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THREE PUZZLES ON MATHEMATICS, COMPUTATION,
AND GAMES

Gංඅ Kൺඅൺං

Abstract

In this lecture I will talk about three mathematical puzzles involving mathemat-
ics and computation that have preoccupied me over the years. The first puzzle is to
understand the amazing success of the simplex algorithm for linear programming.
The second puzzle is about errors made when votes are counted during elections.
The third puzzle is: are quantum computers possible?

1 Introduction

The theory of computing and computer science as a whole are precious resources for
mathematicians. They bring up new questions, profound new ideas, and new perspec-
tives on classical mathematical objects, and serve as new areas for applications of math-
ematics and mathematical reasoning. In my lecture I will talk about three mathematical
puzzles involving mathematics and computation (and, at times, other fields) that have
preoccupied me over the years. The connection between mathematics and computing is
especially strong in my field of combinatorics, and I believe that being able to person-
ally experience the scientific developments described here over the past three decades
may give my description some added value. For all three puzzles I will try to describe
in some detail both the large picture at hand, and zoom in on topics related to my own
work.

Puzzle 1: What can explain the success of the simplex algorithm? Linear program-
ming is the problem of maximizing a linear function � subject to a system of linear
inequalities. The set of solutions to the linear inequalities is a convex polyhedron P .
The simplex algorithm was developed by George Dantzig. Geometrically it can be de-
scribed as moving from one vertex to a neighboring vertex of P so as to improve the
value of the objective function. The simplex algorithm is one of the most successful
mathematical algorithms. The explanation of this success is an applied, vaguely stated
problem, that is connected with computers. The problem has strong relations to the
study of convex polytopes, which have fascinated mathematicians from ancient times
and which served as a starting point for my own research.
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If I were required to choose the single most important mathematical explanation for
the success of the simplex algorithm, my choice would point to a theorem about an-
other algorithm. I would choose Khachiyan’s 1979 theorem asserting that there is a
polynomial-time algorithm for linear programming (or briefly LP 2 P). Khachiyan’s
theorem refers to the ellipsoid method, and the answer is given in the language of com-
putational complexity, a language that did not exist when the question was originally
raised.

In Section 2 we will discuss the mathematics of the simplex algorithm, convex poly-
topes, and related mathematical objects. We will concentrate on the study of the diame-
ter of graphs of polytopes and the discovery of randomized subexponential variants of
the simplex algorithm, I’ll mention recent advances: the disproof of the Hirsch conjec-
ture by Santos and the connection between linear programming and stochastic games
leading to subexponential lower bounds, discovered by Friedmann, Hansen and Zwick,
for certain pivot rules.

Puzzle 2: What methods of election are immune to errors in the counting of votes?
The second puzzle can be seen in the context of understanding and planning of elec-
toral methods. We all remember the vote recount in Florida in the 2000 US presidential
election. Is the American electoral system, based on electoral votes, inherently more
susceptible to mistakes than the majority system? And what is the most stable method?
Together with Itai Benjamini and Oded Schrammwe investigated these and similar prob-
lems. We asked the following question: given that there are two candidates, and each
voter chooses at random and with equal probability (independently) between them, what
is the stability of the outcome, when in the vote-counting process one percent of the
votes is counted incorrectly? (The mathematical jargon for these errors is ”noise.”) We
defined a measure of noise sensitivity of electoral methods and found that weighted ma-
jority methods are immune to noise; namely, when the probability of error is small, the
chances that the election outcome will be affected diminish. We also showed that every
stable-to-noise method is “close” (in some mathematical sense) to a weighted majority
method. In later work, O’Donnell, Oleszkiewicz, and Mossel showed that the majority
system is the most stable to noise among all nondictatorial methods.

Our work was published in 1999, a year before the question appeared in the headlines
in the US presidential election, and it did not even deal with the subject of elections.
We were interested in understanding the problem of planar percolation, a mathematical
model derived from statistical physics. In our article we showed that if we adopt an
electoral system based on the model of percolation, this method will be very sensitive
to noise. This insight is of no use at all in planning good electoral methods, but it makes
it possible to understand interesting phenomena in the study of percolation.

After the US presidential election in 2000 we tried to understand the relevance of
our model and the concepts of stability and noise in real-life elections: is the measure
for noise stability that we proposed relevant, even though the basic assumption that
each voter randomly votes with equal probability for one of the candidates is far from
realistic? The attempt to link mathematical models to questions about elections (and,
more generally, to social science) is fascinating and complicated, and a pioneer in this



MATHEMATICS, COMPUTATION, AND GAMES 553

Figure 1: Right: recounts in the 2000 election (drawing: Neta Kalai). Left: Hex-
based demonstration in Nate Silver’s site

study was the Marquis de Condorcet, a mathematician and philosopher, a democrat, a
human rights advocate, and a feminist who lived in France in the 18th century. One
of Condorcet’s findings, often referred to as Condorcet’s paradox, is that when there
are three candidates, the majority rule can sometimes lead to cyclic outcomes, and it
turns out that the probability for cyclic outcomes depends on the stability to noise of the
voting system. In Section 3 we will discuss noise stability and sensitivity, and various
connections to elections, percolation, games, and computational complexity.

Puzzle 3: Are quantum computers possible? A quantum computer is a hypothetical
physical device that exploits quantum phenomena such as interference and entanglement
in order to enhance computing power. The study of quantum computation combines
fascinating physics, mathematics, and computer science. In 1994, Peter Shor discovered
that quantum computers would make it possible to perform certain computational tasks
hundreds of orders ofmagnitude faster than ordinary computers and, in particular, would
break most of today’s encryption methods. At that time, the first doubts about the model
were raised, namely that quantum systems are of a “noisy” and unstable nature. Peter
Shor himself found a key to a possible solution to the problem of “noise”: quantum
error-correcting codes and quantum fault-tolerance. In the mid-1990s, three groups of
researchers showed that “noisy” quantum computers still made it possible to perform all
miracles of universal quantum computing, as long as engineers succeeded in lowering
the noise level below a certain threshold.

A widespread opinion is that the construction of quantum computers is possible, that
the remaining challenge is essentially of an engineering nature, and that such computers
will be built in the coming decades. Moreover, people expect to build in the next few
years quantum codes of the quality required for quantum fault-tolerance, and to demon-
strate the concept of “quantum computational supremacy” on quantum computers with
50 qubits. My position is that it will not be possible to construct quantum codes that
are required for quantum computation, nor will it be possible to demonstrate quantum
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Figure 2: Left – It is commonly believed that by putting more effort into cre-
ating qubits the noise level can be pushed down to as close to zero as we want.
Once the noise level is low enough and crosses the green “threshold” line, quan-
tum error correction allows logical qubits to reduce the noise even further with a
small amount of additional effort. Very high-quality topological qubits are also
expected. This belief is supported by “Schoelkopf’s law,” the quantum comput-
ing analogue of Moore’s law. Right – My analysis gives good reasons to expect
that we will not be able to reach the threshold line, that all attempts for good qual-
ity logical and topological qubits will fail, and that Schoelkopf’s law will break
down before useful qubits can be created.

computational superiority in other quantum systems. My analysis, based on the same
model of noise that led researchers in the 1990s to optimism about quantum computation,
points to the need for different analyses on different scales. It shows that small-scale
noisy quantum computers (of a few dozen qubits) express such primitive computational
power that it will not allow the creation of quantum codes that are required as building
blocks for quantum computers on a larger scale.

Near-term plans for “quantum supremacy”. By the end of 2017,1 John Martinis’
group is planning to conclude a decisive experiment for demonstrating “quantum
supremacy” on a 50-qubit quantum computer. See Boixo, Isakov, Smelyanskiy, Bab-
bush, Ding, Jiang, Bremner, Martinis, and Neven [n.d.]. As they write in the abstract,
“A critical question for the field of quantum computing in the near future is whether
quantum devices without error correction can perform a well-defined computational
task beyond the capabilities of state-of-the-art classical computers, achieving so-called
quantum supremacy.” The group intends to study “the task of sampling from the out-
put distributions of (pseudo-)random quantum circuits, a natural task for benchmarking
quantum computers.” The objective of this experiment is to fix a pseudo-random cir-
cuit, run it many times starting from a given initial state to create a target state, and then
measure the outcome to reach a probability distribution on 0-1 sequences of length 50.

1Of course, for such a major scientific project, a delay of a few months and even a couple of years is
reasonable.
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Figure 3: Quantum supremacy via pseudo-random circuits can be tested for 10–
30 qubits. The orange line represents the limit for classical computers. Kalai
and Kindler [2014] suggest close-to-zero correlation between the experimental
results and outcomes based on the noiseless evolution, and further suggests that
the experimental results are very easy to simulate (the green line).

The analysis described in Section 4, based on Kalai and Kindler [2014], suggests
that the outcome of this experiment will have vanishing correlation with the outcome
expected on the “ideal” evolution, and that the experimental outcomes are actually very,
very easy to simulate classically. They represent distributions that can be expressed by
low-degree polynomials. Testing our alternative can be carried out already with 10–30
qubits (see Fig. 3), and even examined on the 9-qubit experiments described in Neill
et al. [n.d.].

The argument for why quantum computers are infeasible is simple.
First, the answer to the question whether quantum devices without error correction

can perform a well-defined computational task beyond the capabilities of state-of-the-
art classical computers, is negative. The reason is that devices without error correction
are computationally very primitive, and primitive-based supremacy is not possible.

Second, the task of creating quantum error-correcting codes is harder than the task
of demonstrating quantum supremacy,

Quantum computers are discussed in Section 4, where we first describe the model,
then explain the argument for why quantum computers are not feasible, then describe
predictions for current and near-future devices, and finally draw some predictions for
general noisy quantum systems. The section presents my research since 2005, and it
is possible that decisive evidence against my analysis will be announced in a matter of
days or a bit later. This is a risk that I and the reader will have to take.
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Perspective and resources. For books on linear programming see Matoušek and Gärt-
ner [2007] and Schrijver [1986]. See also Schrijver [2003a,b,c] three-volume book on
combinatorial optimization, and a survey article by Todd [2002] on the many facets
of linear programming. For books on convex polytopes see Ziegler’s book (1995) and
Grünbaum’s book (1967; 2003). For game theory, let me recommend the books by
Maschler, Solan, and Zamir [2013] and Karlin and Peres [2017]. For books on compu-
tational complexity, the reader is referred to Goldreich [2008, 2010], Arora and Barak
[2009] and Wigderson [2019]. For books on Boolean functions and noise sensitivity
see O’Donnell [2014] and Garban and Steif [2015]. The discussion in Section 3 com-
plements my 7ECM survey article “Boolean functions; Fourier, thresholds, and noise.”
It is also related to Kalai and Safra [2006] survey on threshold phenomena and influence.
For quantum information and computation the reader is referred to Nielsen and Chuang
[2000]. The discussion in Section 4 follows my Notices AMS paper (Kalai [2016a])
and its expanded version on the ArXiv [Kalai 2016b] (which is also a good source for
references). My work has greatly benefited from Internet blog discussions with Aram
Harrow, and others, on Regan and Lipton’s blog, and my blog, among others.

Remark 1.1. Crucial predictions on quantum computers are going to be tested in the
near future, perhaps even in a few months. I hope to post an updated and more detailed
version of this paper by the end of 2019.

2 Linear programming, polytopes, and the simplex algorithm

To Micha A. Perles and Victor L. Klee who educated me as a mathematician.

2.1 Linear programming and the simplex algorithm. A linear programming prob-
lem is the problem of finding the maximum of a linear functional (called “a linear ob-
jective function”) � on d variables subject to a system of n inequalities.

Maximize
c1x1 + c2x2 + � � � cdxd

subject to
a11x1 + a12x2 + � � � + a1dxd � b1
a21x1 + a22x2 + � � � + a2dxd � b2
...
an1x1 + an2x2 + � � � + andxd � bn

This can be written briefly as: Maximize ctx, subject to Ax � b, where vectors are
column vectors, x = (x1; x2; : : : ; xd ), b = (b1; b2; : : : ; bn), c = (c1; c2; : : : ; cd ) and
A = (aij )1�i�n;1�j �d .

The set of solutions to the inequalities is called the feasible polyhedron and the sim-
plex algorithm consists of reaching the optimum by moving from one vertex to a neigh-
boring vertex. The precise rule for this move is called “the pivot rule.”

Here is an example where n = 2d :
Maximize x1 + x2 + � � � + xd , subject to: 0 � xi � 1; i = 1; 2; : : : ; d
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In this case, the feasible polyhedron is the d -dimensional cube. Although the number
of vertices is exponential, 2d , for every pivot rule it will take at most d steps to reach
the optimal vertex (1; 1; : : : ; 1).

The study of linear programming and its major applications in economics was pio-
neered by Kantorovich and Koopmans in the early 1940s. In the late 1940’s George
Dantzig realized the importance of linear programming for planning problems, and in-
troduced the simplex algorithm for solving linear programming problems. [See, Dantzig
1963]. Linear programming and the simplex algorithm are among the most celebrated
applications of mathematics. The question can be traced back to an 1827 paper by
Fourier. (We will come across Joseph Fourier and John von Neumann in every puzzle.)

2.1.1 Local to global principle. We describe now two basic properties of linear pro-
gramming.

• If � is bounded from above on P then the maximum of � on P is attained at a
face of P ; in particular, there is a vertex v for which the maximum is attained. If
� is not bounded from above on P then there is an edge of P on which � is not
bounded from above.

• A sufficient condition for v to be a vertex of P on which � is maximal is that v
is a local maximum, namely, �(v) � �(w) for every vertex w that is a neighbor
of v.

