smooth” with respect to the tensor
product geometry in its domain. As we will see, smoothness, compressibility, having
low entropy, are all interlinked in this organization. We start by redefining the classical
notions of smoothness in the context of tree metrics.

3.4 Brief description of Haar Bases. A hierarchical partition tree on a dataset X is
an ordered collection of (finite) disjoint covers of the set where each cover is a refine-
ment of the preceding cover, Such a structure allows harmonic analysis of real-valued
functions onX , as it induces special orthonormal Haar bases Gavish, Nadler, and Coif-
man [2010]. The elements of the cover will be denoted as folders or nodes of the tree
connecting a folder to the coarser folder containing it.

A Haar basis is obtained from a partition tree as follows. Suppose that a node (subset
or folder) in the tree has n children, that is, that the set described by the node decomposes
into n subsets in the next, more refined, level. Then this node contributes n�1 functions
to the basis. These functions are all supported on the set described by the node, are
piecewise constant on its n subsets, all mutually orthogonal, and are orthogonal to the
constant function on the set.

Observe that just like the classical Haar functions, coefficients of an expansion in
a Haar basis measure variability of the conditional expectations of the function in sub
nodes of a given node.

Tasks such as compression of functions on the data set, as well as subsampling, de-
noising and “learning” such functions, can be performed in Haar coefficient space us-
ing methods familiar from Euclidean harmonic analysis and signal processing Gavish,
Nadler, and Coifman [ibid.].

Some results for the classical Haar basis on [0; 1] extend to generalized Haar bases.
Recall that the classical Haar functions based on the dyadic tree are given by

hI (x) =
�
jI j

� 1
2

�
(�� � �+) ;

where �� is the indicator of the left half of I and �+ is the indicator of the right half of
I .
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Figure 2: A partition tree on the unit interval starting with a partition into three
subintervals, one of which is further divided in two and the other two into three
subintervals. The corresponding Haar functions are orthogonal, measuring the
variation of averages among neighbors, with the color corresponding to their sign.

The classical Haar basis on [0; 1] is induced by the partition tree of dyadic subinter-
vals of [0; 1]. This tree defines a natural dyadic distance d (x; y) on [0; 1], defined as
the length of the smallest dyadic interval containing both points. Hölder classes in the
metric d are characterized by the Haar coefficients aI =

R
f (x)hI (x)dx:

jaI j < cjI j
1
2+ˇ

, jf (x) � f (x0)j < c � d (x; x0)ˇ :

A natural partition tree on a set of points in Rd , is the vector quantization tree i.e.
a hierarchical organization into disjoint covers by subsets (folders) of approximate di-
ameter (1/2)n. We define a hierarchical tree distance between two points as being the
diameter of the smallest folder containing both points.

The characterization of smoothness property holds for any Haar basis when d is
the tree metric induced by the partition tree, and jI j = #I

#X
is the normalized size of

the subset (folder) I . (We remark also that for ˇ < 1 the usual Holder condition is
equivalent to dyadic Holder for all shifted dyadic trees.)

We note that there are multiple ways to build partition trees (and corresponding
smoothness spaces). The different construction methods can be divided into two classes:
bottom-up construction and top-down construction. Broadly, a bottom-up construction
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begins with the definition of the lower levels, initially by grouping the leaves/samples,
e.g., using k-means in the diffusion embedding. Then, these groups are further grouped
in an iterative procedure to create the next levels, ending at the root, in which all the
samples are placed under a single folder.

A top-down construction is typically implemented by an iterative clustering method,
initially applied to the entire set of samples, then refined over the course of the iterations,
starting with the root of the tree and ending at the leaves.

A simple blend is achieved by using the first few diffusion eigenvectors, to split
the data into two groups using the first non-trivial eigenvector (approximate max-cut
) then repeating on each subgroup using its own first non-trivial eigenvector, since the
eigenvector computation is a bottom up iteration, this results in a binary tree, which is
often well tuned to the internal data structures.

3.5 Matrix organization through coupled partition trees. To illustrate the basic
concept underlying the simultaneous row-column organization, consider the case of a
vector (namely, a matrix with one row). In this case, the only reasonable organization
would be to bin the entries in decreasing order, (or in binary quantization tree ). This de-
creasing function is obviously smooth outside a small exceptional set (being of bounded
variation). Our approach extends this simple construction – which can be viewed as just
a one-dimensional quantization tree – to a coupled quantization tree.

We now digress briefly to indicate a simple mathematical framework for joint row
and column organization and analysis of a matrix.( quantization bi-trees) which renders
an arbitrary matrix into a bi-Holder matrix, ( extending the one row example). We start
a hierarchical vector quantization tree on the set of columns,X ,(as vectors in Euclidean
space) with tree metric �X .

The tree metric �X is such that the rows are ( tautologically) Lipschitz smooth in
the tree metric, as functions of the columns. This implies that the Haar coefficients
of the rows, relative to the tree on the columns, scale with the diameter. A similar
hierarchical organization on the rescaled Haar coefficients of Y (the rows) as a function
of the variable x, induces a similar tree metric �Y on the rows with a similar smoothness
property of the columns.

Aswewill see this implies that the full matrix is a bi-Lipschitz function i.e. it satisfies
aMixed Lipschitz Hölder condition

jM (x0; y0) �M (x0; y1) �M (x1; y0) +M (x1; y1)j � C ��X (x0; x1)
˛
��Y (y0; y1)

˛

This condition enables the estimation of one value in terms of three neighbors with a
higher order error in the two metrics. (For the square in two dimensions, this would be
a relaxation of the bounded mixed derivative condition

ˇ̌̌
@2M
@x@y

ˇ̌̌
� C , which has been

studied in the context of approximation in high dimensions Smoljak [1963], Gavish and
Coifman [2012], Bungartz and Griebel [2004], and Strömberg [1998].

