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CONFORMALLY INVARIANT LOOP MEASURES

Gඋൾ඀ඈඋඒ F. Lൺඐඅൾඋ

Abstract

There have been incredible progress in the last twenty years in the rigorous anal-
ysis of planar statistical mechanics models whose limits are conformally invariant.
This paper will not try to survey all the recent advances. Instead, it will discuss
some recent results about particular conformally invariant measures on loops and
paths.

1 Introduction

One of the main goals in statistical physics is to understand macroscopic behavior of a
system given the interactions which are mainly microscopic but may exhibit long range
correlations. Such models often depend on a parameter and at a critical value of the
parameter the collective interaction switches from being microscopic to macroscopic.
Critical phenomena is the study of such systems at or near this critical value.

There is a wide class of models (percolation, self-avoiding walk, Ising and Potts
model, loop-erased random walk and spanning trees,...) whose behavior is very de-
pendent on the spatial dimension. There exists a critical dimension above which the
behavior is relatively simple (although it is not always trivial to prove this is true!), but
below the critical dimension there is “non mean-field” behavior with nontrivial critical
exponents for long-range correlations and fractal structures arising.

It was first predicted by Belavin, Polyakov, and Zamolodchikov [1984b,a] that the
continuum limit of critical fields in two dimensions would exhibit some kind of confor-
mal invariance. This idea along with the related Coulomb gas techniques allowed for a
number of nonrigorous predictions of critical exponents, see, e.g., Cardy [1992, 1996],
Di Francesco, Mathieu, and Sénéchal [1997], Nienhuis [1982, 1984], and Saleur and
Duplantier [1987]. These exact exponents agreed with simulations so even though the
theoretical arguments were far from being mathematically rigorous, it seemed clear that
they were giving correct predictions and hence there should be mathematical structures
and theorems to make precise and prove these predictions.

Major breakthroughs in the rigorous theory happened in around the turn of the twenty-
first century. Probably the most important is Schramm’s creation of what it now called
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the Schramm–Loewner evolution (SLE). This combined with ideas of Werner and my-
self on the Brownian intersection exponent opened up the understanding of the contin-
uum limit for curves and interfaces of fields. On the discrete side, Kenyon used confor-
mal invariance to prove the exact value of the dimension of the loop-erased walk and
Smirnov proved “Cardy’s formula” for the crossing probabilities of critical percolation
on the triangular lattice.

These works were just a start to what may be called a major subfield studying crit-
ical behavior of two-dimensional systems. This has included two Fields medals New-
man [2007] and Kesten [2010], two other plenary talks Schramm [2007] and Le Gall
[2014], at least four previous invited talks Smirnov [2006], Lawler [2002], and Du-
plantier [2014a] plus a number of other invited talks somewhat related, and it has been
a part of the work of at least four invited speakers in this conference.

Given the explosive nature of the field, I will not try to give an overview. I have
decided to give a personal perspective and to focus on several loop measures and related
models, loop-erased random walk (related to uniform spanning trees) and the Gaussian
free field. I start by introducing one of the main characters, discrete loop measures, and
show how they are related to some well known objects, spanning trees and determinant
of the Laplacian. It also generates one of the random fractals, the loop-erased random
walk, and we then discuss what it means to take a scaling limit. This leads to a review of
two of the main players in the field: the conformally invariant Brownian loop measure
and the Schramm–Loewner evolution (SLE). I discuss a number of properties of SLE
and focus on the most recent part to finish the characterization, the natural or fractal
parametrization of the curve.

The Gaussian free field in two dimensions is the next topic. I start with the discrete
field and show recent results that construct the field using the loop measure with some
extra randomness. I then introduce the continuous free field which has become the
centerpiece of much of the work in conformally invariant systems. Here I only give a
quick introduction. In respect for my advisor, Ed Nelson, I have decided to phrase this
section in terms of nonstandard analysis Nelson [1987]. While I am not sure this will add
to the mathematical development of the field, I have a hope that it will be a pedagogical
tool in the future to explain the relationship between the discrete and the continuous.
Here I use it to help define “Liouville quantum gravity” which is the exponential of the
Gaussian field.

The next part of the paper concerns the second type of loop, SLE type loops. I again
give a discrete introduction focusing on the loop-erased random walk and spanning tree
model. I then discuss recent constructions of such loops — either as part of conformal
loop ensembles (CLE) or directly from the definition of SLE. The first construction
uses the Brownian soup directly and the second construction ismodeled on the definition
of the Brownian loop measure and makes use of the natural parametrization.