An abstract objective function (AOF) on a polytope P is an ordering of the vertices
of P such that every face F of P has a unique local maximum.

Linear programming duality. A very important aspect of linear programming is du-
ality. Linear programming duality associates an LP problem (given as a maximiza-
tion problem) with d variables and n inequalities with a dual LP problem (given as
a minimization problem) with n � d variables and n inequalities with the same solu-
tion. Given an LP problem, the simplex algorithm for the dual problem can be seen as
a path-following process on vertices of the hyperplane arrangement described by the
entire hyperplane arrangement described by the n inequalities. It moves from one dual-
feasible vertex to another, where a dual-feasible vertex is the optimal vertex to a subset
of the inequalities.

2.2 Overview. Early empirical experience and expectations. The performance of the
simplex algorithm is extremely good in practice. In the early days of linear programming
it was believed that the common pivot rules reach the optimum in a number of steps that
is polynomial or perhaps even close to linear in d and n. A related conjecture by Hirsch
asserted that for polyhedra defined by n inequalities in d variables, there is always a path
of length at most n � d between every two vertices. We review some developments in
linear programming and the simplex algorithms, where by “explanations” we refer to
theoretical results that give some theoretical support for the excellent behavior of the
simplex algorithm, while by “concerns” we refer to results in the opposite direction.



558 GIL KALAI

1. The Klee–Minty example and worst-case behavior (concern 1). Klee and Minty
[1972] found that one of the most common variants of the simplex algorithm
is exponential in the worst case. In their example, the feasible polyhedron is
combinatorially equivalent to a cube, and all of its vertices are actually visited by
the algorithm. Similar results for other pivot rules were subsequently found by
several authors.

2. Klee–Walkup counterexample to the Hirsch Conjecture (concern 2). Klee and
Walkup [1967] found an example of an unbounded polyhedron for which the
Hirsch conjecture fails. They additionally showed that also in the bounded case
one cannot realize the Hirsch bound by monotone paths. The Hirsch conjecture
for polytopes remained open. On the positive side, Barnette and Larman gave
an upper bound for the diameter of graphs of d -polytopes with n facets that are
exponential in d but linear in n.

3. LP 2 P, via the ellipsoid method (explanation 1). In 1979 Hačijan (Leonid
G. Khachiyan, Леонид Г. Хачиян) proved that LP 2 P, namely, that there
is a polynomial-time algorithm for linear programming. This was a major open
problem ever since the complexity classes P and NP were described in the early
1970s. Khachiyan’s proof was based on Yudin, Nemirovski, and Shor’s ellipsoid
method, which is not practical for LP.

4. Amazing consequences. Grötschel, Lovász, and Schrijver [1981, 1993] found
many theoretical applications of the ellipsoid method, well beyond its original
scope, and found polynomial-time algorithms for several classes of combinatorial
optimization problems. In particular, they showed that semi-definite program-
ming, the problem of maximizing a linear objective function on the set of m by
m positive definite matrices, is in P.

5. Interior points methods (explanation 2). For a few years it seemed like there was
a tradeoff between theoretical worst-case behavior and practical behavior. This
feeling was shattered with Karmarkar’s 1984 interior point method and subse-
quent theoretical and practical discoveries.

6. Is there a strongly polynomial algorithm for LP? (concern 3)? All known poly-
nomial time algorithms for LP require a number of arithmetic operations that is
polynomial in d and n and linear in L, the number of bits required to represent
the input. Strongly polynomial algorithms are algorithms where the number of
arithmetic operations is polynomial in d and n and does not depend on L, and no
strongly polynomial algorithm for LP is known.

7. Average case complexity (explanation 3). Borgwardt [1982] and Smale [1983] pi-
oneered the study of average-case complexity for linear programming. Borgwardt
showed polynomial average-case behavior for a certain model that exhibits rota-
tional symmetry. In 1983, Haimovich and Adler proved that the average length of
the shadow boundary path from the bottom vertex to the top, for the regions in an
arbitrary arrangement of n-hyperplanes in Rd is at most d . Adler and Megiddo
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[1985], Adler, Karp, and Shamir [1987], and Todd [1986] proved quadratic upper
bounds for the simplex algorithm for very general randommodels that exhibit cer-
tain sign invariance. All these results are for the shadow boundary rule introduced
by Gass and Saaty.

8. Smoothed complexity (explanation 4). Spielman and Teng [2004] showed that
for the shadow-boundary pivot rule, the average number of pivot steps required
for a random Gaussian perturbation of variance � of an arbitrary LP problem is
polynomial in d; n, and ��1. (The dependence on d is at least d 5.) For many,
the Spielman–Teng result provides the best known explanation of the good per-
formance of the simplex algorithm.

9. LP algorithms in fixed dimensions (explanation 5). Megiddo [1984] found for a
fixed value of d a linear-time algorithm for LP problems with n variables. Subse-
quent simple randomized algorithms were found by Clarkson [1995b] Clarkson
[1995a] Seidel [1991], and Sharir and Welzl [1992]. Sharir and Welzl defined a
notion of abstract linear programming problems for which their algorithm applies.

10. Quasi-polynomial bounds for the diameter (explanation 6). Kalai [1992b] and
Kalai and Kleitman [1992] proved a quasipolynomial upper bound for the diam-
eter of graphs of d -polytopes with n facets.

11. Sub-exponential pivot rules (explanation 7). Kalai [1992b] and Matoušek, Sharir
and Welzl [1992] proved that there are randomized pivot rules that require in
expectation a subexponential number of steps exp(K

p
n log d ). One of those

algorithms is the Sharir–Welzl algorithm.

12. Subexponential lower bounds for abstract problems (concern 4). Matoušek [1994]
andMatoušek and Szabó [2006] found a subexponential lower bound for the num-
ber of steps required by two basic randomized simplex pivot rules, for abstract
linear programs.

13. Santos [2012] found a counterexample to the Hirsch conjecture (concern 5).

14. The connection with stochastic games. Ludwig [1995] showed that the subexpo-
nential randomized pivot rule can be applied to the problem posed by Condon
[1992] of finding the value of certain stochastic games. For these games this is
the best known algorithm.

15. Subexponential lower bounds for geometric problems (concern 6). Building on
the connection with stochastic games, subexponential lower bounds for genuine
LP problems for several randomized pivot rules were discovered by Friedmann,
Hansen, and Zwick [2011, 2014].

Most of the developments listed above are on the theoretical side of linear program-
ming research and there are also many other theoretical aspects. Improving the linear
algebra aspects of LP algorithms and tailoring the algorithm to specific structural and
sparsity features of optimization tasks are both very important undertakings and pose
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interesting mathematical challenges. Also of great importance are widening the scope
of applications, and choosing the right LP modeling of real-life problems. There is also
much theoretical and practical work on special families of LP problems.

2.3 Complexity 1: P, NP, and LP . The complexity of an algorithmic task is the
number of steps required by a computer program to perform the task. The complexity is
given in terms of the input size, and usually refers to the worst case behavior given the
input size. An algorithmic task is in P (called “polynomial” or “efficient”) if there is a
computer program that performs the task in a number of steps that is bounded above by
a polynomial function of the input size. (By contrast, an algorithmic task that requires
an exponential number of steps in terms of the input size is referred to as “exponential”
or “intractable.”)

The notion of a nondeterministic algorithm is one of the most important notions in
the theory of computation. One way to look at nondeterministic algorithms is to refer
to algorithms where some or all steps of the algorithm are chosen by an almighty oracle.
Decision problems are algorithmic tasks where the output is either “yes” or “no.” A
decision problem is in NP if when the answer is yes, it admits a nondeterministic algo-
rithm with a polynomial number of steps in terms of the input size. In other words, if
for every input for which the answer is “yes,” there is an efficient proof demonstrating
it, namely, a polynomial-size proof that a polynomial-time algorithm can verify. An
algorithmic task A is NP-hard if a subroutine for solving A allows solving any problem
in NP in a polynomial number of steps. An NP-complete problem is an NP-hard prob-
lem in NP. The papers by Cook [1971], and Levin [1973] that introduce P, NP, and
NP-complete problems, and raising the conjecture that P ¤ NP, and the paper by Karp
[1972] that identifies 21 central algorithmic problems as NP-complete, are among the
scientific highlights of the 20th century.

Graph algorithms play an important role in computational complexity. Pൾඋൿൾർඍ
ආൺඍർඁංඇ, the algorithmic problem of deciding if a given graph G contains a perfect
matching, is in NP because exhibiting a perfect matching gives an efficient proof that a
perfect matching exists. Pൾඋൿൾർඍ ආൺඍർඁංඇ is in co-NP (namely, “not having a perfect
matching” is inNP) because by a theorem of Tutte, ifG does not contain a perfect match-
ing there is a simple efficient way to demonstrate a proof. An algorithm by Edmonds
shows that Pൾඋൿൾർඍ ආൺඍർඁංඇ is in P. Hൺආංඅඍඈඇංൺඇ ർඒർඅൾ, the problem of deciding if
G contains a Hamiltonian cycle, is also in NP: exhibiting a Hamiltonian cycle gives an
efficient proof of its existence. However, this problem is NP-complete.

Remark 2.1. P,NP, and co-NP are three of the lowest computational complexity classes
in the polynomial hierarchy PH, which is a countable sequence of such classes, and
there is a rich theory of complexity classes beyond PH. Our understanding of the world
of computational complexity depends on a whole array of conjectures: NP ¤ P is the
most famous one. A stronger conjecture asserts that PH does not collapse, namely, that
there is a strict inclusion between the computational complexity classes defining the
polynomial hierarchy. Counting the number of perfect matchings in a graph represents
an important complexity class #P which is beyond the entire polynomial hierarchy.
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Figure 4: The (conjectured) view of somemain computational complexity classes.
The red ellipse represents efficient quantum algorithms. (See Section 4.)

2.3.1 The complexity of LP, Khachiyan’s theorem, and the quest for strongly
polynomial algorithms. It is known that general LP problems can be reduced to the
decision problem to decide if a system of inequalities has a solution. It is therefore easy
to see that LP is in NP. All we need is to identify a solution. The duality of linear pro-
gramming implies that LP is in co-NP (namely, “not having a solution” is in NP). For
an LP problem, let L be the number of bits required to describe the problem. (Namely,
the entries in the matrix A and vectors b and c.)

Theorem 2.2 (Hačijan (Leonid G. Khachiyan, Леонид Г. Хачиян) [1979]). LP 2 P.
The ellipsoid method requires a number of arithmetic steps that is polynomial in n, d ,
and L.2

The dependence on L in Khachiyan’s theorem is linear and it was met with some
surprise. We note that the efficient demonstration that a system of linear inequalities
has a feasible solution requires a number of arithmetic operations that is polynomial in
d and n but does not depend on L. The same applies to an efficient demonstration that
a system of linear inequalities is infeasible. Also the simplex algorithm itself requires a
number of arithmetic operations that, while not polynomial in d and n in the worst case,
does not depend on L. An outstanding open problem is:

Problem 1. Is there an algorithm for LP that requires a polynomial number in n and d
of arithmetic operations that does not depend on L?

Such an algorithm is called a strongly polynomial algorithm, and this problem is one
of Smale’s “problems for the 21st century.” Strongly polynomial algorithms are known
for various LP problems. The Edmonds–Karp algorithm (1972) is a strongly polynomial

2Khachiyan proved that the number of required arithmetic operations is polynomial in d and n, and linear
in L. This bound becomes quadratic in L if we count bit-operations rather than arithmetic operations.
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algorithm for the maximal flow problem. Tardos [1986] proved that when we fix the
feasible polyhedron (and even only the matrixA used to define the inequalities) there is
a strongly polynomial algorithm independent of the objective function (and the vector
b).

2.4 Diameter of graphs of polytopes and related objects.

2.4.1 Quasi-polynomial monotone paths to the top. A few important definitions: a
d -dimensional polyhedron P is simple if every vertex belongs to d edges (equivalently,
to d facets.) A linear objective function � is generic if �(u) ¤ �(v) for two vertices
v ¤ u. The top ofP is a vertex for which � attains the maximum or an edge on which �
is not bounded. Given a vertex v ofP a facetF is active w.r.t. v if supx2F �(x) � �(v).

Theorem 2.3 (Kalai [1992b]). Let P be a d -dimensional simple polyhedron, let � be
a generic linear objective function, and let v be a vertex of P . Suppose that there are n
active facets w.r.t. v. Then there is a monotone path of length at most � nlogd+1 from
v to the top.

Proof: Let f (d; n) denote the maximum value of the minimum length of a monotone
path from v to the top. (Here, “the top” refers to either the top vertex or a ray on which
� is unbounded.)

Claim: Starting from a vertex v, in f (d; k) steps one can reach either the top or
vertices in at least k + 1 active facets.

Proof: Let S be a set of n � k active facets. Remove the inequalities defined by
these facets to obtain a new feasible polyhedron Q. If v is not a vertex anymore than
v belongs to some facet in S . If v is still a vertex there is a monotone path of length at
most f (d; k) from v to the top. If one of the edges in the path leaves P then it reaches a
vertex belonging to a facet in S . Otherwise it reaches the top. Now if a monotone path
from v (in P ) of length f (d; k) cannot take us to the top, there must be such a path that
takes us to a vertex in some facet belonging to every set of n � k facets, and therefore
to vertices in at least k + 1 facets.

Proof of the Theorem: Order the active facets of P according to their top vertex. In
f (d; [n/2]) steps we can reach from v either the top, or a vertex in the top [n/2] active
facets. In f (d � 1; n� 1) steps we reach the top w of that facet. This leaves us with at
most n/2 active facets w.r.t. w, and yields

(2-1) f (d; n) � 2f (d; [n/2]) + f (d � 1; n � 1);

which implies the bound given by the theorem. (In fact, it yields f (d; n) � n ��d+dlog2 ne

d

�
.)