This simple organization is not very effective in high dimension, as most points are
far away from each other, leading us to explore various constructions of more intrin-
sic data driven metrics and trees, such as the diffusion metrics described above, or the
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corresponding “earth mover” metrics. One of our goals is to achieve higher efficiency
in representing the matrix, and develop a Harmonic Analysis, or signal processing of
functions on X � Y . In particular we will see this as an automatic process to build a
multiscale Harmonic Analysis of an operator, or Matrix.

We describe briefly elementary analysis of the Mixed Hölder function classes (as
well as their Besov space duals) on an abstract product set equipped with a partition
tree pair. A useful tool is an orthogonal transform for the space of matrices (functions
on X � Y ), naturally induced by the pair of partition trees (or the tensor product of
the corresponding martingale difference transforms). Specifically, we take the tensor
product of the Haar bases induced on X and on Y by their respective partition trees,

The Mixed-Hölder arises naturally in several different ways. First, as seen above for
vector quantization trees, any matrix can be given Mixed Hölder structure. Second, it
can be shown that any bounded matrix decomposes into a sum of a Mixed Hölder part
and a part with small support ( as for the one row example). ( of course the constants
are pretty bad for random data in high dimensions)

3.6 Coupled partition trees, optimized duality. Our goal is to build coupled par-
tition trees to optimize compression of the original function (Matrix) expanded in the
tensor Haar basis, say by minimizing an l1 norm of the tensor Haar coefficients. Such
a task requires the discovery of both systems of Haar functions, it is clear that a unique
minimizer does not exist in general. Moreover, the appropriate structure is a function of
context and precision, as will become clear for various examples, in mathematics and
beyond.

We now consider a matrixM and assume two partition trees – one on the column set
ofM and one on the row set ofM – have already been constructed. Each tree induces
a Haar basis and a tree metric as above. The tensor product of the Haar bases is an
orthonormal basis for the space of matrices of the same dimensions asM . We review
some analysis ofM in this basis.

Denote by jRj = jI � J j a “rectangle” of entries of M , where I is a folder in the
column tree and J is a folder in the row tree. Denote by jRj = jI jjJ j the volume of the
“rectangle” R. Indexing Haar functions by their support folders, we write hI (x) for a
Haar function on the rows. This allows us to index basis functions in the tensor product
basis by rectangles and write hR(x; y) = hI (x)hJ (y).

Analysis and synthesis of the matrix M is in the tensor orthonormal Haar basis is
simply

aR =

Z
M (x; y)hR(x; y)dxdy

M (x; y) =
X

R

aRhR(x; y) :

The characterization of Hölder functions mentioned above extends to mixed-Hölder
matrices Coifman and Gavish [2011] and Gavish and Coifman [2012]:
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ˇ̌̌
aR

ˇ̌̌
< c

ˇ̌̌
R

ˇ̌̌1/2+ˇ

,ˇ̌̌
M (x; y) �M (x0; y) �M (x; y0) +M (x0; y0)

ˇ̌̌
� c�X (x; x0)ˇ�Y (y; y

0)ˇ

where �X and �Y are the tree metrics induced by the partition trees on the rows and
columns, respectively. Observe that his condition implies the conventional two dimen-
sional Holder conditionˇ̌̌

M (x; y) �M (x0; y0)
ˇ̌̌

� �X (x; x0)ˇ + �Y (y; y
0)ˇ

Simplicity or sparsity of an expansion is quantified by an “entropy” such as

e˛(M ) =
�X ˇ̌

aR

ˇ̌˛
�1/˛

for some ˛ < 2. We comment that this norm is just a tensor Besov norm that is easily
seen to generalize Earth mover distances when scaled correctly, adding flexibility to
our construction below. This norm can be generalized to the following family of Besov
norms

e˛;ˇ (M ) =
�X ˇ̌

Rj
ˇ

jaR

ˇ̌˛
�1/˛

for some ˛; ˇ. Useful relations between this “entropy”, efficiency of the representation
in tensor Haar basis and the mixed-Hölder condition, is given by the following two
propositions valid for “balanced trees” Coifman and Gavish [2011] and Gavish and
Coifman [2012].

Proposition. Assume e˛(M ) =
�P ˇ̌

aR

ˇ̌˛
�

� 1. Then the number of coefficients
needed to approximate the expansion to precision "1�˛/2 does not exceed "�˛ log("�1)

and we need only consider large coefficients corresponding to Haar functions whose
support is large. Specifically, we haveZ ˇ̌̌

M �
X

jRj>"; jaRj>"

aRhR(x)
ˇ̌̌˛

dx < "1�˛/2

The next proposition shows that e˛(M ) estimates the rate at whichM can be approx-
imated by Hölder functions outside sets of small measure.

Proposition. Let f be such that e˛ � 1. Then there is a decreasing sequence of sets
E` such that jE`j � 2�` and decompositions of Calderon Zygmund type f = g` + b`.
Here, b` is supported on E` and g` is bi-Hölder ˇ = 1/˛� 1/2 with constant 2(`+1)/˛ .
Equivalently, g` has Haar coefficients satisfying jaRj � 2(`+1)/˛jRj1/˛ .

Thus we can decompose any matrix into a “good”, or mixed-Hölder part, and a “bad”
part with small support.



HARMONIC ANALYTIC GEOMETRY 403

Mixed-Hölder matrices indeed deserve to be called “good” matrices, as they can
be substantially sub-sampled. To see this, note that the number of samples needed to
recover the functions to a given precision is of the order of the number of tensor Haar
coefficients needed for that precision. For balanced partition trees, this is approximately
the number of bi-folders R, whose area exceeds the precision ". This number is of the
order of (1/")˛ log (1/").

These remarks imply that the entropy condition quantifies the compatibility between
the pair of partition trees (on the rows and on the columns) and the matrix on which they
are constructed. In other words, to construct useful trees we should seek to minimize
the entropy in the induced tensor Haar basis.

For a given matrix M , finding a partition tree pair, which is a global minimum of
the entropy, is computationally intractable and not sensible, as the matrix could be the
superposition of different structures, corresponding to conflicting organizations. At best
we should attempt to peel off organized structured layers.