I finish my discussing some recent results that combine the ideas in this survey, the
convergence of the loop-erased walk to SLE2 in the natural parametrization. This re-
quires a combinatorial estimate involving a signed loop measure and reduces the dis-
crete problem to a calculation for the Brownian loop measure. Then, it is shown how
this relates to the the natural parametrization of SLE.
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2 Loop measures and spanning trees

We start with a simple definition. Given a countable set X and a function p : X�X !

[0;1), we define a (rooted) loop l = [l0; l1; : : : ; ln] to be a finite sequence with lj 2 X
and l0 = ln. An important case is when p is the transition matrix for a Markov or
subMarkov chain. We let jl j = n denote the number of vertices in the loop; if jl j = 0,
the loop is trivial and p(l) = 1; if jl j > 0, p(l) = p(l0; l1)p(l1; l2) � � �p(ln�1; ln):

Our loop measures will always be on nontrivial loops.
An (unrooted) loop ` is an equivalence class of rooted loops under the equivalence

[l0; l1; : : : ; lm] ∼ [l1; : : : ; lm; l1] ∼ [l2; l3; : : : ; lm; l1; l2] ∼ � � � :

In other words, an unrooted loop is a rooted loop that has retained its orientation but
has forgotten its starting point. We can write p(`) since p(l) is the same for all rep-
resentatives. The number of representatives of an unrooted loop divides n but can be
strictly less than n; for example, the unrooted loop generated by [x; y; x; y; x] has only
two representatives. The loop measure on rooted loops is given by

m̃(l) = m̃p(l) =
p(l)

jl j
;

and the loop measure on the unrooted loops is the induced measure

m(`) = mp(`) =
X
l2`

m̃(l) =
s(`)p(`)

j`j
;

where s(`) denotes the number of rooted representatives of `. In this generality, there
is no need to restrict to positive values of p; indeed it can be complex-valued or even
matrix-valued.

As an example, we will assume that X is a finite, connected, (undirected) graph and
that p gives the transition probabilities for simple random walk on the graph. In other
words, p(x; y) = 1/dx if x is adjacent to y where dx is the degree of x. Wilson [1996]
found the following algorithm for choosing a spanning tree from the uniform distribution
over all spanning trees. Let us write X = fx0; x1; : : : ; xng where we have chosen an
arbitrary ordering of the vertices. We choose a spanning tree as follows thinking of x0
as the root vertex:

• Start a random walk at x1 and stop it when it reaches x0 and erase the loops
chronologically from the path. Add these edges to the tree.

• Recursively, choose the vertex of smallest index that has not been added to the
tree; start a random walk there and stop it when it reaches a vertex in the tree;
erase loops and add those edges to the tree.

We continue until we have a spanning tree. A straightforward analysis of the algorithm
(see Lawler and Limic [2010, Chapter 9]) shows that the probability that a particular
tree T is chosen is24 nY

j=1

p(yj ; ŷj )

35 F (A) =

24 Y
y2Xnfx0g

dy

35�1

F (A); F (A) :=

nY
j=1

GAj
(yj ; yj ):



672 GREGORY F. LAWLER

Here fy1; : : : ; yng is a permutation of A := fx1; : : : ; xng (determined by T ); ŷj is
the vertex adjacent to yj in T on the path to x0; Aj = A n fy1; : : : ; yj �1g; and GAj

denotes the usual random walk Green’s function for the walk killed upon leaving Aj .
The term in brackets is clearly independent of the permutation. While it is not obvious
that our definition for F (A) does not depend on the ordering of the vertices, it indeed
does not. One can check this as a simple exercise in Markov chain theory but it is more
illuminating to write it in one of two order independent ways:

• F (A) = 1/ det∆ where ∆ = G�1 = (I � P ) is the (negative of the random
walk) Laplacian considered as a matrix indexed by A1.

• If m = mp ,

(1) F (A) = exp

(X
`�A

m(`)

)
;

The surprising fact is that Wilson’s algorithm gives equal probability to each spanning
tree; moreover, since we know what this probability, is we can conclude that the number
of spanning trees is24 Y

y2Xnfx0g

dy

35 F (A)�1 =

24 Y
y2Xnfx0g

dy

35 det∆:

This looks even nicer if we use the graph Laplacian ∆g (the degree matrix minus the
adjacency matrix) in which case the right-hand side becomes just det∆g . This is far
from being a new result — it was proved by Kirchhoff in the nineteenth century.