Remark 2.4. A monotone path can be regarded as a nondeterministic version of the
simplex algorithm where the pivot steps are chosen by an oracle.
Remark 2.5. Let me mention a few of the known upper bounds for the diameter of
d -polytopes with n facets in some special families of polytopes. The Hirsch bound
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was proved for duals of vertex decomoposable spheres [Provan and Billera 1980], trans-
portation polytopes M. L. Balinski [1984], and duals of flag spheres Adiprasito and
Benedetti [2014]. Naddef [1989] proved that 0-1 d -polytopes have diameter at most
d ; Polynomial upper bounds were proved for dual-neighborly polytopes [Kalai 1991],
and unimodular polytopes Dyer and Frieze [1994]. Todd [2014] improved the bound of
Theorem 2.3 to (n � d )logd and further small improvements followed.

2.4.2 Reductions, abstractions, and Hähnle’s conjecture. Upper bounds for the
diameter are attained at simple d -polytopes, namely, d -polytopes where every vertex
belongs to exactly d facets. A more general question deals with the dual graphs for
triangulations of (d � 1)-spheres with n vertices. All the known upper bounds apply
to dual graphs of pure normal (d � 1) simplicial complexes. Here “pure” means that
all maximal faces have the same dimension and “normal” means that all links of dimen-
sion one or more are connected. An even more general framework was proposed by
Eisenbrand, Hähnle, Razborov, and Rothvoß [2010].

Problem 2. Consider t pairwise-disjoint nonempty families F1; F2; : : : ; Ft of degree
d monomials with n variables (x1; x2; : : : ; xn) with the following property: for every
1 � i < j < k � t , if mi 2 Fi and mk 2 Fk then there is a monomial mj 2 Fj , such
that the greatest common divisor of mi and mk divides mj . How large can t be?3

A simple argument shows that the maximum denoted by g(d; n) satisfies relation
(2-1).

Conjecture 3 (Hähnle [2010]). g(d; n) � d (n � 1) + 1.

One example of equality is to let Fk be all monomials xi1xi2 � � � xid with i1 + i2 +

� � � + id = k � d + 1, k = d; d + 1; : : : ; kd . Another example of equality is to let Fk

be a single monomial of the form xd�`
i x`

i+1. (i = bk/dc and ` = k(mod d ).)

2.5 Santos’ counterexample. The d -step conjecture is a special case of the Hirsch
conjecture known to be equivalent to the general case. It asserts that a d -polytope with
2d facets has diameter at most d . Santos formulated the following strengthening of the
d -step conjecture. Santos’ Spindle (working conjecture): LetP be a d -polytope with
two vertices u and v such that every facet of P contains exactly one of them. (Such a
polytope is called a d -spindle.) Then the graph-distance between u and v (called simply
the length of the spindle) is at most d . Santos proved

Theorem 2.6 (Santos [2012]).
(i) The spindle conjecture is equivalent to the Hirsch conjecture. More precisely, if there
is a d -spindle with n facets and length greater than d then there is a counter-example
to the Hirsch conjecture of dimension n � d and with 2n � 2d facets.

(ii) There is a 5-spindle of length 6.
3To see the connection to diameter of polytopes note that a vertex w of a d -polytope P corresponds to a

set S of d facets. Now, let Fk+1 be the family of d -subsets of facets that correspond to vertices in the graph
of P at distance k from w .



564 GIL KALAI

Figure 5: Left: a spindle, right: the Klee–Minty cube

The initial proof of part (2) had 48 facets and 322 vertices, leading to a counterexam-
ple in dimension 43 with 86 facets and estimated to have more than a trillion vertices.
Matschke, Santos, and Weibel [2015] found an example with only 25 facets leading to
a counterexample of the Hirsch conjecture for a 20-polytope with 40 facets and 36,442
vertices. An important lesson from Santos’ proof is that although reductions are avail-
able to simple polytopes and simplicial objects, studying the problem for general poly-
topes has an advantage. In the linear programming language this tells us that degenerate
problems are important.

Problem 4. Find an abstract setting for the diameter problem for polytopes that will
include graphs of general polytopes, dual graphs for normal triangulations, and families
of monomials.

2.6 Complexity 2: Randomness in algorithms. One of the most important develop-
ments in the theory of computing is the realization that adding an internal randomness
mechanism can enhance the performance of algorithms. Two early manifestations of
this idea are Monte Carlo methods by Ulam, von Neumann, and Metropolis, and a fac-
toring algorithm by Berlekamp. Since the mid-1970s, and much influenced by Michael
Rabin, randomized algorithms have become a central paradigm in computer science.
One of the great achievements was the polynomial time randomized algorithms for test-
ing primality by Solovay and Strassen [1977] and Rabin [1980]. Rabin’s algorithm
was related to an earlier breakthrough – Miller’s algorithm for primality (1976), which
was polynomial time conditioned on the validity of the generalized Riemann hypothe-
sis. The newly randomized algorithms for testing primality were not only theoretically
efficient but also practically excellent! Rabin’s paper thus gave “probabilistic proofs”
that certain large numbers, like 2400 � 593, are primes, and this was a new kind of a
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mathematical proof. (A deterministic polynomial algorithm for primality was achieved
by Agrawal, Kayal, and Saxena [2004].) Lovász [1979] offered a randomized efficient
algorithm for perfect matching in bipartite graphs: Associate to a bipartite graphG with
n vertices on each side, its generic n � n adjacency matrix A, where aij is zero if the
i th vertex on one side is not adjacent to the j th vertex on the other side, and aij is a
variable otherwise. Note the determinant of A is zero if and only if G has no perfect
matching. This can be verified with high probability by replacing aij with random mod
p elements for a large prime p.

We have ample empirical experience and some theoretical support of the fact that
pseudo-random number generators are practically sufficient for randomized algorithms.
We also have strong theoretical support that weak and imperfect sources of randomness
are sufficient for randomized algorithms.

A class of randomized algorithms which are closer to early Monte Carlo algorithms
and to randomized algorithms for linear programming, are algorithms based on random
walks. Here are two examples: counting the number of perfect matchings for a general
graph G is a #P-complete problem. Jerrum and Sinclair [1989] and Jerrum, Sinclair,
and Vigoda [2001] found an efficient random-walk-based algorithm for estimating the
number of perfect matchings up to a multiplicative constant 1 + �. Dyer, Frieze, and
Kannan [1991] found an efficient algorithm based on random walks to estimate the
volume of a convex body in Rd . Both these algorithms rely on the ability to prove
a spectral gap (or “expansion”) for various Markov chains. Approximate sampling is
an important subroutine in the algorithms we have just mentioned and we can regard
exact or approximate sampling as an important algorithmic task in its own, as the ability
to sample is theoretically and practically important. We mention algorithms by Aldous
[1990] and Broder [1989] andWilson [1996] for sampling spanning trees and byRandall
and Wilson [1999] for sampling configurations of the Ising models.

Remark 2.7. The probabilistic method, when applied to problems with no mention of
probability, led to major developments in combinatorics and several other mathematical
disciplines. (See Alon and Spencer [2016].) An interesting question is, to what extent
can proofs obtained by the probabilistic method be transformed into efficient random-
ized algorithms?

2.7 Subexponential randomized simplex algorithms. We start with the following
simple observation. Consider the following two sequences. The first sequence is de-
fined by a1 = 1 and an+1 = an + an/2, and the second sequence is defined by b1 = 1

and bn+1 = bn + (b1 + � � � + bn)/n. Then an = nΘ(logn); and bn = eΘ(
p

n):

Next, we describe two basic randomized algorithms for linear programming.
Rൺඇൽඈආ Eൽൾ: Choose an improving edge uniformly at random and repeat.
Rൺඇൽඈආ Fൺർൾඍ: Given a vertex v, choose a facet F containing v uniformly at ran-

dom. Use the algorithm recursively inside F until reaching its top w, and then repeat.
(When d = 1, move to the top vertex.)

Rൺඇൽඈආ Fൺർൾඍ (along with some variants) is the first strongly subexponential al-
gorithm for linear programming, as well as the first subexponential pivot rule for the
simplex algorithm.
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Theorem 2.8 (Kalai [1992b] and Jiří Matoušek and Welzl [1992]). Let P be a d -
dimensional simple polyhedron, let � be a linear objective function that is not constant
on any edge of P , and let v be a vertex of P . Suppose that there are n active facets w.r.t.
v. Then Rਁਏ Fਁ ਃਅਔ requires an expected number of at most

(2-2) exp(K �
p
n log d )

steps from v to the TOP.

Proof: Write g(d; n) for the expected number of pivot steps. The expected number
of pivot steps to reach w, the top of the facet chosen first, is bounded above by g(d �

1; n � 1). With probability 1/d , w is the i th lowest top among the top vertices of the
active facets containing v. This yields

g(d; n) � g(d � 1; n � 1) +
1

d � 1

d�1X
i=1

g(d; n � i):

(Here, we took into account that v itself might be the lowest top.) This recurrence
relation leads (with some effort) to equation (2-2). �

Note that the argument applies to abstract objective functions on polyhedra (and,
more generally, to abstract LP problems as defined by Sharir–Welzl). The appearance
of exp(

p
n) is related to our observation on the sequence bn: we get the recurrence

relation G(d +1) = G(d )+ (G(1)+G(2)+ � � �+G(d ))/d for the expected number
of steps, G(d ), for Rൺඇൽඈආ Fൺർൾඍ for abstract objective functions in the discrete d -
cube. There are few versions of Rൺඇൽඈආ Fൺർൾඍ that were analyzed (giving slightly
worse or slightly better upper bounds). For the best known one see Hansen and Zwick
(2015). There are also a few ideas for improved versions: we can talk about a random
face rather than a random facet, to randomly walk up and down before setting a new
threshold, and to try to learn about the problem and improve the random choices. The
powerful results about lower bounds suggest cautious pessimism.
Remark 2.9. Amenta [1994] used Sharir and Welzl’s abstract LP problem to settle a
Helly-type conjecture of Grünbaum and Motzkin. Halman [2004] considered new large
classes of abstract LP problems, found many examples, and also related them to Helly-
type theorems.

2.7.1 Lower bounds for abstract problems. As we will see, the hope for better
upper bounds for Rൺඇൽඈආ Fൺർൾඍ and related randomized pivot rules was tempered by
formidable examples to the contrary.
Theorem 2.10 (Matoušek [1994]). There exists an abstract objective function of the
d -cube on which Rਁਏ Fਁ ਃਅਔ requires on expectation at least exp(C

p
d ) steps.

Matoušek described a large class of AOF’s and showed his lower bound to hold in
expectation for a randomly chosen AOF. Gärtner proved (1998) that for a geometric
AOF in this family, Rൺඇൽඈආ Fൺർൾඍ requires an expected quadratic time.
Theorem 2.11 (Matoušek and Szabó [2006]). There exists an AOF on the d -cube on
which Rਁਏ Eਇਅ requires on expectation of at least exp(Cd 1/3) steps. [Hansen
and Zwick 2016] improved the bound to exp(

p
d log d ).)
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2.8 Games 1: Stochastic games, their complexity, and linear programming.

2.8.1 The complexity of chess and backgammon. Is there a polynomial-time algo-
rithm for chess? Well, if we consider the complexity of chess in terms of the board
size then “generalized chess” is very hard. (It is P-space-complete.) But if we wish
to consider the complexity in terms of the number of all possible positions (which for
“generalized chess” is exponential in the board size), given an initial position, it is easy
to walk on the tree of positions and determine, in a linear number of steps, the value of
the game. (Real life chess is probably intractable, but we note that checkers was solved.)

Now, what about backgammon? This question represents one of the most fundamen-
tal open problems in algorithmic game theory. The difference between backgammon
and chess is the element of luck: in each position your possible moves are determined
by a roll of two dice.

Remark 2.12. Chess and backgammon are games with perfect information and their
value is achieved by pure strategies. One of the fundamental insights of game theory
is that for zero-sum games with imperfect information, optimal strategies are mixed;
namely, they are described by random choices between pure strategies. For mixed
strategies, von Neumann’s 1928 minmax theorem asserts that a zero-sum game with
imperfect information has a value. An optimal strategy for rock-paper-scissors game is
to play each strategywith an equal probability of 1/3. An optimal strategy for two-player
poker (heads-on poker) is probably much harder to find.

2.8.2 Stochastic games and Ludwig’s theorem. A simple stochastic game is a two-
player zero-sum game with perfect information, described as follows. We are given
one shared token and a directed graph with two sink vertices labeled “1” and “2” which
represent winning positions for the two players, respectively. All other vertices have
outdegree 2 and are labeled either by the name of a player or as “neutral.” In addition,
one vertex is the start vertex. Once the token is on a vertex, the player with the vertex
labelling moves, and if the vertex is neutral then the move is determined by a toss of
a fair coin. Backgammon is roughly a game of this type. (The vertices represent the
player whose turn it is to play and the outcome of the two dice, and there are neutral
vertices representing the rolls of the dice. The outdegrees are larger than two but this
does not make a difference.) This class of games was introduced by Condon in 1992. If
there is only one player, the game turns into a one-player game with uncertainty, which
is called aMarkov decision process. ForMarkov decision processes, finding the optimal
strategy is a linear programming problem.

Theorem 2.13 (Ludwig [1995]). There is a subexponential algorithm for solving simple
stochastic games

The basic idea of the proof is the following: once the strategy of player 2 is de-
termined the game turns into a Markov decision process and the optimal strategy for
player 1 is determined by solving an LP problem. Player one has an optimization prob-
lem over the discrete cube whose vertices represent his choices in each vertex labeled
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by “1.” The crucial observation is that this optimization problem defines an abstract
objective function and therefore we can apply Rൺඇൽඈආ Fൺർൾඍ.