The iterative procedures for building tree pairs described previously for the text docu-
ments example, perform well in practice. These procedures alternate between construc-
tion of partition trees on rows and on columns. Each tree defines a Besov norms its dual
( i.e. functions on its nodes) which is used to reorganize the dual into a tree leading to
a new tree on the original nodes.

A nice example in mathematics, is to view the matrix of eigenvectors of the Laplace
operator on a compact riemannian manifold as a data base, in which the columns are the
points on the manifold and the rows are the values at the point of different eigenvectors.

We can organize the riemannian geometry in a multiscale geometry, The construction
described before builds Besov norms on functions on the manifold, which can be used
to measure a distance between eigenvectors ( the L2 distance is useless being =

p
2),

thereby inducing a distance on the “Fourier dual” of Laplace eigenvectors. Of course
different geometries on the space, will give rise to different dual geometries.

To conclude, we see emerging an analysis or “Signal processing toolbox” for digital
data as a first step to analyse the geometry of large data sets in high-dimensional space
and analyse functions defined on such data sets. The ideas described above are strongly
related to nonlinear principal component analysis, kernel methods, spectral graph em-
bedding, and many more, at the intersection of several branches of mathematics, com-
puter science and engineering. They are documented in literally hundreds of papers in
various communities. For a basic introduction to many of these ideas and more, as they
relate to diffusion geometries. We refer the interested reader to the July 2006 special is-
sue of Applied and Computational Harmonic Analysis, and references therein Coifman
and Lafon [2006].

4 Empirical dynamics, or higher dimensional tensors

The purpose of this section is to show that a corresponding generalization of the anal-
ysis to 3-tensors by triality enables the organization of dynamical systems as well as
purely empirical modeling of natural dynamics. A particular implementation of these
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algorithms will allow a systematic realization of all these steps – inferring ”natural ge-
ometries” from data, using just the data organization counterpart of the above discussion:
similarity between nearby observations/measurements.

Recovering the underlying structure of nonlinear dynamical systems from data (“sys-
tem identification”) has attracted significant research efforts over many years, and sev-
eral ingenious techniques have been proposed to address different aspects of this prob-
lem. These include methods to find nonlinear differential equations to discover govern-
ing equations from time-series or video sequences equation-free modeling approaches,
and methods for empirical dynamic modeling. We present methods extending our prior
discussion building upon the work of I. G. Kevrekidis, Gear, Hyman, P. G. Kevrekidis,
Runborg, and Theodoropoulos [2003] and Mezic [2016]. Our goal is the organization
of observations originating from many different types of dynamical systems into a joint
coherent structure, which should parametrize the various dynamical regimes and build
empirical models of the whole observation space. Since we are comparing dynami-
cal observations, which are distorted versions of each other, we are forced to discover
variants of the EMD Shirdhonkar and Jacobs [2008], which go beyond classical trans-
forms in enabling data-driven comparisons between trajectories and their dynamics, see
Ankenman [2014] and Coifman and Leeb [2013]

4.1 ProblemFormulation andToy Examples. In our data agnostic setting, we think
of time-dependent measurements which are the result of a number of experiments that
we will call trials; during each trial, the (unknown “state”) parameter values remain
constant.

In this black box setting, the dynamical system is unknown, nonlinear and autonomous,
and is given by

dx

dt
= f (x;p)(1)

y = h(x)(2)

We do not have access to its state x nor to its parameter values p; we also do not know
the evolution law f , nor the measurement function h. We only have measurements
(observations) y labelled by time t .

The black box is endowed with “knobs” that, in an unknown way, change the values
of the parameters p; so in every trial, for a new, but unknown, set of parameter values
p, we can observe y coming out of the box without knowing x or f or even h. We
want to characterize the system dynamics by systematically organizing our observations
(collected over several trials) of its outputs.

More specifically, we want to (a) organize the observations by finding a set of state
variables and a set of system parameters that jointly preserve the essential features of
the dynamics; and then (b) find the corresponding intrinsic geometry of this combined
variable-parameter space, thus building a sort of normal form for the problem. Small
changes in this jointly intrinsic space will correspond to small changes in dynamic be-
havior (i.e. to robustness). Having discovered a useful “joint geometry” we can then
inspect its individual constituents. Inspecting, for example, the geometry of the dis-
covered parameter space, will help identify regimes of different qualitative behavior.
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This might be different dynamic behavior, like hysteresis, or oscillations, separated by
bifurcations; alternatively, we might observe transitions between different sizes of the
minimal realizations: regimes where the number of minimal variables/parameters nec-
essary in the realization changes.

We can also inspect the identified state variable geometry, which will help us orga-
nize the temporal measurements in coherent phase portraits. In addition, if there exist
regimes where the system becomes singularly perturbed, we expect we will be able to
realize that the requisite minimal phase portrait dimension changes (reduces), and that
the reduction in the number of state variables is linked with the reduction in the number
of intrinsic parameters.

As an illustrative example, consider the following dynamical system, arising in the
unfolding of the Bogdanov–Takens bifurcation Guckenheimer and Holmes [1983]:

dx1

dt
= x2

dx2

dt
= ˇ1 + ˇ2x1 + x

2
1 � x1x2:(3)

This set of differential equations defines a dynamical system with two parameters
p = (ˇ1; ˇ2), two state variables x = (x1; x2), and two observables y = (y1; y2);
at first we choose the observable to be the state variables themselves, i.e., (y1; y2) =

(x1; x2) with h(x) being the identity function. It is known that the parameter space of
this system (ˇ1; ˇ2) can be divided into 4 different regimes separated by one-parameter
bifurcation curves Guckenheimer and Holmes [ibid.]. Figure 1. shows this “ground
truth” bifurcation diagram for our simulated 2D grid of parameter values. Each point
p = (ˇ1; ˇ2) on the grid is colored according to its respective dynamical regime.