The fact that the quantity in (1) is a determinant can be seen if we write it in terms
of the rooted loop measure and use a well known identity,

exp

8<:X
l�A1

m̂(l)

9=; = exp

(
1X

n=1

1

n
Tr(P n)

)
= det[I � P ]:

The great utility of the loop measure comes from its description in terms of unrooted
loops; indeed, the proof of Wilson’s algorithm uses the fact that one sample from a
“soup” of unrooted loops in any order.

Although this can be done in generality, we will be focusing on a special case. Sup-
pose that A is a finite, simply connected subset of the integer lattice Z2 containing the
origin so that @A = fx 2 Z2 : dist(x;A) = 1g. The usual simple random walk measure
gives p(x; y) = 1/4 if jx � yj = 1. Suppose we take a simple random walk starting at
the origin, stop it when it reaches @A, and then erase loops to give a self-avoiding path
�. This gives a probability measure on self-avoiding walks (SAW) starting at the origin
ending and @A. By Wilson’s algorithm, it is the probability that the unique path from
the origin to @A in the uniform spanning tree of the graph X = A[ f@Ag is � (here, @A
is considered as a single point — this is called the wired spanning tree). In this case, the
number of spanning trees is 4#(A) F (A)�1.



CONFORMALLY INVARIANT LOOP MEASURES 673

Associated to loop measures are loop soups. This is a colorful term for a Poissonian
realization from m. Let LA denote the set of unrooted loops in the set A. At each time
t , the soup Ct (A) is a multiset from LA where loop ` appears N `

t times. It is defined
by saying that fN `

t : ` 2 LAg are independent Poisson processes with parameter m(`).
There are various ways to describe the probability distribution for loop-erased ran-

dom walk from the origin to @Awithout making reference to loop erasure. One nice one
is as a Laplacian random walk. Suppose the path starts as � = [�0 = 0; �1; : : : ; �k ]:

Then the probabilities for the next step are given by weighting by the solution of the
Dirichlet problem (for the discrete Laplacian) inAn� with boundary value 0 on � and 1
on @A. In other words, loop-erased random walk is Laplacian growth where the growth
only occurs at the tip.

Suppose we observe the loop-erased walk �. Can we recover (with added random-
ness) the simple random walk that produced �? The answer is yes, and the way to do it
is by taking a realization of the loop soup C1 at time t = 1. We then use � to “explore”
the loop soup. We start at the origin and view all loops in C1 that intersect the origin.
We turn these into rooted loops by choosing the origin as the root (if the origin is visited
several times choose randomly) and then add all the loops to the path in the order they
appeared in the soup. At this point we have not observed the soup in A n f0g. We take
our next step �1 and observe the loops inAnf0g that intersect �1, and continue. A short
combinatorial argument Lawler and Limic [2010, Chapter 9] shows that the distribution
of the path at the end is that of a usual simple random walk. Note that the order in which
we discover loops in the soup depends on the choice of �, and for a particular � we only
observe the loops that intersect �.

The probability that a particular � is chosen for the loop-erased walk in A is
4�j�j F�(A), where logF�(A) denotes the loop measure of loops in A that intersect �.
What happens if we “perturb” the domain, say, consider Ã � A? How does this change
the probability of seeing a certain �? This probability is zero if �\ (An Ã) is nonempty,
but otherwise it is 4�j�j F�(Ã). In other words, the Radon–Nikodým derivative is given
in terms of the loops in the larger domain that are lost when shrinking:

(2)
F�(Ã)

F�(A)
= exp

8<:�
X

`�A;`\(AnA0)¤¿;`\�¤¿
m(`)

9=; :
In continuous models for paths and loops, one of the key quantities to consider is the
effect of perturbation of a domain on the measure of a particular path.

One observable of a loop soup is nx = nx(t), the number of times that a vertex x is
visited by time t . In the case t = 1 and the loop-erased walk, nx is a geometric random
variable,

Pfnx = kg = qk (1 � q); q =
1

GA(x; x)
:

More generally, the distribution of nx(t) is negative binomial,

Pfnx(t) = kg =

 
k + t � 1

k

!
qk (1 � q)t :
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One can convert to continuous times by adding independent exponential waiting times.
For t = 1, given nx , we define Lx(1) to be the sum of nx +1 independent exponential
random variables with parameter 1. Then a standard computation shows that Lx(t) has
an exponential distribution with parameter q. For other t , we can chooseLx(t) to be the
sum of nx(t) independent exponential random variables and a Gamma random variable
with parameters t and 1. In particular, if t = 1/2, then Lx(t) is the sum of nx(1/2)

exponentials plus a random variable with the same distribution as Z2/2 where Z is a
standard normal.