A more general model of stochastic games with imperfect information was intro-
duced by Shapley in 1953. There at each step the two players choose actions indepen-
dently from a set of possibilities and their choices determine a reward and a probability
distribution for the next state of the game.

Problem 5 (Learned from Peter Bro Miltersen).
(i) Think about backgammon. Is there a polynomial-time algorithm for finding the value
of simple stochastic games?

(ii) Can the problem of finding the sink in a unique sink acyclic orientation of the
d -cube be reduced to finding the value of a simple stochastic game?

(iii) (Moving away from zero-sum games.) Is there a polynomial-time algorithm (or
at least, subexponential) for finding a Nash equilibrium point for a stochastic two-player
game (with perfect information)? What about stochastic games with perfect information
with a fixed number of players?

(iv) Think about two-player poker. Is there a polynomial-time algorithm (or at least,
a subexponential) for finding the value of a stochastic zero-sum game with imperfect
information?

Remark 2.14. What is the complexity of finding objects guaranteed bymathematical the-
orems? Papadimitriou [1994] developed complexity classes and notions of intractability
for mathematical methods and tricks! (Finding an efficiently describable object guaran-
teed by a mathematical theorem cannot be NP-complete Megiddo [1988]. A motivat-
ing conjecture that took many years to prove (in a series of remarkable papers) is that
Nash equilibria is hard with respect to PPAD, one of the aforementioned Papadimitriou
classes.

Problem 6 ([Szabó and Welzl 2001]). How does the problem of finding the sink in a
unique sink acyclic orientation of the cube, and solving an abstract LP problem, fit into
Papadimitriou’s classes?

2.9 Lower bounds for geometric LP problems via stochastic games. In this sec-
tion I discuss the remarkable works of Friedmann, Hansen, and Zwick [2011, 2014]. We
talked (having the example of backgammon in mind) about two-player stochastic games
with perfect information. (Uri Zwick prefers to think of those as “games with two-and-
a-half players” with nature being a nonstrategic player rolling the dice.) The work of
Friedmann, Hansen, and Zwick starts by building two-player parity games on which
suitable randomized policy-iteration algorithms perform a subexponential number of it-
erations. Those games are then transformed into one-player Markov decision processes
(or 1 1

2
-player MDPs in Uri’s view) that correspond to concrete linear programs. In their

2014 paper they showed a concrete LP problem, where the feasible polyhedron is combi-
natorially a product of simplices, on which Rൺඇൽඈආ Fൺർൾඍ takes an expected number of
exp(Θ̃(d 1/3)) steps, and a variant called Rൺඇൽඈආ Bඅൺඇൽ requires an expected number
of exp(Θ̃(

p
d )) steps. The lower bound even applies to linear programming programs

that correspond to shortest path problems, (i.e., one-player games, even in Uri’s view)
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that are very easily solved using other methods (e.g., Dijkstra [1959]). A similar, more
involved argument yields an expected exp(Θ̃(d 1/4)) steps for Rൺඇൽඈආ Eൽൾ!
Remark 2.15. Two recent developments: Fearnley and Savani [2015] used the connec-
tion between games and LP to show that it is PSPACE-complete to find the solution
that is computed by the simplex method using Dantzig’s pivot rule. Calude, Jain, Khous-
sainov, Li, and Stephan [2017] achieved a quasi-polynomial algorithm for parity games!
So far, it does not seem that the algorithm extends to simple stochastic games or has im-
plications for linear programming.

2.10 Discussion. Is our understanding of the success of the simplex algorithm sat-
isfactory? Are there better practical algorithms for semidefinite and convex program-
ming? Is there a polynomial upper bound for the diameter of graphs of d -polytopes with
n facets? (or at least some substantial improvements of known upper bounds)? Is there
a strongly polynomial algorithm for LP? Perhaps even a strongly polynomial variant of
the simplex algorithm? What is the complexity of finding a sink of an acyclic unique-
sink orientation of the discrete cube? Are there other new interesting efficient, or prac-
tically good, algorithms for linear programming? What is the complexity of stochastic
games? Can a theoretical explanation be found for other practically successful algo-
rithms? (Here, SAT solvers for certain classes of SAT problems, and deep learning
algorithms come to mind.) Are there good practical algorithms for estimating the num-
ber of matchings in graphs? For computing volumes for high-dimensional polytopes?
We also face the ongoing challenge of using linear programming and optimization as
a source for deriving further questions and insights into the study of convex polytopes,
arrangements of hyperplanes, geometry, and combinatorics.

3 Elections and noise

To Nati Linial and Jeff Kahn who influenced me

3.1 Games 2: Questions about voting games and social welfare.

3.1.1 Cooperative games. A cooperative game (with side payments) is described by
a set of n players N , and a payoff function v that associates to every subset S (called
a coalition) of N a real number v(S). We will assume that v(¿) = 0. Cooperative
games were introduced by von Neumann and Morgenstern. A game is monotone if
v(T ) � v(S) when S � T . A voting game is a monotone cooperative game in which
v(S) 2 f0; 1g. If v(S) = 1 we call S a winning coalition and if v(S) = 0 then S is
a losing coalition. Voting games represent voting rules for two-candidate elections, the
candidates being Anna and Bianca. Anna wins if the set of voters that voted for her is a
winning coalition. Important voting rules are the majority rule, where n is odd and the
winning coalitions are those with more than n/2 voters, and the dictatorship rule, where
the winning coalitions are those containing a fixed voter called “the dictator.” Voting
games are also referred to as monotone Boolean functions.



570 GIL KALAI

3.1.2 How to measure power? There are two related measures of power for voting
games and both are defined in terms of general cooperative games. The Banzhaf mea-
sure of power for player i , bi (v) (also called the influence of i ) is the expected value
of v(S [ fig) � v(S) taken over all coalitions S that do not contain i . The Shapley
value of player i is defined as follows: for a random ordering of the players consider
the coalition S of players who come before i in the ordering. The Shapley value, si (v).
is the expectation over all n! orderings of v(S [ fig) � v(S). (For voting games, the
Shapley value is also called the Shapley–Shubik power index.) For voting games, if
v(S) = 0 and v(S [ fig) = 1, we call voter i pivotal with respect to S .

3.1.3 Aggregation of information. For a voting game v and p; 0 � p � 1 denote
by �p(v) the probability that a random set S of players is a winning coalition when for
every player v the probability that v 2 S isp, independently for all players. Condorcet’s
Jury theorem asserts that when p > 1/2, for the sequence vn of majority games on n
players limn!1 �p(vn) = 1: This property, a direct consequence of the law of large
numbers, is referred to as asymptotically complete aggregation of information, and we
will study it for other voting rules.

A voting game is strong (also called neutral) if a coalition is winning iff its comple-
ment is losing. A voting game is strongly balanced if precisely half of the coalitions are
winning and it is balanced if 0:1 � �1/2(v) � 0:9. A voting game is weakly symmetric
if it is invariant under a transitive group of permutations of the voters.

Theorem 3.1 (Friedgut and Kalai [1996] and Kalai [2004]).
(i) Weakly-symmetric balanced voting games lead to asymptotically complete aggrega-
tion of information.

(ii) Balanced voting games lead to asymptotically complete aggregation of informa-
tion iff their maximum Shapley values tend to zero.

3.1.4 Friedgut’s Junta theorem. The total influence, I (v), of a balanced voting
game is the sum of Banzhaf power indices for all players. (Note that the sum of Shapley
values of all players is one.) For the majority rule the total influence is the maximum
over all voting games and I = �(

p
n). The total influence for dictatorship is one, and

this is the minimum for strongly balanced games. A voting game is a C -Junta if there
is a a set J , jJ j � C such that v(S) depends only on S \ J .

Theorem 3.2 (Friedgut’s Junta theorem, Friedgut [1998]). For every b; � > 0, there
is C = C (b; �) with the following property: for every �; b > 0, a voting game v with
total influence at most b is �-close to a C -junta g. (Here, �-close means that for all but
a fraction � of sets S , v(S) = g(S).)

3.1.5 Sensitivity to noise. Letw1; w2; : : : ; wn be nonnegative real weights and T be
a real number. A weighted majority is defined by v(S) = 1 iff

P
i2S wi � T .

Consider a two-candidate election based on a voting game v where each voter votes
for one of the two candidates at random, with probability 1/2, and these probabilities
are independent. Let S be the set of voters voting for Anna, who wins the election if
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v(S) = 1. Next consider a scenario where in the vote counting process there is, for
every vote, a small probability t that the vote is miscounted, and assume that these
mistakes are statistically independent. The set of voters believed to vote for Anna after
the counting is T . Define Nt (v) as the probability that v(T ) ¤ v(S). A family of
voting games is called uniformly noise stable if for every � > 0 there exists t > 0 such
that Nt (v) < �. A sequence vn of strong voting games is noise sensitive if for every
t > 0 limn!1Nt (vn) = 1/2:

Theorem 3.3 (Benjamini, Kalai, and Schramm [1999]). For a sequence of balanced
voting games vn each of the following two conditions implies that vn is noise sensitive:

(i) The maximum correlation between vn and a balanced weighted majority game
tends to 0.

(ii) limn!1

P
i b

2
i (vn) = 0:

3.1.6 Majority is stablest. Let vn be the majority voting games with n players. In
1899 Sheppard proved that limn!1Nt (vn) =

arccos(1�2t)
�

:

Theorem 3.4 (Mossel, O’Donnell, and Oleszkiewicz [2010]). Let vn be a sequence of
games with diminishing maximal Banzhaf power index. Then

Nt (vn) �
arccos(1 � 2t)

�
� o(1):

3.1.7 The influence of malicious counting errors. Let S be a set of voters. IS (v)

is the probability over sets of voters T that are disjoint from S such that v(S [ T ) = 1

and v(T ) = 0:

Theorem 3.5 (Kahn, Kalai, and Linial [1988]). For every balanced voting game v:
(i) There exists a voter k such that

bk(v) � C logn/n:

(ii) There exists a set S of a(n) � n/ logn voters, where a(n) tends to infinity with n
as slowly as we wish, such that IS (v) = 1 � o(1).

This result was conjectured by Ben-Or and Linial [1985] who gave a “tribe” example
showing that both parts of the theorem are sharp. Ajtai and Linial [1993] found a voting
game where no set of o(n/ log2(n)) can influence the outcome of the elections in favor
of even one of the candidates.

3.1.8 “It ain’t over ’till it’s over” theorem. Consider the majority voting game
when the number of voters tends to infinity and every voter votes for each candidate
with equal probability, independently. There exist (tiny) ı > 0 with the following prop-
erty: when you count 99% of votes chosen at random, still with probability tending to
one, condition on the votes counted, each candidate has a probability larger than ı of
winning. We refer to this property of the majority function as the (IAOUIO)-property.
Clearly, dictatorship and Juntas do not have the (IAOUIO)-property.
Theorem 3.6 (Mossel, O’Donnell, and Oleszkiewicz [2010]). Every sequence of voting
games with diminishing maximal Banzhaf power index has the (IAOUIO)-property.
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3.1.9 Condorcet’s paradox and Arrow’s theorem. A generalized social welfare
function is a map from n voters’ order relations on m alternatives, to a complete anti-
symmetric relation for the society, satisfying the following two properties.

(1) If every voter prefers a to b then so does the society. (We do not need to assume
that this dependence is monotone.)

(2) Society’s preference between a and b depends only on the individual preferences
between these candidates.

A social welfare function is a generalized welfare function such that for every n-tuple
of order relations of the voters, the society preferences are acyclic (“rational”).

Theorem 3.7 (Arrow [1951]). For three or more alternatives, the only social welfare
functions are dictatorial.

Theorem 3.8 (Kalai [2002], Mossel [2012], and Keller [2012]). For three or more
alternatives the only nearly rational generalized social welfare functions are nearly
dictatorial.

Theorem3.9 (Mossel, O’Donnell, andOleszkiewicz [2010]). Themajority gives asymp-
totically “most rational” social preferences among generalized social welfare functions
based on strong voting games with vanishing maximal Banzhaf power.

A choice function is a rule that, based on individual rankings of the candidates, gives
the winner of the election. Manipulation (also called “non-naïve voting” and “strategic
voting”) is a situation where given the preferences of other voters, a voter may gain by
not being truthful about his preferences.

Theorem 3.10 (Gibbard [1973] and Satterthwaite [1975]). Every nondictatorial choice
function is manipulable.

Theorem 3.11 (Friedgut, Kalai, Keller, and Nisan [2011], Isaksson, Kindeler, and Mos-
sel [2010], andMossel and Rácz [2015]). Every nearly nonmanipulable choice function
is nearly dictatorial.

3.1.10 Indeterminacy and chaos. Condorcet’s paradox asserts that the majority rule
may lead to cyclic outcomes for three candidates. A stronger result was proved by Mc-
Garvey [1953]: every asymmetric preference relation on m alternatives is the outcome
of majority votes between pairs of alternatives for some individual rational preferences
(namely, acyclic preferences) for a large number of voters. This property is referred to
as indeterminacy. A stronger property is that when the individual order relations are
chosen at random, the probability of every asymmetric relation is bounded away from
zero. This is called stochastic indeterminacy. Finally, complete chaos refers to a situa-
tion where in the limit all the probabilities for asymmetric preference relations are the
same: 2�(m

2 ).