Our goal in this case would be to discover an accurate bifurcation map of the system
in a data-driven manner purely from observations. These observations consist of several
samples, where each sample is a single trajectory y(t) of the system initialized with
unknown (possibly different) parameter values and initial values. In addition, we would
like to deduce from these large number of realizations of trajectories y(t) arbitrarily
and differently initialized that the system depends on only two parameters and can be
realized with only two state variables; and to reconstruct the bifurcation diagram with
its phase portraits.

4.2 Learning dynamic structures and latent variables from observations. Con-
sider data arising from an autonomous dynamical system; we view the observations as
entries in a three-dimensional tensor. One axis of the tensor corresponds to variations
in the problem parameters, one to variations in the problem variables, and the third axis
corresponds to time evolution along trajectories.

Formally, let P denote an ensemble of Np sets of the dp system parameters. Let V
be a ensemble of Nv sets of initial condition values of the dv state variables. For each
p 2 P and v 2 V, we observe a trajectory Y (v;p; t) of lengthNt in Rdv of the system
variables, where t = 1; : : : ; Nt denotes the time sample. In summary, p is a label of the
particular differential equations of the dynamical system, v is a label of the observations
trajectory, and t is the time label.
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Figure 3: (up) The Bogdanov–Takens bifurcation maps with insets illustrating the
typical phase-portraits in each dynamical regime. (left) The Bogdanov–Takens
bifurcation map. (right) An example of the phase-portrait of the simulated tra-
jectories of the Bogdanov–Takens system corresponding to the parameter set
(ˇ1; ˇ2) = (�0:1;�0:2), marked by red ’x’ on the left.

Let Y denote the entire 3D tensor of observations of dimension Np �Nv �Nt con-
sisting of all the data at hand. With respect to the black box setting described in the
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introduction, we emphasize that the identity of the parameters and variables is hidden;
we only have trajectories of observations corresponding to various trials with possibly
different hidden parameter values and with different hidden initial input coordinates.

Tomake the problem definition concrete we describe the setting of a specific example.
Recall the Bogdanov–Takens dynamical system of two variables and two parameters,
introduced in (3). We generate a set P of Np = 400 different parameter values p =

(ˇ1; ˇ2) from a regular fixed 2D grid, where ˇ1 2 [�0:2; 0:2] and ˇ2 2 [�1; 1], and
additional 10 parameter values located exactly on the bifurcation. Similarly, we generate
a set V of Nv = 441 different initial conditions v = (y1(0); y2(0)) from a fixed 2D
grid in [�1; 1]2. For each p 2 P and v 2 V, we observe a trajectory of the system
for Nt = 200 time steps, where the interval between two adjacent time samples is
∆t = 0:004 [sec] and collect all the trajectories into a single 3D tensor Y. In this
example, Np = 410; Nv = 441 and Nt = 200 so overall we have Y 2 R410�441�200.
For illustration purposes, Figure 3. (right) depicts ˇ1 = �0:1 and ˇ2 = �0:2 (marked
by a red ‘�’ in Figure 3 (left)).

Figure 4: (left) Data-driven embedding of the parameters axis of the observations
collected from the Bogdanov–Takens system (colored according to the true bi-
furcation map). Embeddings built from (a) state variable observations; and (b)
observations through a nonlinear invertible function. (right) Data-driven embed-
ding of the state variables axis (c) colored by the initial conditions of x1, and (d)
by the initial conditions of x2.
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We note that the trajectories (as illustrated in Figure 3) are long enough to partially
overlap in phase space. Such an overlap induces the coupling between the time and
variables axes, which is captured and exploited by our analysis. We wish to find a
reliable representation of the hidden parameters, of the hidden variables, and of the
time axis.

Define yp = fY (v;p; t)j8v;8tg for each of the Np vectors of hidden parameter
values p in P , namely, a data sample consisting of all the trajectories from a single trial.
For simplicity of notation, we will use subscripts to denote both the appropriate axis
and a specific set of entries values on the axis. We refer to fypg;p 2 P as the data
samples from the parameters axis viewpoint. In the Bogdanov–Takens example, Figure
3 depicts yp for p = (ˇ1; ˇ2) = (�0:1;�0:2).

Similarly, let yv and y t be the samples from the viewpoints of the variables axis and
the time axis, respectively, which are defined by

yv = fY (v;p; t)j8p;8tg ; v 2 V

y t = fY (v;p; t)j8v;8pg ; t = 1; : : : ; Nt :

One way to accomplish our goal is to process the data three successive times, each time
from a different viewpoint.

Here, we use a data-driven parametrization approach based on a kernel. From the
trials (effectively, parameters) axis point of view, a typical kernel is defined by

(4) k(yp1
;yp2

) = e�kyp1
�yp2

k2/�;8p1;p2 2 P

based on distances between any pair of samples, where the Gaussian function induces a
sense of locality relative to the kernel scale �. To aggregate the pairwise affinities com-
prising the kernel into a global parametrization, traditionally, the eigenvalue decompo-
sition (EVD) is applied to the kernel, and the eigenvalues and eigenvectors are used to
construct the desired parametrization. The specific initial parametrization method that
is used here is diffusion maps Coifman and Maggioni [2006].

From three separate diffusion maps applications to the sets fypg, fyvg, and fy t g,
we can obtain three mappings as in (??), denoting the associated eigenvectors by f P

` g,
f V

` g, and f T
` g, respectively.

However, such mappings do not take into account the strong correlations and co-
dependencies between the parameter values and the dynamics of the variables which
arise in typical dynamical systems. For example, in the Bogdanov–Takens system, the
dynamical regime changes significantly depending on the values of the parameters.

To incorporate such co-dependencies, we extend the mutual metric learning algo-
rithm described for matrices in order to build flexible EMD like distances on each axes
of this 3 tensor. In the introduction of the affinity matrix in (4), we deliberately did not
specify the norm used to compare between two samples. Common practice is to use the
Euclidean norm. However, as pointed out by Lafon [2004] anisotropic diffusion maps
can be computed by using different norms. This issue has been extensively studied re-
cently, and several norms and metrics have been developed for this purpose by Mishne,
Talmon, Meir, Schiller, Dubin, and Coifman [2015], Dsilva, Talmon, Gear, Coifman,
and I. G. Kevrekidis [2016].