As we discuss below, fLx(1)/2 : x 2 Xg has the same distribution as fjZxj2 : x 2

Xg where fZx = Xx + iYx : x 2 Xg is a complex Gaussian field with independent real
and imaginary parts each having covariance matrixG. Equivalently, fLx(1/2)g has the
distribution of fX2

xg.

3 Scaling limits

In two dimensions, conformally invariant objects are obtained as scaling limits of dis-
crete models. Both the loop soup and the loop-erased walks have limits that we describe
here. To each finite, connected subset A of Z2 = Z + iZ we associate a domain in C,

DA = int

"[
z2A

(z + S)

#
; S = fx + iy 2 C : jxj; jyj � 1/2g:

Conversely, if D is a simply connected domain in C containing the origin and 1/n is
a lattice spacing, we let An be the connected component containing the origin of all
w with w + S � nD. Then we set Dn = n�1DAn

as a lattice approximation of the
domainD. If z 2 n�1 Z2, we write Sz = z + n�1 S:

As an example, let D be the square fx + iy : jxj; jyj < 1g so that An = fx + iy 2

Z2 : jxj; jyj < ng. Let zn = �n;wn = n. Then in the limit we get the square
D = fx + iy 2 C : jxj; jyj < 1g with the boundary points z = �1; w = +1. On An

we have the LERW from zn to wn; to be more precise, we consider all simple random
walk paths starting at zn, ending at wn, otherwise staying in An, and erase the loops
chronologically. We also have the random walk loop measure. Here we consider the
scaling limits of both.

We start with the loop measure which does not depend on the boundary points z; w.
To each rooted loop l = [l0; : : : ; l2k ] in An we associate the scaled loop l(n)(t); 0 �

t � k/n2,

(3) l(n)(j /n2) = n�1l2j ; 0 � j � k;

extended to other t by linear interpolation. We give l(n) the same measure as l ; in other
words, the loop measure on Dn is the same as the loop measure on An except that the
paths are scaled, As n ! 1, the total mass of the measure goes to 1. The Brownian
scaling in (3) uses the relationship dt = (dx)2 where 2 is the fractal dimension of
Brownian paths. It is well known that the probability that a two-dimensional simple
randomwalk is at its starting point after 2k steps is asymptotic to (�k)�1, and hence the
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measure of loops l(n) rooted at a particular point � 2 n�1 Z2 of time duration t = k/n2

is asymptotic to

(4)
1

�k

1

2k
=

1

2�t2
dt Area(S� ) dt =

1

n2
:

The scaling limit of this can now be determined Lawler and Trujillo Ferreras [2007] and
is described in the next section.

The definition of the LERW from z to w starts with the usual random walk measure
from z to w; to be more precise, every nearest neighbor walk ! = [!0; : : : ; !k ] with
!0 = �n; !k = n and f!1; : : : ; !k�1g 2 An gets measure 4�k : The total mass of
this measure is the probability that a simple random walk starting at �n immediately
enters An and then exits at n. It can be shown (using, for example, the “gambler’s ruin”
estimate for random walk or in this case by explicit computation as a finite Fourier
series) that the total mass is asymptotic to c n�2 for a (computable) constant c. If we
erase loops from the paths we get a measure on self-avoiding paths with the same total
mass. As before, we can consider this as the measure on self-avoiding paths � = [�0 =

�n; : : : ; �k = n]with �1; : : : ; �k�1 2 An, that gives measure 4�k F�(An); to each such
�. The total mass can be written as the value of the partition function

ZAn
(ˇ;�n; n) :=

X
�:�n�!n;��An

e�ˇ j�j F�(An);

evaluated at the criticalˇc = log 4. Themass can also be described in terms of spanning
trees. A wired spanning tree of An is a spanning tree of the graph An [ f@Ang where
all the points in the boundary have been identified to a single point. Using Wilson’s
algorithm rooted at the boundary with x1 = �n + 1, we can see that the total mass
is (1/4 times) the probability that the uniform spanning tree contains a path starting at
�n+ 1 and reaching the boundary along the edge adjacent to n.

In order to scale the paths, we need to know the fractal dimension d which can be
defined roughly by saying the that typical LERW crossing An has on the order of nd

steps. Using the Brownian scaling as the model, we associate to each LERW � =

[�0; : : : ; �k ] connecting �n to n in An, the scaled path of time duration kn�d ,

(5) �(n)(j/nd ) = n�1 �j ; 0 � j � k:

When taking the limit, we first multiply the measure by n2 so that the limit has finite
total mass, and then we take a limit of the paths above. The limit is be a version of the
Schramm–Loewner evolution (SLE).