Theorem 3.12 (Kalai [2004, 2010]).
(i) Generalized social welfare functions based on voting games that aggregate informa-
tion lead to indeterminacy. In particular this applies when the maximum Shapley value
tends to zero.
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(ii) Generalized social welfare functions based on voting games where the maximum
Banzhaf value tends to zero lead to stochastic indeterminacy.

(iii) Generalized social welfare functions based on noise-sensitive voting games lead
to complete chaos.

3.1.11 Discussion. Original contexts for some of the results. Voting games are also
called monotone Boolean functions and some of the results we discussed were proved
in this context. Aggregation of information is also referred to as the sharp threshold
phenomenon, which is important in the study of random graphs, percolation theory, and
other areas. Theorem 3.5 was studied in the context of distributed computing and the
question of collective coin flipping: procedures allowing n agents to reach a random bit.
Theorem 3.3 was studied in the context of critical planar percolation. Theorem 3.2 was
studied in the context of the combinatorics and probability of Boolean functions. “The
majority is stablest” theorem was studied both in the context of hardness of approxi-
mation for the Mൺඑ Cඎඍ problem (see Section 3.5), and in the context of social choice.
Arrow’s theorem and Theorem 3.10 had immense impact on theoretical economics and
political science. There is a large body of literature with extensions and interpretations
of Arrow’s theorem, and related phenomena were considered by many. Let me men-
tion the books Peleg [1984] and M. Balinski and Laraki [2010] on voting methods that
attempt to respond to the challenge posed by Arrow’s theorem. Most proofs of the re-
sults discussed here go through Fourier analysis of Boolean functions that we discuss
in Section 3.2.1.

A little more on cooperative games. I did not tell you yet about the most important
solution concept in cooperative game theory (irrelevant to voting games): the core. The
core of the game is an assignment of v(N ) to the n players so that the members of every
coalition S get together at least v(S). Bondareva and Shapley found necessary and
sufficient conditions for the core to be nonempty (closely related to linear programming
duality). I also did not talk about games without side payments. There, v(S) are sets
of vectors that describe the possible payoffs for the player in S if they go together. A
famous game with no side payment is Nash’s bargaining problem for two players. Now,
you are just one step away from one of the deepest and most beautiful results in game
theory, Scarf’s conditions (1967) for nonemptiness of the core.

But what about real-life elections? The relevance and interpretation of mathemati-
cal modeling and results regarding voting rules, games, economics, and social science
is a fairly involved matter. It is interesting to examine some notions discussed here in
the light of election polls, which are often based on a more detailed model. Nate Sil-
ver’s detailed forecasts provide a special opportunity. Silver computes the probability
of victory for every candidate based on running many noisy simulations, which are in
turn based on the outcomes of individual polls. The data in Silver’s forecast contain an
estimation for the event “recount,” which essentially measures noise sensitivity, and it
would be interesting to compare noise sensitivity in this more realistic scenario to the
simplistic model of i.i.d. voters’ behavior. Silver also computes certain power indices
based on the probability of pivotality, again, under his model.
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But what about real-life elections (2)? Robert Aumann remembers a Hebrew Univer-
sity math department meeting convened to choose two new members from among four
very serious candidates. The chairman, a world-class mathematician, asked Aumann for
a voting procedure. Aumann referred him to Bezalel Peleg, an expert on social choice
and voting methods. The method Peleg suggested was adopted, and two candidates
were chosen accordingly. The next day, the chairman met Aumann and complained
that a majority of the department opposed the chosen pair, indeed preferred a specific
different pair! Aumann replied: “Yes, but there is another pair of candidates that the
majority prefers to yours, and yet another pair that the majority prefers to THAT one;
and the pair elected is preferred by the majority to that last one! Moreover, there is a
theorem that says that such situations cannot be avoided under any voting rule.” The
chairman was not happy and said dismissively: “Ohh, you guys and your theorems.”

3.2 Boolean functions and their Fourier analysis. We start with the discrete cube
Ωn = f�1; 1gn. A Boolean function is a map f : Ωn ! f�1; 1g.
Remark 3.13. A Boolean function represents a family of subsets of [n] = f1; 2; : : : ; ng

(also called a hypergraph), which are central objects in extremal combinatorics. Of
course, voting games are monotone Boolean functions. We also note that in agreement
withMurphy’s law, roughly half of the time it is convenient to consider additive notation,
namely, to regard f0; 1gn as the discrete cube and Boolean functions as functions to
f0; 1g. (The translation is 0 ! 1 and 1 ! �1.)

3.2.1 Fourier. Every real function f : Ωn ! R can be expressed in terms of the
Fourier–Walsh basis (we write here and for the rest of the paper [n] = f1; 2; : : : ; ng):

(3-1) f =
X

ff̂ (S)WS : S � [n]g;

where theFourier–Walsh functionWS is simply themonomialWS (x1; x2; : : : ; xn) =Q
i2S xi .
Note that we have here 2n functions, one for each subset S of [n]. Let � be the

uniform probability measure on Ωn. The functions WS form an orthonormal basis of
RΩn with respect to the inner product

hf; gi =
X

x2Ωn

�(x)f (x)g(x):

The coefficients f̂ (S) = hf;Wsi, S � [n], in (3-1) are real numbers, called the Fourier
coefficients of f . Given a real function f on the discrete cube with Fourier expansion
f =

P
ff̂ (S)WS : S � [n]g; the noisy version of f , denoted by T�(f ), is defined by

T�(f ) =
P

ff̂ (S)(�)jS jWS : S � [n]g:

3.2.2 Boolean formulas, Boolean circuits, and projections. (Here it is convenient
to think about the additive convention.) Formulas and circuits allow us to build compli-
cated Boolean functions from simple ones and they are of crucial importance in compu-
tational complexity. Starting with n variables x1; x2; : : : ; xn, a literal is a variable xi
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or its negation :xi . Every Boolean function can be written as a formula in conjunctive
normal form, namely as AND of ORs of literals. A circuit of depth d is defined induc-
tively as follows. A circuit of depth zero is a literal. A circuit of depth one consists of
an OR or AND gate applied to a set of literals, a circuit of depth k consists of an OR or
AND gate applied to the outputs of circuits of depth k�1. (We can assume that gates in
the odd levels are all OR gates and that the gates of the even levels are all AND gates.)
The size of a circuit is the number of gates. Formulas are circuits where we allow the
output of a gate to be used as the input of only one other gate. Given a Boolean function
f (x1; x2; : : : ; xn; y1; y2; : : : ; ym)we can look at its projection g(x1; x2; : : : ; xn) on the
first n variables. g(x1; x2; : : : ; xn) = 1 if there are values a1; a2; : : : ; am) (depending
on the xi s) such that f (x1; x2; : : : ; xn; a1; a2; : : : ; am) = 1. Monotone formulas and
circuits are those where all literals are variables (without negation).

Graph properties. A large important family of examples is obtained as follows. Con-
sider a property P of graphs on m vertices. Let n = m(m � 1)/2, associate Boolean
variables with the n edges of the complete graph Km, and represent every subgraph of
Km by a vector in Ωn. The property P is now represented by a Boolean function on Ωn.
We can also start with an arbitrary graph H with n edges and for every property P of
subgraphs ofH obtain a Boolean function of n variables based on P .

3.3 Noise sensitivity everywhere (but mainly percolation). One thing we learned
over the years is that noise sensitivity is (probably) a fairly common phenomenon. This
is already indicated by Theorem 3.3. Proving noise sensitivity can be difficult. I will
talk in this section about results on the critical planar percolation model, and conclude
with a problem by Benjamini and Brieussel. I will not be able to review here many other
noise-sensitivity results that justify the name of the section.

3.3.1 Critical planar percolation. The crossing event for planar percolation refers
to an n by n square grid and to the event, when every edge is chosen with probability
1/2, that there is a path crossing from the left side to the right side of the square.

Theorem 3.14 (Benjamini, Kalai, and Schramm [1999]). The crossing event for perco-
lation is sensitive to 1/o(logn) noise.

Theorem 3.15 (Schramm and Steif [2010]). The crossing event for percolation is sen-
sitive to (n�c+o(1)) noise, for some c > 0.

Theorem 3.16 (Garban, Pete, and Schramm [2010]). The crossing event for (hex) per-
colation is sensitive to (n�(3/4)+o(1)) noise. The spectral distribution has a scaling limit
and it is supported by Cantor-like sets of Hausdorff dimension 3/4.

Remark 3.17 (Connection to algorithms). The proof of Schramm and Steif is closely
related to the model of computation of random decision trees. Decision tree complexity
refers to a situation where given a Boolean function we would like to find its value by
asking as few questions as possible about specific instances. Random decision trees
allow us to add randomization into the choice of the next question. These relations are
explored in O’Donnell, Saks, Schramm, and Servedio [2005], and have been very useful
in recent works in percolation theory.
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Remark 3.18 (Connection to games). Critical planar percolation is closely related to the
famous game of Hex. Peres, Schramm, Sheffield, and Wilson [2007] studied random-
turn Hex where a coin flip determines the identity of the next player to play. They found
a simple but surprising observation that the value of the gamewhen both players play the
random-turn game optimally is the same as when both players play randomly. Richman
considered auction-based-turn games. Namely, the players bid on who will play the
next round. A surprising, very general analysis (Lazarus, Loeb, Propp, Stromquist, and
Ullman [1999]) shows that the value of the random-turn game is closely related to that
of the auction-based-turn game! Nash famously showed that for ordinary Hex, the first
player wins, but his proof gives no clue as to the winning strategy.

3.3.2 Spectral distribution and pivotal distribution. Let f be amonotone Boolean
function with n variables. We can associate to f two important probability distributions
on subsets of f1; 2; : : : ; ng. The spectral distribution of f , S(f ) gives a set S a proba-
bility f̂ 2(S). Given x 2 Ωn the i th variable is pivotal if when we flip the value of xi

the value of f is flipped as well. The pivotality distribution P (f ) gives to a set S the
probability that S is the set of pivotal variables. It is known that the first two moments
of S and P agree.

Problem 7. Find further connections between S(f ) and P (f ) for all Boolean functions
and for specific classes of Boolean functions.

Conjecture 8. Let f represent the crossing event in planar percolation. Show that
H (S(f )) = O(I (f )) andH (P (f )) = O(I (f )). (HereH is the entropy function.)

The first inequality is a special case of the entropy-influence conjecture of Friedgut
and Kalai [1996] which applies to general Boolean functions. The second inequality
is not so general. We note that if f is in P the pivotal distribution can be efficiently
sampled. The spectral distribution can be efficiently sampled on a quantum computer
(Section 4.2.2).

3.3.3 First-passage percolation. Consider an infinite planar grid where every edge
is assigned a length: 1 with probability 1/2 and 2 with probability 1/2 (independently).
This model of a random metric on the planar grid is called first-passage percolation. An
old question is to understand what is the variance V (n) of the distance D from (0; 0)

to (n; 0). Now, letM be the median value of D and consider the Boolean function f
describing the event “D � M .” Is f noise sensitive?

Benjamini, Kalai, and Schramm [2003] showed, more or less, that f is sensitive to
a logarithmic level of noise, and concluded that V (n) = O(n/ logn). To show that f
is sensitive to a noise level of nı for ı > 0 would imply that V (n) = O(n1�c). A very
interesting question is whether methods used for critical planar percolation for obtaining
stronger noise sensitivity results can also be applied here.

3.3.4 A beautiful problem by Benjamini and Brieussel. Consider an n-step simple
random walk (SRW) Xn on a Cayley graph of a finitely generated infinite group Γ.
Refresh independently each step with probability �, to get Yn fromXn. Are there groups
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for which at time n the positions Xn and Yn are asymptotically independent? That is,
does the l1 (total variation) distance between the chain (Xn; Yn) and two independent
copies (X 0

n; X
00
n ) go to 0, as n ! 1?

Note that on the lineZ, they are uniformly correlated, and therefore also on any group
with a nontrivial homomorphism to R, or on any group that has a finite index subgroup
with a nontrivial homomorphism to R. On the free group and for any non-Liouville
group,Xn and Yn are correlated as well, but for a different reason: bothXn and Yn have
a nontrivial correlation with X1. Itai Benjamini and Jeremie Brieussel conjecture that
these are the only ways not to be noise sensitive. That is, if a Cayley graph is Liouville
and the group does not have a finite index subgroup with a homomorphism to the reals,
then the Cayley graph is noise sensitive for the simple random walk. In particular, the
Grigorchuk group is noise sensitive for the simple random walk!

3.4 Boolean complexity, Fourier, and noise.

3.4.1 P ¤ NP – circuit version. The P ¤ NP-conjecture (in a slightly stronger
form) asserts that the Boolean function described by the graph property of containing a
Hamiltonian cycle cannot be described by a polynomial size circuit. Equivalently, the
circuit form of the NP ¤ P-conjecture asserts that there are Boolean functions that can
be described by polynomial-size nondeterministic circuits, namely as the projection to
n variables of a polynomial-size circuit, but cannot be described by polynomial-size
circuits. A Boolean function f is in co-NP if �f is in NP.

Remark 3.19. Projection to n variables of a Boolean function in co-NP is believed to
enlarge the family of functions even further. The resulting class is denoted by Π2

P and
the class of functions �f when f 2 Π2

P is denoted by Σ2
P . By repeating the process of

negating and projecting we reach a whole hierarchy of complexity classes, PH, called
the polynomial hierarchy.

3.4.2 Well below P. The classNC describes Boolean functions that can be expressed
by polynomial-size polylogarithmical-depth Boolean circuits. This class (among others)
is used to model the notion of parallel computing. Considerably below NC, the class
AC0 describes Boolean functions that can be expressed by bounded-depth polynomi-
al-size circuits, where we allow AND and OR gates to apply to more than two inputs.
A celebrated result in computational complexity asserts that majority and parity do not
belong to AC0. However, the noise stability of majority implies that majority can be
well approximated by functions in AC0. mAC0 is the class of functions described by
bounded-depth polynomial-size monotone circuits. We note that functions in AC0 are
already very complex mathematical objects.