HARMONIC ANALYTIC GEOMETRY 409

Here, following Mishne, Talmon, Meir, Schiller, Dubin, and Coifman [2015], we
describe the 3- tensor extension of the preceding metric learning construction for matrix
organization where the different axis geometries evolve together.

4.3 Tensor Metric Construction, or “informed metrics” .

Partition Trees, and 3 tensor Besov spaces. The construction described previously
for matrices, is easily extended to higher dimensional tensors, the only constraint is to
define appropriate metrics on each coordinate axis, in the three tensor case a coordinate
label defines a submatrix, wematch two labels 1 and 2 through the tensor Besov distance
between them,

d˛;ˇ (M1 �M2) =
�X ˇ̌

Rj
ˇ

ja1R � a2R
ˇ̌˛

�1/˛

for some ˛; ˇ. ) Observe that the Besov distance for ˇ > 0, can be computed without
using the Haar functions, simply by replacing the Haar coefficient on the submatrix R
by the average on R, see Coifman and Leeb [2013] and Ankenman [2014] We build
a partition tree for each axis based on this tensor product metric. Observe that this is
a flexible metric generalizing earth mover to the context of matrices, where rows and
columns have different smoothness geometries, it is not a conventional transportation
metric.

4.4 Iterative Metric Construction. The construction of the partition tree described
above relies on a learning a metric between the samples on the different axis coordinates
(sample labels), in which the construction of the tree relies on an iteratively evolving
“metric” induced by partition trees on the coordinates of the samples. Namely, the con-
struction of Tv relies on a metric between the samples yv which are matrices in the p, t
labels, i.e., it uses the 2 tensor Besov distance or EMD. and the construction of Tt relies
on a metric between the samples v, p Given Tv and Tt , the informed metric between the
samples yp is constructed, and then, used to build a new partition tree Tp of the sam-
ples yp . In the second substep within the iteration, Tp can be used to construct refined
metrics between yv and between y t .

Once the metric is constructed, it can be used to build a partition tree Tp on the
samples yp .

The construction of the informed metric between the samples yp described above
is repeated in an analogous manner to build informed metrics between the samples yv

and between the samples y t . Proving convergence for this “iterative, self-consistent
re-normalization” of the coordinates, is the subject of current research.

We note that the particular choice of the specific Besov norm is explained in detail
in Coifman and Leeb [2013] yet other L2 type norms can be used depending on the
application at hand.

First, the recursive procedure described above repeats in iterative manner, where in
each iteration, three informed metrics are constructed one by one, based on the met-
rics from the preceding iteration. As the iterations progress, the metrics are gradually
refined, and the dependency on the initialization is reduced.
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Ourmethod is applied to the 3D tensor of trajectoriesY collected from theBogdanov–
Takens system. As described above, Y consists of (short) trajectories of observations
arising from the system initialized with various initial conditions and with various pa-
rameters. We emphasize that the knowledge of the different regimes and the bifurcation
map were not taken into account in the analysis; only the time-dependent data Y were
considered.

Figure 4 (a) depicts the scatter plot of the two dominant eigenvectors representing
the parameters axis. It consists of Np points (the length of the eigenvectors), where
each point corresponds to a single sample yp 2 RNv�Nt , which is associated with
parameters values p = (ˇ1; ˇ2) on the 2D grid depicted in Figure 3. Moreover, each
point in Figure 1 is colored by the same color-coding used in Figure 2. We observe
that our method discovers an empirical bifurcation mapping of the system. Indeed, the
obtained representation of the parameters through the eigenvectors establishes a new
coordinate system with a geometry, built solely from observations, which reflects the
organization of the parameters space according to the true underlying bifurcation map
– the “visual homeomorphism” (stopping short of claiming visual isometry) is clear.

To illustrate the generality of our method, we now apply a nonlinear (yet invertible)
observation function

z(t) = h(x(t))

with hk(x(t)) =
q
aT

k
x(t) + ˛k ; k = 1; 2, where ak is a random observation vector

and ˛k is a constant set to guarantee positivity. Figure 4 (b) depicts the scatter plot of
the two dominant eigenvectors representing the parameters axis obtained from the new
set of nonlinear observations. An equivalent organization is clearly achieved.

Figure 4 (c) depicts the scatter plot of the two dominant eigenvectors representing
the state variable axis. The plot consists of Nv points (the length of the eigenvectors),
where each point corresponds to a single sampleyv 2 RNp�Nt , which is associatedwith
a particular set of initial condition values v = (y1(0); y2(0)). The embedded points are
colored in Figure 4 (c) by the initial conditions of the variable y1, and in Figure 4 (d) by
the initial conditions of the variable y2. The color-coding implies that the recovered 2D
space corresponds to the 2D space of the true variables of the system. In other words,
the high dimensional samples yv are embedded in a 2D space, which recovers a 2D
structure accurately representing the true directions of the hidden, minimal, two state
variables of the system.

4.5 Two Coupled Pendula. To demonstrate the ability to extract true physical pa-
rameters we simulate a system of two simple coupled pendula with equal lengths L and
equal masses m, connected by a spring with variable constant k(t), (corresponding to
variable dynamics that we need recover)

To highlight the broad scope of our approach from a data analysis perspective, we
assume that we do not have direct access to the horizontal displacement. Instead, we
generate movies of the motion of the coupled pendula ). We now apply a fixed, invert-
ible, random projection to each frame of the movie. In other words, each frame of the
movie was multiplied by a fixed matrix, whose columns were independently sampled
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from a multivariate normal distribution and normalized to have a unit norm. The result-
ing movie with the projected frames can be found on YouTube under the title Coupled
Pendulum Random Projection.