4 Brownian loop measure and soup in C

Let D be a bounded, simply connected domain in C. For every n, let An � Z2 and
Dn = n�1An be defined as in the previous section. The Brownian loop measure is the
scaling limit as n ! 1 of the random walk loop measure on An. It can be constructed
directly Lawler and Werner [2004], and, indeed, it was defined before the discrete loop
measures.



676 GREGORY F. LAWLER

A rooted loop is a curve 
 : [0; t
 ] ! C with 
(0) = 
(t
 ) where t
 2 (0;1). An
(unrooted) loop is an equivalence class of rooted loops under the equivalence 
 ∼ 
 r

where 
 r(t) = 
(t + r) and t + r is interpreted modulo t
 . We will define the loop
measure first for rooted loops and then use this to define the measure for unrooted loops.
It is useful to view a rooted loop 
 as a triple (z; t
 ; 
̂) where z is the root, t
 is the time
duration, and 
̂ is a loop of time duration 1 rooted at the origin. The bijection is given
using Brownian scaling


(t) = z + t
1/2

 
̂(t/t
 ); 0 � t � t
 :

The rooted loop measure on C can be given by

(Area) �
dt

2�t2
� (Brownian bridge);

Here Brownian bridge refers to the probability measure associated to (appropriately
defined) Brownianmotion starting at 0 conditioned to return to 0 at time one. Themiddle
term can be written as t�1 (2�t)�1. The factor (2�t)�1 is the density of Brownian
motion at time t evaluated at the origin and the t�1 is the analogue of the jl j�1 term
from the discrete loop measure. This is the natural continuum analogue of (4). To
give the measure on a domain D one restricts this measure to loops in D. This is an
infinite measure even for boundedD because the measure of small loops blows up. This
measure induces a measure on unrooted loops which we call theBrownian loop measure.
Poissonian realizations of the Brownian loop measure are called Brownian loop soups.

The Brownian loop measure satisfies two important properties. The first is immedi-
ate but still very important.

• Restriction property. IfD0 � D then the loop measure onD0 is the same as the
loop measure onD restricted to loops that lie inD0.

The second is particular to two dimensions and is a starting point for analysis of confor-
mally invariant processes.

• Conformal invariance Lawler and Werner [2004]. If f : D ! f (D) is a
conformal transformation, then the image of the loop measure on D is the loop
measure on f (D):

Let us explain the last statement. The Brownian (heat equation) scaling can bewritten in-
tuitively as dx =

p
dt . This is the scaling for a path with fractal dimension 2. (We will

consider paths of fractal dimension d for which dx = (dt)1/d .) The parametrization
for the Brownian motion is a “natural” two-dimensional parametrization jdBt j � t1/2.
As shown first by Lévy [1940], complex Brownian motion is conformally invariant pro-
vided that one changes the parametrization to respect the fractal dimension. In our case,
if 
 is a loop inD of time duration t
 , we define a loop f ı 
 in f (D) by

tf ı
 =

Z t


0

jf 0(
(s))j2 ds;
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and f ı 
(r) = f [
(�(r))] whereZ �(r)

0

jf 0(
(s))j2 ds = r:

If �D denotes the Brownian loop measure on unrooted loops and f ı�D is defined by

f ı �D(V ) = �Df
 : f ı 
 2 V g;

then f ı �D = �f (D). This result requires no topological assumptions on the domain
D.

The definition of the loop measure is not very conducive to calculation. When com-
putingmeasures of sets it is often useful to use a decomposition of intoBrownian (bound-
ary) bubbles. This focuses on a particular rooted representative of an unrooted loop. For
example, if � = �C is the measure on the entire plane, then we can write

�C =

Z
C
�bub

H+iy(x + iy) dx dy:

This is a decomposition focusing on the (unique) point on the loop of smallest imaginary
part. Here �bub

H (0) is a � -finite measure on loops rooted at the origin and otherwise
staying in the upper half plane H. It can be defined in a number of equivalent ways by
taking limits. More generally, if f : D ! f (D) is a conformal transformation, z 2 @D,
and z and f (z) are analytic boundary points, we have the conformal covariance rule

f ı �bub
D (z) = jf 0(z)j2 �bub

f (D)(z):

Another useful way to write �C is by focusing on the point of greatest magnitude

(6) �C =

Z
C
�bub

jzjD(z) dA(z);

where D is the unit disk.