A monotone threshold circuit is a circuit built from gates that are are weighted major-
ity functions (without negations). A general threshold circuit is a circuit built from gates
that are threshold linear functions, i.e. we allow negative weights. TC0 (mTC0) is the
class of functions described by bounded-depth polynomial-size (monotone) threshold
circuits.
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3.4.3 Some conjectures on noise sensitivity and bounded-depth monotone thresh-
old circuits.

Conjecture 9 (Benjamini, Kalai, and Schramm [1999]).
(i) Let f be a Boolean function described by a monotone threshold circuit of size M
and depthD. Then f is stable to (1/t)-noise where t = (logM )100D .

(ii) Let f be a monotone Boolean function described by a threshold circuit of size
M and depthD. Then f is stable to (1/t)-noise where t = (logM )100D .

The constant 100 in the exponent is, of course, negotiable. In fact, replacing 100D

with any function of D will be sufficient for most applications. The best we can hope
for is that the conjectures are true if t behaves like t = (logM )D�1. Part (i) is plausible
but looks very difficult. Part (ii) is quite reckless and may well be false. (See, however,
Problem 11 below.) Note that the two parts differ “only” in the location of the word
“monotone.”

There are many Boolean functions that are very noise sensitive. A simple example
is the recursive majority on threes, denoted by RM3 and defined as follows. Suppose
that n = 3m. Divide the variables into three equal parts. Compute the RM3 separately
for each of these parts and apply majority to the three outcomes. Conjecture 9 would
have the following corollaries (C1)–(C4). Part (i) implies: (C1) – RM3 is not inmTC0,
and even C2 – RM3 cannot be approximated by a function in mTC0. Yao [1989] and
Håstad and Goldmann [1991] proved a variant of (C1) and these results motivated our
conjecture. (C2) already seems well beyond reach. Part (ii) implies: (C3) – RM3 is not
in TC0 and (C4) – RM3 cannot be approximated by a function in TC0. (We can replace
RM3 with other noise-sensitive properties like the crossing event in planar percolation.)

3.4.4 Bounded depth Boolean circuits and the reverse Håstad conjecture. For
a monotone Boolean function f on Ωn, a Fourier description of the total influence is
I (f ) =

P
f̂ 2(S)jS j, and we can take this expression as the definition of I (f ) for

nonmonotone functions as well. The following theorem describes some connections
between functions in AC0, influence and Fourier. The second and third items are based
on Håstad’s switching lemma.

Theorem 3.20.
(i) Boppana [n.d.]: If f is a (monotone) Boolean function that can be described by a
depth-D size-M monotone Boolean circuit then I (f ) � C (logM )D�1.

(ii) (Håstad [1986] and Boppana [1997]) If f is a function that can be described by
a depth-D size-M Boolean circuit then I (f ) � C (logM )D�1.

(iii) Linial, Mansour, and Nisan [1993]; improved by Håstad [2001]: If f is a
function that can be described by a depth-D size-M monotone Boolean circuit then
f
P
f̂ 2(S) : jS j = tg decays exponentially with t when t > C (logM )D�1.

We conjecture that functions with low influence can be approximated by low-depth
small-size circuits. A function g �-approximates a function f if E(f � g)2 � �.

Conjecture 10 (Benjamini, Kalai, and Schramm [1999]). For some absolute constant
C the following holds. A Boolean function f can be 0:01-approximated by a circuit of
depth d of sizeM where (logM )Cd � I (f ):
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3.4.5 Positive vs. monotone. We stated plausible but hard conjectures on functions
in mTC0 and reckless and perhaps wrong conjectures on monotone functions in TC0.
But we cannot present a single example of a monotone function in TC0 that is not in
mTC0. To separate the conjectures we need monotone functions in TC0 that cannot
even be approximated inmTC0. Ajtai and Gurevich [1987] proved that there are mono-
tone functions in AC0 that are not inmAC0.

Problem 11.
(i) Are there monotone functions in AC0 that cannot be approximated by functions in
mAC0 ?

(ii) Are there monotone functions in TC0 that are not inmTC0?
(iii) Are there monotone functions in TC0 that cannot be approximated by functions

inmTC0?

3.5 A taste of PCP, hardness of approximation, and Mൺඑ Cඎඍ. A vertex cover of
a graph G is a set of vertices such that every edge contains a vertex in the set. Vൾඋඍൾඑ
Cඈඏൾඋ is the algorithmic problem of finding such a set of vertices of minimum size.
Famously, this problem is an NP-complete problem; in fact, it is one of the problems
in Karp’s original list. A matching in a graph is a set of edges such that every vertex is
included in at most one edge. Given a graph G there is an easy efficient algorithm for
finding a maximal matching. Finding a maximal matching with r edges with respect
to inclusion, gives us at the same time a vertex cover of size 2r and a guarantee that
the minimum size of a vertex cover is at least r . A very natural question is to find an
efficient algorithm for a better approximation. There is by now good evidence that this
might not be possible. It is known to derive Khot and Regev [2003] from Khot’s unique
game conjecture Khot [2002].

A cut in a graph is a partition of the vertices into two sets. The Mൺඑ Cඎඍ problem
is the problem of finding a cut with the maximum number of edges between the parts.
Also this problem isNP-complete, and inKarp’s list. The famousGoemans–Williamson
algorithm based on semidefinite programming achieves ˛-approximation for max cut
where ˛GM = :878567. Is there an efficient algorithm for a better approximation?
There is by now good evidence that this might not be possible.

3.5.1 Unique games, the unique game conjecture, and the PCP theorem. Wehave
a connected graph and we want to color it with colors from a setΣ. For every edge e we
are given an orientation of the edge and a permutation �e on Σ. In a good coloring of
the edge, if the tail is colored c then the head must be colored �e(c). It is easy to check
efficiently if a global good coloring exists since coloring one vertex forces the coloring
of all the others.

Given �; ı, the unique game problem is for a graphG, a set of colorsΣ, and a permu-
tation constraint for each edge, to decide algorithmically between two scenarios (when
we are promised that one of them holds):

(i) There is no coloring for which more than a fraction � of the edges are colored
good.
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(ii) There is a coloring for which at least a fraction 1 � ı of the edges are colored
good.

The unique game conjecture asserts that for every � > 0 and ı > 0 it is NP-hard to
decide between these two scenarios.

If one does not insist on the constraints being permutations and instead allows them
to be of general form, then the above holds, and it is called the PCP Theorem – one of
the most celebrated theorems in the theory of computation.
Remark 3.21. A useful way to describe the situation (which also reflects the historical
path leading to it) is in terms of a three-player game in which there are two “provers”
and a verifier. A verifier is trying to decide which of the two cases he is in, and can
communicate with two all powerful (noncommunicating) provers. To do so, the verifier
samples an edge, and sends one endpoint to each prover. Upon receiving their answers,
the verifier checks that the two colors satisfy the constraint. The provers need to con-
vince the verifier that a coloring exists by giving consistent answers to simultaneous
questions drawn at random.

3.5.2 The theorem of Khot, Kindler, Mossel, and O’Donnell.

Theorem 3.22 (Khot, Kindler, Mossel, and O’Donnell [2007]). Let ˇ > ˛GM be a
constant. Then an efficient ˇ-approximation algorithm for Mਁਘ Cਕਔ implies an efficient
algorithm for unique games.

The reduction relies on the “majority is stablest” theorem (Theorem 3.4), which was
posed by Khot, Kindler, Mossel, and O’Donnell as a conjecture and later proved by
Mossel, O’Donnell, and Oleszkiewicz. This result belongs to the theory of hardness of
approximation and probabilistically checkable proofs (PCPs), which is among the most
important areas developed in computational complexity in the past three decades. For
quite a few problems in Karp’s original list of NP-complete problems (and many other
problems added to the list), there is good evidence that the best efficient approximation
is achieved by a known relatively simple algorithm. For a large class of problems it is
even known [Raghavendra 2008] (based on hardness of the unique game problem) that
the best algorithm is either a very simple combinatorial algorithm (like that for Vൾඋඍൾඑ
Cඈඏൾඋ), or a more sophisticated application of semidefinite programming (like that for
Mൺඑ Cඎඍ). I will give a quick and very fragmented taste of three ingredients of the
proof of Theorem 3.22.

The noisy graph of the cube. The proof of the hardness of max cut relative to unique
games is based on the weighted graph whose vertices are the vertices of the discrete
cube, all pairs are edges, and the weight of an edge between two vertices of distance k
is (1 � p)kpn�k . It turns out that in order to analyze the reduction, it suffices to study
the structure of good cuts in this very special graph.

The least efficient error-correcting codes. Error-correcting codes have, for many
decades, been among the most celebrated applications of mathematics, with a huge im-
pact on technology. They also play a prominent role in theoretical computer science
and in PCP theory. The particular code needed for max cut is the following: encode
a number k between 1 to n (and thus logn bits) by a Boolean function: a dictatorship
where the kth variable is the dictator!
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Testing dictatorship. An important ingredient of a PCP proof is “property testing,”
i.e., testing by looking at a bounded number of values if a Boolean function satisfies
a certain property, or is very far from satisfying it. In our case we would like to test
(with a high probability of success) if a Boolean function is very far from dictatorship,
or has substantial correlation with it. The test is the following: choose x at random,
let y = N�(�x). Test if f (x) = �f (y). For the majority function the probability
that majority passes the test is roughly arccos(�� 1); the “majority is stablest” theorem
implies that anything that is more stable has a large correlation with a dictator.

3.5.3 Discussion: integrality gap and polytope integrality gap. Given a graph G
and nonnegative weights on its vertices, the weighted version of Vൾඋඍൾඑ Cඈඏൾඋ is the
algorithmic problem of finding a set of vertices of minimumweight that covers all edges.

Minimize w1x1 + w2x2 + � � � + wnxn where x = (x1; x2; : : : ; xn) is a 0-1 vector,
subject to: xi + xj � 1 for every edge fi; j g.
Of course, this more general problem is also NP-complete. The linear programming

relaxation allows xi s to be real and belong to the interval [0,1]. The integrality gap for
general vertex cover problems is 2 and given the solution to the linear programming
problem you can just consider the set of vertices i so that xi � 1/2. This will be a cover
and the ratio between this cover and the optimal one is at most 2. The integrality gap
for the standard relaxation of max cut is logn. The integrality gap is an important part
of the picture in PCP theory. I conclude with a beautiful problem that I learned from
Anna Karlin.

Consider the integrality gap (called the polytope integrality gap) between the cov-
ering problem and the linear programming relaxation when the graph G is fixed. In
greater generality, consider a general covering problem of maximizing ctx subject to
Ax � b where A is an integral matrix of nonnegative integers. Next, considered the
integrality gap between 0-1 solutions and real solutions in [0; 1] when A and b are fixed
(thus the feasible polyhedron is fixed, and hence the name “polytope integrality gap”)
and only c (the objective function) varies. The problem is if, for Vൾඋඍൾඑ Cඈඏൾඋ for
every graphG and every vector of weights, there is an efficient algorithm achieving the
polytope integrality gap. The same question can be asked about a polytope integrality
gap of arbitrary covering problems.

4 The quantum computer challenge

To Robert Aumann, Maya Bar-Hillel, Dror Bar-Nathan, Brendan McKay, and Ilya
Rips who trained me as an applied mathematician.

4.1 Quantum computers and noise. Recall that the basic memory component in
classical computing is a “bit,” which can be in two states, “0” or “1.” A computer, as
modeled by a Boolean circuit, has n bits and it can perform certain logical operations on
them. TheNOT gate, acting on a single bit, and the AND gate, acting on two bits, suffice
for universal classical computing. This means that a computation based on another
collection of logical gates, each acting on a bounded number of bits, can be replaced by
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a computation based only on NOT and AND. Classical circuits equipped with random
bits lead to randomized algorithms, which, as mentioned before, are both practically
useful and theoretically important. Quantum computers allow the creation of probability
distributions that are well beyond the reach of classical computers with access to random
bits.

4.1.1 Quantum circuits. A qubit is a piece of quantum memory. The state of a qubit
can be described by a unit vector in a two-dimensional complex Hilbert space H . For
example, a basis forH can correspond to two energy levels of the hydrogen atom, or to
horizontal and vertical polarizations of a photon. Quantum mechanics allows the qubit
to be in a superposition of the basis vectors, described by an arbitrary unit vector inH .
The memory of a quantum computer (“quantum circuit”) consists of n qubits. LetHk be
the two-dimensional Hilbert space associated with the kth qubit. The state of the entire
memory of n qubits is described by a unit vector in the tensor productH1 ˝H2 ˝ � � � ˝

Hn. We can put one or two qubits through gates representing unitary transformations
acting on the corresponding two- or four-dimensional Hilbert spaces, and as for classical
computers, there is a small list of gates sufficient for universal quantum computing. At
the end of the computation process, the state of the entire computer can be measured,
giving a probability distribution on 0–1 vectors of length n.

A few words on the connection between the mathematical model of quantum cir-
cuits and quantum physics: in quantum physics, states and their evolutions (the way they
change in time) are governed by the Schrödinger equation. A solution of the Schrödinger
equation can be described as a unitary process on a Hilbert space and quantum comput-
ing processes of the kind we just described form a large class of such quantum evolu-
tions.