Figure 5: An example of a snapshot of the coupled pendulum system paired with
its random projection counterpart.

Figure 6: The Fourier spectrogram of the principal eigenvector representing the
time axis. These results are based on the random projections of the movies frames
with the same time-varying spring constant. The two frequencies !1 and !2(t)
are overlayed on the spectrogram. The dashed red line corresponds to the fixed os-
cillation frequency !1 and the dotted yellow line corresponds to the time-varying
oscillation frequency !2.

The pendulum model above was designed as an analogy to calcium fluorescence
measuring neuronal activity in the motor cortex of a mouse repeating a task on multipls
trials, the fluctuating pixels of the pendulum codes led us to latent variable which are
the time variable normal modes. Identical processing on neuronal fluctuations should
reveal internal latent controls

The setting in the figure below is identical to the one described above, see Figure 7,
but we don’t assume any equations and follow Mishne, Talmon, Meir, Schiller, Dubin,
and Coifman [2015] in which the project is described

https://www.youtube.com/watch?v=xz0hzQTyPGo
https://www.youtube.com/watch?v=xz0hzQTyPGo
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Figure 7: This figure illustrates the setting of our tri-geometry analysis of the
collected trial-based neuronal activity from the motor cortical region. These mea-
surements were taken from a behaving mouse in a single day of experiments. The
data is composed of 60 trials. A single trial consists of 12 seconds acquired at
10Hz. The recordings are taken from 121 neurons located in M1 cortex. The
entire data set of neuronal activity is therefore viewed as a 3-dimensional ten-
sor(left), measuring a (121-dimensional) vector of neuronal activity at each time
frame within each trial, and the neuronal activity is represented by the intensity
level of the image (blue – no activity, red – high activity) The three trees in triality
are plotted and a sub box in yellow corresponds to a group of neurons coactivity
on a group of trials, at a fixed period. The data is visualized on the right as 2D
slices of temporal neural images, with a clean neural map extracted in green, and
the neuron graph above.

5 Learning Empirical Intrinsic Geometry, EIG

In the preceding sections we have glossed over the basic problem of initializing the
geometric affinity, we ignored the dependence of the eigenvectors on the coordinate
system. We now describe with more detail, a simpler setup where empirical analysis
reveals the underlying intrinsic latent geometric coordinates on which data is measured.

Our basic assumption is, that we are observing a stochastic time series governed
by a Langevin equation on a riemannian manifold, these observations are transformed
through a nonlinear transformation into high dimensions in an ambient unknown in-
dependent noisy environment. Our goal is to show that we can recover the original
riemannian manifold as well as the potential, driving the dynamics of the observations.
Moreover by building a geometry capturing the normalized variabilities of local statis-
tical histograms, we eliminate the effect of external noise interferences.

As an example consider a molecule (Alanine Dipeptide) consisting of 10 atoms and
oscillating stochasticallly in water. It is known that the configuration at any given time
is essentially described by two angle parameters. We assume that we observe five atoms
of the molecule for a certain period of time, and five other atoms in the remainder time.
The task is to describe the position of all atoms at all times, or more precisely, discover
the angle parameters and their relation to the position of all atoms. See Figure 8. The
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main point is that the observations are quite different, perhaps using completely different
sensors in different environments ( but same dynamic phenomenon) and that we derive
an identical intrinsic “natural” manifold parameterizing the observations.
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 ࢥ

Figure 8: (a) A representative molecular structure of Alanine Dipeptide, exclud-
ing the hydrogens. The atoms are numbered and the two dihedral angles � and
 are indicated. (b)-(c): A 2-dimensional scatter plot of random trajectories of
the dihedral angles � and  . Based on observations of the corresponding random
trajectories of merely five out of ten atoms of the molecule, we infer a model de-
scribing one of the angles. The points are colored according to the values of the
inferred model from the five even atoms (b) and the five odd atoms (c). We ob-
serve that the gradient of the color is parallel to the x-axis, indicating an adequate
representation of one of the angles. In addition, the color patterns are similar,
indicating that the models are independent of the particular atoms observed, and
describe the common intrinsic parameterization of the molecule dynamics.

An important remark is that we observe stochastic data constrained to lie on an un-
known riemannianmanifold, that we need somehow to reconstruct explicitly, not having
any coordinate system on the manifold. This is achieved through the explicit construc-
tion of the eigenvectors of an intrinsic Laplace operator on the manifold (observations),
these can be used to obtain a low dimensional canonical embeddings independent of
observation modality, and obtain local charts on the manifold. This invariant descrip-
tion of the dynamics, is similar to the reformulation of Newton’s law through invariant
Hamiltonian equations see Talmon and Coifman [2013].

Broad outline.
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To achieve this task and learn an intrinsic riemannian manifold structure,
we assume that we observe stochastic clouds of points corresponding to
some unknown standard brownian ensemble ( as in the example of the Ala-
nine molecule for short time intervals). More specifically this process has
three scales:
The first identifies “local micro clouds” and converts them to statistical
histograms.
The second relates clouds of histograms to each other using the affine in-
variant Mahalanobis metric between histograms, this metric is immune to
the distortion due to independent noise.
The third builds the whole riemannian manifold by integrating the local
metrics

.
This provides an intrinsic riemannian manifold that is both insensitive to noise

and, invariant to changes of variables.
(This construction is a data driven version of information geometry see Ollivier

[n.d.])

5.1 detailed description. Specifically and for simplicity of exposition, we consider a
flat manifold for which we adopt the state-space formalism to provide a generic problem
formulation that may be adapted to a wide variety of applications.

Let � t be a d -dimensional underlying coordinates of a process in time index t . The
dynamics of the process are described by normalized stochastic differential equations
as follows1

(5) d� i
t = ai (� i

t )dt + dw
i
t ; i = 1; : : : ; d;

where ai are unknown drift functions and ẇi
t are independent white noises. For sim-

plicity, we consider here normalized processes with unit variance noises. Since ai are
any drift functions, we may first apply normalization without effecting the following
derivation. See Singer and Coifman [2008] and Talmon and Coifman [2013] for details.
We note that the underlying process is equivalent to the system state in the classical
terminology of the state-space approach.