5 Measures on self-avoiding curves

The loop-erased random walk is one of many lattice models for which scaling limits are
expected to exist. Many of them are parts of more complicated fields, for example, loop-
erased random walks arise as macroscopic paths in scaling limits of uniform spanning
trees. SupposeD is a bounded, simply connected subdomain of C containing the origin
which for ease we will assume has an analytic boundary. Let z; w be distinct points on
the boundary. We will consider measures on (continuous) curves 
 : (0; t
 ) ! D with

(0�) = z; 
(t
+) = w (we sometimes allow t
 = 1). Much of the work of the last
eighteen years has built on work of Oded Schramm [2000] to understand the possible
limits under the assumption that the limit is conformallly invariant or covariant. We
will consider (positive) measures �D(z; w) on such curves; if k�D(z; w)k < 1, we
write �#

D(z; w) for the corresponding probability measure obtained by normalization.
The goal is to find families of measures indexed by D; z;w which have the following
properties.
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• Fractal dimension. The measure is supported on simple curves of Hausdorff
dimension d 2 [1; 2] with the appropriate fractal parametrization. If f : D !

f (D) is a conformal transformation, then f ı
 is defined by f ı
(t) = f [
(�t )]

where Z �t

0

jf 0(s)jd ds = t:

Note that Brownian curves satisfy this with d = 2 but they are not simple. Al-
though we start with an assumption of simplicity of the curves, it turns out that
many important examples gives curves that are not simple. However, they will
be “non-crossing”. For the moment we restrict to the simple case.

• Conformal covariance. If f : D ! f (D) is a conformal transformation, then

f ı �D(z; w) = jf 0(z)jb jf 0(w)jb �f (D)(f (z); f (w));

where b is a scaling exponent. In particular the probability measures are confor-
mally invariant:

f ı �#
D(z; w) = �#

f (D)(f (z); f (w));

and �#
D(z; w) can be defined even for nonsmooth boundaries.

• Reversibility. The measure �D(w; z) is obtained from �D(z; w) by reversing
the paths.

• Boundary perturbation or generalized restriction. Suppose D0 � D and
the domains agree in neighborhoods of z; w. Then �D0(z; w) is mutually abso-
lutely continuous with the measure given by �D(z; w) restricted to curves with

(0; t
 ) � D0. If ΦD;D0 denotes the Radon–Nikodým derivative, then it is a
conformal invariant,

ΦD;D0(
) = Φf (D);f (D0)(f ı 
):

• DomainMarkov property. Suppose an initial segment 
̃ of 
 ending at z0 2 D is
observed. Then in the probability measure �#

D(z; w), the conditional distribution
of the remainder of the curve given 
̃ is given by �Dn
̃ (z

0; w). By reversibility,
we should be able to also grow ends of the curve from w.

The big breakthrough by Schramm [2000] described in our notation is as follows.
Let us restrict to simply connected domains D, consider only the probability measures
�#

D(z; w) (which do not require boundary smoothness), and assume conformal invari-
ance and the domain Markov property. Finally, consider the curves 
 and f ı 
 only
modulo reparametrization. Then there is only a one parameter family of curves that
are candidates for this. This is now called the (chordal) Schramm–Loewner evolution
(SLE) with parameter � > 0. It describes the curve 
 [0; t
 ] in terms of the collection of
conformal maps gt : D n
 [0; t ] ! D with gt (
(t)) = z; gt (w) = w. The evolution of
gt is described with a Loewner equation driven by a Brownian input. The parameter �
gives the variance of the Brownian motion. It takes some work to understand the curve

 [0; t ] from the maps gt but we now know a lot.
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• The measure is supported on simple curves for � � 4; it is supported on plane-
filling curves for � � 8; and for 4 < � < 8, it is supported on self-intersecting
but “non-crossing” curves that are not plane filling. Rohde and Schramm [2005]

• For � < 8, the measure is supported on curves of Hausdorff dimension

d = 1 +
�

8
:

In particular, for each 1 < d < 2, there is a unique family of curves. Rohde and
Schramm [2005] and Beffara [2008]

• Themeasure is reversible for � < 8Miller and Sheffield [2016a] and Zhan [2008].

The relationship with the Brownian loop measure comes in the boundary perturba-
tion rule. We define the conformal invariant: if D is a domain and K;K 0 are disjoint,
relative closed, subsets, then ΛD(K;K 0) = exp fm(L)g ; where L = LD(K;K 0) is
the Brownian measure of loops in D that intersect both K and K 0. Using mainly the
work in Lawler, Schramm, and Werner [2003], for d � 4 we can define the measure
�D(z; w) such that the following is true.