Remark 4.1. Several universal classes of quantum gates are described in Nielsen and
Chuang [2000, Ch. 4.5]. The gates for the IBM quantum computer are eight very basic
one-qubit gates, and the 2-qubit CNOT gate according to a certain fixed directed graph.
This is a universal system and in fact, an over complete one.

4.1.2 Noise and fault-tolerant computation. The main concern regarding the feasi-
bility of quantum computers has always been that quantum systems are inherently noisy:
we cannot accurately control them, and we cannot accurately describe them. The con-
cern regarding noise in quantum systems as a major obstacle to quantum computers was
put forward in the mid-90s by Landauer [1995], Unruh [1995], and others.

What is noise? As we said already, solutions of the Schrödinger equation (“quantum
evolutions”) can be regarded as unitary processes on Hilbert spaces. Mathematically
speaking, the study of noisy quantum systems is the study of pairs of Hilbert spaces
(H;H 0),H � H 0, and a unitary process on the larger Hilbert spaceH 0. Noise refers to
the general effect of neglecting degrees of freedom, namely, approximating the process
on a large Hilbert space by a process on the small Hilbert space. For controlled quantum
systems and, in particular, quantum computers, H represents the controlled part of the
system, and the large unitary process on H 0 represents, in addition to an “intended”
controlled evolution onH , also the uncontrolled effects of the environment. The study
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of noise is relevant, not only to controlled quantum systems, but also to many other
aspects of quantum physics.

A second, mathematically equivalent way to view noisy states and noisy evolutions,
is to stay with the original Hilbert spaceH , but to consider a mathematically larger class
of states and operations. In this view, the state of a noisy qubit is described as a classical
probability distribution on unit vectors of the associated Hilbert spaces. Such states are
referred to as mixed states.

It is convenient to think about the following simple form of noise, called depolarizing
noise: in every computer cycle a qubit is not affected with probability 1 � p, and, with
probability p, it turns into the maximal entropy mixed state, i.e., the average of all unit
vectors in the associated Hilbert space.

Remark 4.2. It is useful to distinguish between the model error rate, which is p in
the above example, and the effective error rate, which is the probability that a qubit is
corrupted at a computation step, conditioned on it having survived up to this step. The
effective error rate depends not only on the model error rate but also on the computation
sequence. When the computation is nontrivial (for example, for pseudo-random circuits)
the effective error rate grows linearly with the number of qubits.4 This is a familiar fact
that is taken into account by the threshold theorem described below.

To overcome noise, a theory of quantum fault-tolerant computation based on quan-
tum error-correcting codes was developed. Fault-tolerant computation refers to com-
putation in the presence of errors. The basic idea is to represent (or “encode”) a single
(logical) qubit by a large number of physical qubits, so as to ensure that the computation
is robust even if some of these physical qubits are faulty.

Theorem 4.3 (Threshold theorem – informal statement [Aharonov and Ben-Or 1999;
Kitaev 1997; Knill, Laflamme, and Zurek 1998]). When the level of noise is below a
certain positive threshold �, noisy quantum computers allow universal quantum compu-
tation.

Theorem 4.3 shows that once high-quality quantum circuits are built for roughly 100–
500 qubits then it will be possible in principle to use quantum error-correction codes to
amplify this achievement for building quantum computers with an unlimited number of
qubits. The interpretation of this result took for granted that quantum computers with a
few dozen qubits are feasible, and this is incorrect.

Let A be the maximal number of qubits for which a reliable quantum circuit can be
engineered. Let B be the number of qubits required for good quantum error-correcting
codes needed for quantum fault-tolerance. B is in the range of 100–1000 qubits.

The optimistic scenario: A > B .
The pessimistic scenario: B > A.
As we will see, there are good theoretical reasons for the pessimistic scenario (even

for B � A) as well as interesting consequences from it. We emphasize that both
scenarios are compatible with quantum mechanics.

4We refer to error rate in terms of qubit errors, which are relevant to quantum error-correction. There is
no difference between model error rate and effective error rate for rate based on trace distance.
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Figure 6: Two scenarios: Left – Quantum fault-tolerance mechanisms, via quan-
tum error-correction, allow robust quantum information and computationally su-
perior quantum computation. Right – Noisy quantum evolutions, described by
low-degree polynomials, allow, via the mechanisms of averaging/repetition, ro-
bust classical information and computation, but do not allow reaching the starting
points for quantum supremacy and quantum fault-tolerance. Drawing by Neta
Kalai.

4.2 Complexity 6: quantum computational supremacy.

4.2.1 Fൺർඍඈඋංඇ is in BQP. Recall that computational complexity is the theory of
efficient computations, where “efficient” is an asymptotic notion referring to situations
where the number of computation steps (“time”) is at most a polynomial in the number
of input bits. We already discussed the complexity classes P and NP, and let us (abuse
notation and) allow classical randomization to be added to all the complexity classes
we discuss. There are important intermediate problems between P and NP. Fൺർඍඈඋංඇ
– the task of factoring an n-digit integer to its prime decomposition is not known to be
in P, as the best algorithms are exponential in the cube root of the number of digits.
Fൺർඍඈඋංඇ is in NP, hence it is unlikely that factoring is NP-complete. Practically,
Fൺർඍඈඋංඇ is hard and this is the basis for most of the current cryptosystems.

The class of decision problems that quantum computers can efficiently solve is de-
noted by BQP. Shor’s algorithm shows that quantum computers can factor n-digit inte-
gers efficiently – in ∼ n2 steps! Quantum computers are not known to be able to solve
NP-complete problems efficiently, and there are good reasons to think that they can-
not do so. However, quantum computers can efficiently perform certain computational
tasks beyond NP and even beyond PH.

The paper by Shor [1999] presenting an efficient factoring algorithm for quantum
computers is among the scientific highlights of the 20th century, with an immense im-
pact on several theoretical and experimental areas of physics.

4.2.2 Fourier sampling, boson sampling, and other quantum sampling. As men-
tioned in Section 2, exact and approximate sampling are important algorithmic tasks on
their own and as subroutines for other tasks. Quantum computers enable remarkable
new forms of sampling. Quantum computers would allow the creation of probability
distributions that are beyond the reach of classical computers with access to random
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bits. Let Qඎൺඇඍඎආ Sൺආඉඅංඇ denote the class of distributions that quantum computers
can efficiently sample. An important class of such distributions is Fඈඎඋංൾඋ Sൺආඉඅංඇ.
Start with a Boolean function f . (We can think of f (x) as the winner in HEX.) If
f is in P then we can classically sample f (x) for a random x 2 Ωn. With quantum
computers we can do more. A crucial ability of quantum computers is to prepare a state
2�n/2 �

P
f (x)jx >, which is a superposition of all 2n vectors weighted by the value

of f . Next a quantum computer can easily take the Fourier transform of f and thus
sample exactly a subset S according to f̂ 2(S). This ability of quantum computers goes
back essentially to Simon [1997], and is crucial for Shor’s factoring algorithm.

Another important example is Bඈඌඈඇ Sൺආඉඅංඇ, which refers to a class of probability
distributions (that quantum computers can efficiently create) representing a collection
of noninteracting bosons. Bඈඌඈඇ Sൺආඉඅංඇ was introduced by Troyansky and Tishby
[1996] andwas intensively studied by 2013, who offered it as a quick path for experimen-
tally showing that quantum supremacy is a real phenomenon. Given an n by n matrix
A, let per(A) denote the permanent of A. LetM be a complex n �m matrix, m � n,
with orthonormal rows. Consider all

�
m+n�1

n

�
sub-multisets S of n columns (namely,

allow columns to repeat), and for every sub-multiset S consider the corresponding n�n

submatrix A (with column i repeating ri times). Bඈඌඈඇ Sൺආඉඅංඇ is the algorithmic
task of sampling these multisets S according to jper(A)j2/(r1!r2! � � � rn!).

4.2.3 Hierarchy collapse theorems. Starting with Terhal and DiVincenzo [2004]
there has been a series of works showing that it is very unreasonable to expect a classical
computer to perform quantum sampling even regarding distributions that express very
limited quantum computing. (Of course quantum computers can perform these sampling
tasks.)

Theorem 4.4 (Terhal and DiVincenzo [ibid.], Aaronson and Arkhipov [2013], Bremner,
Jozsa, and Shepherd [2011]). If a classical computer can exactly sample according to
either

(i) General Qਕਁਔਕ Sਁਐਉਇ,
(ii) Bਏਓਏ Sਁਐਉਇ,
(iii) Fਏਕਉਅ Sਁਐਉਇ, or
(iv) Probability distributions obtained by bounded-depth polynomial-size quantum

circuits,
then the polynomial hierarchy collapses.

The proof is by showing that if a classical computer that allows any of the sampling
tasks listed above, is equipped with an NP oracle, then it is able to efficiently perform
#P-complete computations. This implies that the class #P that includes PH already
collapses to the third level in the polynomial hierarchy.

4.3 Computation and physics 1.

4.3.1 Variants of theChurch–Turing thesis. The famousChurch–Turing thesis (CTT)
asserts that everything computable is computable by a Turing machine. Although ini-
tially this was a thesis about computability, there were early attempts to relate it to
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physics, namely, to assert that physical devices obey the CTT. The efficient (or strong)
Church–Turing thesis (ECTT) in the context of feasible computations by physical de-
vices was considered early on byWolfram [1985], Pitowsky [1990] and others. It asserts
that only efficient computations by a Turing machine are feasible physical computation.
Quantum computers violate the ECTT. The pessimistic scenario brings us back to the
ECTT, and, in addition, it proposes an even stronger limitation for “purely quantum
processes” (suggested from Kalai and Kindler [2014]).

Unitary evolutions that can be well approximated by physical devices
can be approximated by low-degree polynomials, and are efficiently learn-
able.

The following NPBS-principle (no primitive-based supremacy) seems largely appli-
cable in the interface between practice and theory in the theory of computing.

Devices that express (asymptotically) primitive (low-level) computa-
tional power cannot be engineered or programmed to achieve superior com-
putational tasks.

4.3.2 What even quantum computers cannot achieve and themodeling of locality.
The model of quantum computers already suggests important limitations on what local
quantum systems can compute.

• Random unitary operations on large Hilbert spaces. A quantum computer with n
qubits cannot reach a random unitary state since reaching such a state requires an
exponential number of computer cycles. (Note also that since an �-net of states for
n-qubits quantum computer requires a set of size doubly exponential in n, most
states are beyond the reach of a quantum computer.)

• Reaching ground states for complex quantum systems. A quantum computer is
unlikely to be able to reach the ground state of a quantum system (that admits an
efficient description). As a matter of fact, reaching a ground state isNP-complete
even for classical systems and for quantum computing the relevant complexity
class is an even larger QMA.

These limitations are based on the model of quantum computers (and the second
also on NP ¤ P) and thus do not formally follow from the basic framework of quantum
mechanics (for all we know). They do follow from a principle of “locality” asserting that
quantum evolutions express interactions between a small number of physical elements.
This principle is modeled by quantum computers, and indeed a crucial issue in the debate
on quantum computers is what is the correct modeling of local quantum systems. Let
me mention three possibilities.

(A) The model of quantum circuits is the correct model for local quantum evolutions.
Quantum computers are possible, the difficulties are matters of engineering, and
quantum computational supremacy is amply manifested in quantum physics.
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(B) The model of noisy quantum circuits is the correct model for local quantum evo-
lutions. In view of the threshold theorem, quantum computers are possible and
the remaining difficulties are matters of engineering.

(C) The model of noisy quantum circuits is the correct model for local quantum evo-
lutions, and further analysis suggests that the threshold in the threshold theorem
cannot be reached. Quantum circuits with noise above the threshold is the correct
modeling of local quantum systems. Quantum computational supremacy is an
artifact of incorrect modeling of locality.

Computational complexity insights (and some common sense) can assist us in decid-
ing between these possibilities. While each of them has its own difficulties, in my view
the third one is correct.

4.3.3 Feynman’s motivation for quantum computing.

Conjecture 12 (Feynman [1981/82] motivation for quantum computation). High en-
ergy physics computations, especially computations in QED (quantum electrodynam-
ics) and QCD (quantum chromodynamics), can be carried out efficiently by quantum
computers.

This question touches on the important mathematical question of giving rigorous
mathematical foundations for QED and QCD computations. Efficient quantum compu-
tation for them will be an important (while indirect) step toward putting these theories
on rigorous mathematical grounds. Jordan, Lee, and Preskill [2014] found an efficient
algorithm for certain computations in (�4) quantum field theory for cases where a rig-
orous mathematical framework is available.

4.4 The low-scale analysis: Why quantum computers cannot work.

4.4.1 Noisy systems of noninteracting photons.

Theorem 4.5 (Kalai and Kindler [2014]). When the noise level is constant, Bਏਓਏ Sਁ-
ਐਉਇ distributions are well approximated by their low-degree Fourier–Hermite expan-
sion. Consequently, noisy Bਏਓਏ Sਁਐਉਇ can be approximated by bounded-depth
polynomial-size circuits.

It is reasonable to assume that for all proposed implementations of Bඈඌඈඇ Sൺආඉඅංඇ
the noise level is at least a constant and, therefore, an experimental realization of Bඈඌඈඇ
Sൺආඉඅංඇ represents, asymptotically, bounded-depth computation. In fact noisy Bඈඌඈඇ
Sൺආඉඅංඇ belongs to a computational class LDP (approximately sampling distributions
described by bounded-degree polynomials) which is well belowAC0. The next theorem
shows that implementation of Bඈඌඈඇ Sൺආඉඅංඇ will actually require pushing down the
noise level to below 1/n.
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Figure 7: Quantum computers offer mind-boggling computational superiority
(left), but in the small scale, noisy quantum circuits are computationally very
weak, unlikely to allow quantum codes needed for quantum computers (right).