Let yt denote an n-dimensional observation process in time index t , drawn from a
probability density function (pdf) f (y;�). The statistics of the observation process are
time-varying and depend on the underlying process � t . We consider a model in which
the clean observation process is accessible only via a noisy n-dimensional measurement
process zt , given by

(6) zt = g(yt ; vt )

where g is an unknown (possibly nonlinear) measurement function and vt is a corrupting
n-dimensional measurement noise, drawn from an unknown stationary pdf q(v) and
independent of yt .

1xi denotes access to the i th coordinate of a point x.
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The description of � t constitutes a parametric manifold that controls the accessible
measurements at-hand. Our goal is to reveal the underlying process � t and its dynamics
based on a sequence of measurements fzt g.

Let p(z;�) denote the pdf of the measured process zt controlled by � t , it satisfies
the following property.

Lemma 1. The pdf of the measured process zt is a linear transformation of the pdf of
the clean observation component yt .

The proof is obvious, relying on the independence of yt and vt , the pdf of the mea-
sured process is given by

(7) p(z;�) =
Z

g(y;v)=z

f (y;�)q(v)dydv:

We note that in the common case of additive measurement noise, i.e., g(y; v) =

y+ v, only a single solution v(z) = z � y exists. Thus, p(z;�) in (7) becomes a linear
convolution

p(z;�) =
Z
y

f (y;�)q(z � y)dy = f (z;�) � q(z):

The dynamics of the underlying process are conveyed by the time-varying pdf of the
measured process. Thus, this pdf may be very useful in revealing the desired underly-
ing process and its dynamics. Unfortunately, the pdf is unknown since the underlying
process and the dynamical and measurement models are unknown. Assume we have
access to a class of estimators of the pdf over discrete bins which can be viewed as
linear transformations. Let ht be such an estimator with m bins which is viewed as an
m-dimensional process and is given by

(8) p(z;� t )
T
7! ht ;

where T is a linear transformation of the density p(z;�) from the infinite sample space
of z into a finite interval space of dimension m. By Lemma 1 and by definition (8) we
get the following results.

The process ht is a linear transformation of the pdf of the clean observation compo-
nent yt .

The process ht can be described as a deterministic nonlinear map of the underlying
process � t .

We can use histograms as estimates of the pdf, and we assume that a sequence of
measurements is available. Accordingly, let ht be the empirical local histogram of the
measured process zt in a short-time window of lengthL1 at time t . LetZ be the sample
space of zt and let Z =

Sm
j=1 Hj be a finite partition of Z into m disjoint histogram

bins. Thus, the value of each histogram bin is given by

(9) h
j
t =

1

jHj j

1

L1

tX
s=t�L1+1

1Hj
(zs);
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where 1Hj
(zt ) is the indicator function of the bin Hj and jHj j is its cardinality. By

assuming (unrealistically) that infinite number of samples are available and that their
density in each histogram bin is uniform, (9) can be expressed as

(10) h
j
t =

1

jHj j

Z
z2Hj

p(z;�)dz:

Thus, ideally the histograms are linear transformations of the pdf. In addition, if we
shrink the bins of the histograms as we get more and more data, the histograms converge
to the pdf

(11) ht

L1!1
�����!
jHj j!0

p(z;�):

In practice, since the computation of high-dimensional histograms is challenging, we
preprocess high-dimensional data by applying random filters in order to reduce the di-
mensionality without corrupting the information.

5.2 Mahalanobis Distance. We view ht (the linear transformation of the local densi-
ties, e.g. the local histograms) as feature vectors for each measurement zt . The process
ht satisfies the dynamics given by Itô’s lemma

h
j
t =

dX
i=1

�
1

2

@2hj

@� i@� i
+ ai @h

j

@� i

�
dt(12)

+

dX
i=1

@hj

@� i
dwi

t ; j = 1; : : : ; m:

For simplicity of notation, we omit the time index t from the partial derivatives. Ac-
cording to (12), the (j; k)th element of the m �m covariance matrix Ct of ht is given
by

(13) C
jk
t = Cov(hj

t ; h
k
t ) =

dX
i=1

@hj

@� i

@hk

@� i
; j; k = 1; : : : ; m:

In matrix form, (13) can be rewritten as

(14) Ct = JtJT
t

where Jt is the m � d Jacobian matrix, whose (j; i)th element is defined by

J
j i
t =

@hj

@� i
; j = 1; : : : ; m; i = 1; : : : ; d:

Thus, the covariance matrix Ct is a semi-definite positive matrix of rank d .
We define a nonsymmetric C-dependent squared distance between pairs of measure-

ments as

(15) a2C(zt ; zs) = (ht � hs)
TC�1

s (ht � hs)
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and a corresponding symmetric distance as

(16) d 2
C(zt ; zs) = 2(ht � hs)

T (Ct + Cs)
�1 (ht � hs):

Since usually the dimension d of the underlying process is smaller than the number of
histogram binsm, the covariancematrix is singular and non-invertible. Thus, in practice
we use the pseudo-inverse to compute the inverse matrices in (15) and (16).

The distance in (16) is known as the Mahalanobis distance with the property that it
is invariant under linear transformations. Thus, by Lemma 1, it is invariant to the mea-
surement noise and functional distortion (e.g., additive noise or multiplicative noise).
We note however that the linear transformation employed by the measurement noise on
the observable pdf (7) may degrade the available information.