• The total mass of�D(z; w) isHD(z; w)b where b = 6��
2�
; andHD(z; w) denotes

the boundary Poisson kernel (the normal derivative in each component of the
Green’s function) normalized so thatHH(0; 1) = 1:

• If D0 � D as above and 
(0; t
 ) � D0, the Radon–Nikodým derivative is given
by

(7)
d�D0(z; w)

d�D(z; w)
(
) = ΛD(
;D nD0)c/2 = exp

n c
2
m[LD(
;D nD0)]

o
;

where c is the central charge given by

c =
(3� � 8)(6 � �)

2�
:

This is the same central charge that is a fundamental parameter in conformal field
theories. In statistical physics, it also can be described in terms of infinitesimal
changes of the “stress energy tensor”. Here we see it as measuring the effect on
the path measure of infinitesimal changes to the ambient domain.

The scaling limit of LERW is SLE2. (This was predicted in Schramm [2000] and
proved, at least for the related radial case, in Lawler, Schramm, and Werner [2004] for
curves modulo reparametrization.) Here we see c = �2; indeed (7) is the scaling limit
of the relation (2). This answers all of the questions above except for giving the path
the correct parametrization; we discuss this in Section 11.

The theory of chordal SLE in simply connected domains can be derived from the
assumptions of conformal invariance and domain Markov property of the probability
measures �#

D(z; w). In fact, the role of the partition function and the Brownian loop
measure was found by studying the unique one-parameter family of measures in simple
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connected domains. There is a another way of looking at this that is important. Let
us consider the case of the upper half plane and boundary points 0 and infinity. The
fundamental observation of Schramm was the following. Suppose that we consider
the case of the upper half plane H and boundary points 0 and infinity. One version
of “Loewner chains” (which were developed by Loewner to understand the Bieberbach
conjecture) states that if 
 is a simple curve from 0 to 1; Ht = H n 
 [0; t ], and gt :

Ht ! H is the unique conformal transformation satisfying

gt (z) = z + o(1); z ! 1;

thenwith an appropriate parametrization of 
 , there is a continuous function real-valued
function Ut such that

@gt (z) =
2

gt (z) � Ut

; g0(z) = z:

Schramm noted that conformal invariance and the domain Markov property implied
that Ut is a driftless Brownian motion, and hence Ut =

p
� Wt ; whereWt is a standard

Brownian motion and � is the parameter. Setting a = 2/� and doing a linear time
change, we get

@gt (z) =
a

gt (z) � Ut

; g0(z) = z;

where Ut = �Bt is a standard Brownian motion. If Zt (z) = gt (z) � Ut ; we can write
this as a Bessel equation,

dZt (z) =
a dt

Zt (z)
+ dBt :

For � � 4, this gives a measure on simple curves and the following is true. Suppose
D = H nK is a simply connected subdomain where K is compact, not containing the
origin. There are three equivalent ways to find �#

D(0;1).

• Use a conformal transformation to map H onto D fixing 0 and 1 and use con-
formal invariance.

• Give the Radon–Nikodým derivative of the two probability measures. Assuming

 \K = ¿, the value is

Φ0
D(0)�b exp

n c
2
m[LD(
;D nD0)]

o
:

where ΦD : D ! H with ΦD(0) = 0;ΦD(1) = 1;Φ0
D(1) = 1. Equiva-

lently, we can define the measure �D(0;1) with total mass (partition function)

Φ0
D(0)b := E

h
exp

n c
2
m[LD(
;D nD0)]

oi
;

and this satisfies the generalized restriction property.

• Give the Radon–Nikodým derivative on the probability space on which the Brow-
nian motion is defined. One standard way to construct “adapted” absolutely con-
tinuous measures to a Brownian motion is to give a drift,

dYt = Rt dt + dBt ;
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where Rt is measurable with respect to the process at time t . The process inD is
SLE in all of H “weighted by” or “tilted” by the partition function. The precise
meaning of this is given by the Girsanov theorem. LetMt be the partition function
of the remaining domain seen at time t ; more precisely,Mt is a (local) martingale
of the form

Mt = Ct Φ
0
gt (D)�Ut

(0)b;

whereCt is a differentiable process that can be considered as a continuous normal-
ization to be a probability measure. Then if we change the probability measure
to weight byMt , then

dBt = Rt dt + dB̃t ; Rt = b [logΦ0
gt (D)�Ut

(0)]0

where B̃t is a standard Brownian motion in the new measure. An equivalent way
to specify the process in D is to give the drift term Rt which is the logarithmic
derivative of the partition function.