Theorem 4.6 (Kalai and Kindler [2014]). When the noise level is!(1/n), andm � n2,
Bਏਓਏ Sਁਐਉਇ is very sensitive to noise with a vanishing correlation between the
noisy distribution and the ideal distribution.5

4.4.2 Noisy quantum circuits.

Conjecture 13.
(i) The insights for noisy Bඈඌඈඇ Sൺආඉඅංඇ apply to all versions of realistic forms of
noise.

(ii) These insights extend further to quantum circuits and other quantum devices in
the small scale.

(iii) These insights extend even further to quantum devices, including microscopic
processes, that do not use quantum error-correction.

(iv) This rules out quantum computational supremacy and the needed quantum error-
correcting codes.

The first item seems a quite reasonable extension of Theorem 4.5. In fact, the ar-
gument applies with small changes to a physical modeling of mode-mismatch noise
(when bosons are not fully indistinguishable). Each item represents quite a leap from
the previous one. The last item expresses the idea that superior computation cannot
be manifested by primitive asymptotic computational power. Theorem 4.5 put noisy
Bඈඌඈඇ Sൺආඉඅංඇ in a very low-level class, LDP, even well below AC0. It is not logi-
cally impossible but still quite implausible that such a primitive computing device will
manifest superior computing power for 50 bosons.

Remark 4.7. Why robust classical information and computation is possible and ubiqui-
tous. The ability to approximate low-degree polynomials still supports robust classical

5The condition m � n2 can probably be removed by a more detailed analysis.
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information. This is related to our second puzzle. The majority function allows for very
robust bits based on a large number of noisy bits and admits excellent low-degree ap-
proximations. Both encoding (by some repetition procedure) and decoding (by majority
or a variation of majority) that are needed for robust classical information are supported
by low-degree polynomials.

4.5 Predictions regarding intermediate goals and near-term experiments.

• Demonstrating quantum supremacy. A demonstration of quantum computing
supremacy, namely, crossing the line where classical simulation is possible, re-
quires, e.g., building of pseudo-random quantum circuits of 50–70 qubits. As we
mentioned in the Introduction, this idea can be partially tested already for quan-
tum circuits with 10–30 qubits, and there are plans for a decisive demonstration
on 50 qubits in the near future. Quantum supremacy could be demonstrated via
implementation of Bඈඌඈඇ Sൺආඉඅංඇ and in various other ways. Theorems 4.5
and 4.6 and the NPBS principle suggest that all these attempts will fail.

• Robust quantum qubits via quantum error-correction. The central goal toward
quantum computers is to build logical qubits based on quantum error-correction,
and a major effort is being made to demonstrate a distance-5 surface code that
requires 100 or so qubits. It is now commonly agreed that this task is harder
than “simply” demonstrating quantum computational supremacy. Therefore, the
NPBS principle suggests that these attempts will fail as well.

• Good-quality individual qubits and gates (and anyonic qubits). The quality of
individual qubits and gates is the major factor in the quality of quantum circuits
built from them. The quantum computing analogue of Moore’s law, known as
“Schoelkopf’s law,” asserts that roughly every three years, quantum decoherence
can be delayed by a factor of ten. The analysis leading to the first two items
suggests that Schoelkopf’s law will be broken before reaching the quality needed
for quantum supremacy and quantum fault-tolerance. This is an indirect argument,
but more directly, the microscopic process leading to the qubits (for all we know)
also represents low level complexity power. This last argument also casts doubt
on any hopes of reaching robust quantum qubits via anyons.

4.6 Computation and physics 2: noisy quantum systems above the noise thresh-
old. Noisy quantum systems under the pessimistic scenario, namely, under the assump-
tion that the noise level is above the fault-tolerance threshold are quite interesting! There
are two basic premises for modeling noisy quantum evolutions under the pessimistic sce-
nario. The first is that the modeling is implicit; namely, it is given in terms of conditions
that the noisy process must satisfy, rather than a direct description for the noise. The
second premise is that there are systematic relations between the (effective) noise and
the entire quantum evolution and also between the target state and the noise.
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4.6.1 Correlated errors and error synchronization. The following prediction re-
garding noisy entangled pairs of qubits is perhaps the simplest prediction on noisy quan-
tum circuits under the pessimistic scenario. Entanglement is a name for quantum cor-
relation, and it is an important feature of quantum physics and a crucial ingredient of
quantum computation. A cat state of the form 1p

2
j00i+ 1p

2
j11i represents the simplest

(and strongest) form of entanglement between two qubits.
Prediction 1: Two-qubit behavior. For any implementation of quantum circuits,

cat states are subject to qubit errors with substantial positive correlation.
Error synchronization refers to a substantial probability that a large number of qubits,

well beyond the average rate of noise, are corrupted. This is a very rare phenomenon for
the model noise and, when quantum fault-tolerance is in place, error synchronization is
an extremely rare event also for the effective noise.

Prediction 2: Error synchronization. For pseudo-random circuits, highly synchro-
nized errors will necessarily occur.
Remark 4.8. Both predictions 1 and 2 can already be tested via the quantum computers
of Google, IBM, and others. (It will be interesting to test prediction 1 even on gated
qubits, where it is not in conflict with the threshold theorem, but may still be relevant
to the required threshold constant.)

4.6.2 Modeling general noisy quantum systems.
Prediction 3: Bounded-degree approximations, and effective learnability. Uni-

tary evolutions that can be approximated by noisy quantum circuits (and other devices)
are approximated by low-degree polynomials and are efficiently learnable.

Prediction 4: Rate. For a noisy quantum system a lower bound for the rate of noise
in a time interval is a measure of noncommutativity for the projections in the algebra of
unitary operators in that interval.

Prediction 5: Convoluted time smoothing. Quantum evolutions are subject to
noise with a substantial correlation with time-smoothed evolutions.

Time-smoothed evolutions form an interesting restricted class of noisy quantum evo-
lutions aimed at modeling evolutions under the pessimistic scenario when quantum
fault-tolerance is unavailable to suppress noise propagation. The basic example of
time-smoothing is the following: start with an ideal quantum evolution given by a se-
quence of T unitary operators, where Ut denotes the unitary operator for the t -th step,
t = 1; 2; : : : T . For s < t we denote Us;t =

Qt�1
i=s Ui and let Us;s = I and Ut;s = U�1

s;t :

The next step is to add noise in a completely standard way: consider a noise opera-
tion Et for the t th step. We can think about the case where the unitary evolution is a
quantum-computing process and Et represents a depolarizing noise at a fixed rate act-
ing independently on the qubits. And, finally, replaceEt with a new noise operationE 0

t

defined as the average6

(4-1) E 0
t =

1

T
�

TX
s=1

Us;tEsU
�1
s;t :

6The need for smoothing into the future as well as into the past follows from Kalai and Kuperberg [2015].
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Predictions 1–5 are implicit and describe systematic relations between the (effective)
noise and the evolution. We expect that time-smoothing will suppress high terms for
some Fourier-like expansion,7 thus relating Predictions 3 and 5. Prediction 4 resembles
the picture drawn by Polterovich [2014] of the “unsharpness principle” in symplectic
geometry, quantization, and quantum noise.
Remark 4.9. It is reasonable to assume that time-dependent quantum evolutions are
inherently noisy since time dependency indicates interaction with an environment. Two
caveats: famously, time-dependent evolutions can be simulated by time-independent
evolutions, but we can further assume that in such cases the noise lower bounds will
transfer. Second, in the context of noise, the environment of, say, an electron refers also
to its internal structure.
Remark 4.10. Physical processes are not close to unitary evolutions and there are sys-
tematic classical effects (namely, robust effects of interactions with a large “environ-
ment”). We certainly cannot model everything with low-degree polynomials. On the
other hand, it is unlikely that natural physical evolutions express the full power of P. It
will be interesting to understand the complexity of various realistic physical evolutions
, and to identify larger relevant classes within P, especially classes for which efficient
learnability is possible.
Remark 4.11. Let me list, for more details see [Kalai 2016b], a few features of noisy
quantum evolutions and states “above the threshold.” (a) Symmetry. Noisy quantum
states and evolutions are subject to noise that respects their symmetries. (b) Entropy
lower bounds. Within a symmetry class of quantum states/evolutions (or for classes of
states defined in a different way), there is an absolute positive lower bound for entropy.
(c) Geometry. Quantum states and evolutions reveal some information on the geometry
of (all) their physical realizations. (d) Fluctuation. Fluctuations in the rate of noise
for interactingN -element systems (even in cases where interactions are weak and unin-
tended) scale like N and not like

p
N . (e) Time. The difficulty in implementing a local

quantum computing process is not invariant under reversing time.

4.7 Our computational world. The emerging picture from our analysis is that the
basic computational power of quantum devices is very limited: unitary evolutions de-
scribed by noisy local quantum devices are confined to low-degree polynomials. It is
classical information and computation that emerge via noise-stable encoding and decod-
ing processes that enable the wealth of computation witnessed in nature. This picture
offers many challenges, in its mathematical, physical, and computational aspects, and
these can serve as a poor man’s replacement for quantum supremacy dreams.

5 Conclusion

We have talked about three fascinating puzzles on mathematics and computation, telling
a story that involves pure and applied mathematics, theoretical computer science, games
of various kinds, physics, and social sciences. The connection and tension between

7Pauli expansion seems appropriate for the case of quantum circuits; see Montanaro and Osborne [2010].
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the pure and the applied, between models and reality, and the wide spectrum between
foundations and engineering is common to all three puzzles. We find great expectations,
surprises, mistakes, disappointments, and controversies at the heart of our endeavor,
while seeking truth and understanding in our logical, physical, and human reality. In
our sweet professional lives, being wrong while pursuing dreams unfounded in reality
is sometimes of value, and second only to being right.

Appendix: abstract objective functions and telling a polytope from
its graph

The linear programming local-to-global principle has very nice connections and appli-
cations to the combinatorial theory of convex polytopes. Abstract linear objective func-
tions (and Sharir–Welzl’s abstract linear programming problems) are related to the no-
tion of shellability. We will bring here one such application: Kalai [1988] – a beautiful
proof that I found for the following theorem of Blind and Mani-Levitska [1987] conjec-
tured by Micha A. Perles:

Theorem 5.1. The combinatorial structure of a simple polytope P is determined by its
graph.

We recall that a d -polytope P is simple if every vertex belongs to exactly d edges.
Thus the graph of P is a d -regular graph. For a simple polytope, every set of r edges
containing a vertex v determines an r-face of P . Faces of simple polytopes are simple.
Consider an ordering � of the vertices of a simple d -polytope P . For a nonempty face
F we say that a vertex v of F is a local maximum in F if v is larger w.r.t. the ordering�

than all its neighboring vertices in F . Recall that an abstract objective function (AOF)
of a simple d -polytope is an ordering that satisfies the basic property of linear objective
functions: every nonempty face F of P has a unique local maximum vertex.

If P is a simple d -polytope and � is a linear ordering of the vertices we define the
degree of a vertex v w.r.t. the ordering as the number of adjacent vertices to v that are
smaller than v w.r.t. �. Thus, the degree of a vertex is a nonnegative number between
0 and d . Let h�

k
be the number of vertices of degree k. Finally, let F (P ) be the total

number of nonempty faces of P .
Claim 1:

Pd
r=0 2

kh�
k

� F (P ); and the equality holds if and only if the ordering
� is an AOF.

Proof: Count pairs (F; v) where F is a nonempty face of P (of any dimension) and
v is a vertex that is local maximum in F w.r.t. the ordering �. On the one hand, every
vertex v of degree k contributes precisely 2k pairs (F; v) corresponding to all subsets
of edges from v leading to smaller vertices w.r.t. �. Therefore the number of pairs is
precisely

Pd
r=0 2

kh�
k
. On the other hand, the number of such pairs is at least F (P )

(every face has at least one local maximum) and it is equal to F (P ) iff every face has
exactly one local maximum, i.e, if the ordering is an AOF.

Claim 2: A connected k-regular subgraph H of G(P ) is the graph of a k-face, if
and only if there is an AOF in which all vertices in H are smaller than all vertices not
inH .
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Proof: If H is the graph of a k-face F of P then consider a linear objective func-
tion  that attains its minimum precisely at the points in F . (By definition for every
nontrivial face such a linear objective function exists.) Now perturb  a little to get a
generic linear objective function � in which all vertices ofH have smaller values than
all other vertices.

On the other hand, if there is an AOF � in which all vertices in H are smaller than
all vertices not in H , consider the vertex v of H that is the largest w.r.t. �. There is a
k-face F of P determined by the k-edges inH adjacent to v and v is a local maximum
in this face. Since the ordering is an AOF, v must be larger than all vertices of F and
hence the vertices of F are contained in H and the graph of F is a subgraph of H .
But the only k-regular subgraph of a connected k-regular graph is the graph itself and
thereforeH is the graph of F .

Proof of Theorem 5.1: Claim 1 allows us to determine just from the graph all the
orderings that are AOF’s. Using this, claim 2 allows to determine which sets of vertices
form the vertices of some k-dimensional face. �

The proof gives a poor algorithm and it was an interesting problem to find better
algorithms. This is an example where seeking an efficient algorithm was not motivated
by questions from computer science but rather a natural aspect of our mathematical un-
derstanding. Friedman [2009] found a remarkable LP-based polynomial-time algorithm
to tell a simple polytope from its graph. Another important open problem is to extend
the theorem to dual graphs of arbitrary triangulations of (d � 1)-dimensional spheres.
This is related to deep connections between polytopes and spheres and various areas in
commutative algebra and algebraic geometry, pioneered by Richard Stanley.
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