In addition, by Lemma 3.1 in Kushnir, Haddad, and Coifman [2012b], the Maha-
lanobis distance in (16) approximates the Euclidean distance between samples of the
underlying process. Let � t and �s be two samples of the underlying process. Then, the
Euclidean distance between the samples is approximated to a second order by a local
linearization of the nonlinear map of � t to ht , and is given by

(17) k� t � �sk
2 = d 2

C(zt ; zs) +O(kht � hsk
4):

For more details see Singer and Coifman [2008] and Kushnir, Haddad, and Coifman
[2012b]. Assuming there is an intrinsic map i(ht ) = � t from the feature vector to
the underlying process, the approximation in (17) is equivalent to the inverse problem
defined by the following nonlinear differential equation

(18)
mX

i=1

@�j

@hi

@�k

@hi
=

�
C�1

t

�jk
; j; k = 1; : : : ; d:

This equation which is nothing more than a discrete formulation of the definition of a
riemannian metric on the manifold is empirically solved through the eigenvectors of
the corresponding discrete Laplace operator. The approximation in (17) recovers the
intrinsic distances on the parametric manifold and is obtained empirically from the noisy
measurements by “infinitesimally” inverting the measurement function.

For further illustration, see Fig. 9.

5.3 Local CovarianceMatrix Estimation. Let t0 be the time index of a “pivot” sam-
ple ht0 of a “cloud” of samples fht0;sg

L2

s=1 of size L2 taken from a local neighborhood
in time. Here we assume that a sequence of measurements is available, the temporal
neighborhoods can be simply short windows in time centered at time index t0.

The pdf estimates and the local clouds implicitly define two time scales on the se-
quence of measurements. The fine time scale is defined by short-time windows of L1

measurements to estimate the temporal pdf. The coarse time scale is defined by the
local neighborhood of L2 neighboring feature vectors in time. Accordingly, we note
that the approximation in (17) is valid as long as the statistics of the noise are locally
fixed in the short-time windows of lengthL1 (i.e., slowly changing compared to the fast
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Figure 9: Consider a set of points on a 2-dimensional torus inR3 (“the manifold”)
which are samples of a Brownian motion on the torus. The geometric interpreta-
tion of the intrinsic notion is the search for a canonical description of the set,
which is independent of the coordinate system. For example, the points can be
written in 3 cartesian coordinates, or in the common parameterization of a torus
using two angles, however, the intrinsic model (constructed based on the points)
describing the torus should be the same. The Mahalanobis distance attaches to
each point a riemannian metric that corresponds to a probability measure that is
driven by the underlying dynamics (the Brownian motion in this particular case),
and therefore, it is invariant to the coordinate system.

variations of the underlying process) and the fast variations of the underlying process
can be detected in the difference between the feature vectors in windows of length L2.

According to the dynamical model in (5) and (12), the samples in the local cloud
can be seen as small perturbations of the pivot sample created by the noise wt . Thus,
we assume that the samples share similar local probability densities2 and may be used
to estimate the local covariance matrix, which is required for the construction of the
Mahalanobis metric (16). The empirical covariance matrix of the cloud is estimated by

Ĉt0 =
1

L2

L2X
s=1

�
ht0;s � �̂t0

� �
ht0;s � �̂t0

�T(19)

' E
h
(ht0 � E[ht0 ]) (ht0 � E[ht0 ])

T
i
= Ct0

where �̂t0
is the empirical mean of the set.

As the rank of the matrix d is usually smaller than the covariance matrix dimension
m, in order to compute the inverse matrix we use only the d principal components of
the matrix. This operation “cleans” the matrix and filters out noise. In addition, when
the empirical rank of the local covariance matrices of the feature vectors is lower than d ,
it indicates that the available feature vectors are insufficient and a larger cloud should
be used.

2We emphasize that we consider the statistics of the feature vectors and not the feature vectors themselves,
which are estimates of the varying statistics of the raw measurements.
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6 Concluding remarks and bibliography

This overview of various methodologies to learn and extract natural geometries, and
latent variables from point clouds generated by, observations, computations, or mathe-
matical processes, is by necessity superficial, and neglects to cover the massive amount
of literature and algorithms aroundmachine learning. We refer to Ollivier [n.d.] who has
pursued invariant geometric ideas, like the EIG approach, in the context of information
geometry and natural deep learning. The use of tensors to extract features analogous
to principal components (“tensor PCA”) in the context of machine learning, or data
processing is also quite extensive, see Anandkumar, Ge, Hsu, Kakade, and Telgarsky
[2014].

Our goal here was to emphasize on the one hand the co-dependent geometries in
duality or triality ( duality in Besov spaces enables generalizing flexible earth mover
distances), and on the other hand to illustrate the essential interplay between geometry
of point clouds with various analytic measures of smoothness. This construction enables
both effective Harmonic analysis and dynamic metric constructions. We point out that
in the case of matrices, or even convolution operators on functions, it is not generally
effective to use their eigenvectors or Fourier transform, in order to unravel its effect on
functions.

The Calderon–Zygmund decompositions were introduced to gain an intimate under-
standing of the Hilbert transform, they have their wavelet analogs. We try to convey
here, that this basic geometric organizationn philosophy is natural in the context of
mathematical geometric learning. More generally given a class of geometric structures,
such as curves or embedded surfaces it is natural to relate them through the properties
of various operators intrinsic operators, such as a Diffusion, or other functions of the
Laplace operator, and then use a distance between these operators, as a way ofmeasuring
similarity between the structures see Berard et al, who show that the distance between
riemannian manifolds can be measured Bérard, Besson, and Gallot [1994]. This is our
approach in the 3 tensor case, where we can view one axis as the label for the structures,
and the other two as representing the corresponding operators, the metrics so defined
are quite remarkable. A similar vision is developed to achieve “shape” matching by G.
Peyre, M. Cuturi, J. Solomon. They measure the distance between affinity matrices, or
diffusions through appropriate Earth mover distances, see Peyré, Cuturi, and Solomon
[2016] and their references.

We should also mention that alternative multiscale data models were developed by
Allard, Chen, and Maggioni [2012], as well as R Lederman and Lederman and Talmon
[2018]who developed a methodology to extract common latent variables between dis-
parate sets of observations, this method can have a profound impact on the scientific
discovery process.
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