One of the main reasons that the conformal Markov property (domain Markov prop-
erty and conformal invariance) determine SLE up to a single parameter, is the fact that
a domain obtained from slitting a simply connected domain from the boundary is still
simply connected and hence conformally equivalent to the original domain. This is not
true for nonsimply connected domains and more general Riemann surfaces. Extending
SLE to more general domains requires making more assumptions than just the confor-
mal Markov property. One possibility is to use the Brownian loop measure and use
the generalized restriction measure to define the measure �D(z; w) for other domains.
This will satisfy the conformal Markov property but is not the unique process. Another
idea is to find the partition functions ΦD(z; w); if one does (perhaps as limits of some
discrete model) and can prove sufficient smoothness, then one can define the process in
terms of the logarithmic derivative. Finding the correct partition function for a scaling
limit of a model is a big step to understanding the behavior.

6 Natural parametrization

The use of the Loewner differential equation to study SLE requires parametrization by
some form of capacity, that is, by the size of the set seen by a Brownian motion starting
away from the set. For example, if we consider SLE from 0 to infinity in the upper half
plane H with corresponding maps gt , then the parametrization is such that for z 2 H,
t 7! gt (z) is continuously differentiable.

The scaling limit of discrete curves such as in (5) should also give a parametriza-
tion of the curves. It turns out that not only is this not the same measure, it and the
capacity parametrization are singular with respect to each other. However, one can use
the properties of SLE to find this new parametrization which is sometimes called natu-
ral parametrization. It is the fractal d -dimensional analogue of parametrization by arc
length. Brownian paths have the natural 2-dimensional parametrization.

Given a path 
 , the natural parametrization would be defined so that the “d -dimen-
sional length” of 
 [0; t ] is t . One well-known d -dimensional measure is Hausdorff
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measure defined (at least up to a constant) by

Hd (V ) = lim
�#0

inf
1X

j=1

[diamUj ]
d ;

where the infimum is over all covers of V by sets of diameter at most �. The Hausdorff
dimension of V is the unique d at which Hd (V ) jumps from 1 to 0; the value at d can
be anything. For random sets of Hausdorff dimension d , typically we have Hd (V ) = 0.
Roughly speaking, this is because we can take covers by sets of any size less than or
equal to �, and given a realization of the random set, the optimal cover takes advantage of
this freedom. There are refinements of Hausdorff measure using gauge functions, and
the optimal gauge function is well understood for some processes such as Brownian
motion. However, for processes with very strong dependence on the immediate past
such as SLE, determining a correct gauge correction is difficult and open.

To parameterize SLE paths it is more useful to take a naïve approach and try to cover
by balls of radius �; this is much closer to the approximation by a lattice since one has
a fixed lattice size. A similar idea is the d -dimensional Minkowski content which for
subsets V of C = R2 is given by

(8) Contd (V ) = lim
�#0

�d�2 Areafz : dist(z; V ) � �g;

provided that this limit exists. Lawler and Rezaei [2015] were able to show that this
limit exists and is nontrivial for SLE� ; � < 8 (for � � 8 the curve is plane filling and
the natural parametrization should be parametrization by area). In particular, the curve

 can be reparametrized such that for each s, Contd [
 [0; s]) = s:

Proving the existence of this limit starts with hoping that it exists and seeing what this
would imply. Consider SLE from z to w in a domain D and let � 2 D. The (chordal
SLE) Green’s function GD(�; z; w) is the normalized probability that the SLE path
goes through �, more precisely,

GD(�; z; w) = lim
�#0

�d�2 Pfdist(�; 
) � �g:

Establishment of the limit on the right-hand side is essentially the same as showing that
for fixed 0 < � < 1 as � ! 0,

Pfdist(�; 
) � �� j dist(�; 
) � �g ∼ �2�d :

This requires understanding the distribution of the tip of 
 when it first gets within � of
�.

For simply connected D, it was noted in Rohde and Schramm [2005] that if such a
function existed, then Mt := GDn
t

(�; 
(t); w) would have to be a local martingale
and an Itô’s formula calculation gave d = 1 + �

8
and

(9) GD(�; z; w) = rD(�)d�2 SD(�; z; w)
8
� �1;

where rD(�) denotes conformal radius and SD(�; z; w) denotes the sine of the (confor-
mally invariant) argument of � with respect to z; w. Here 
t = 
 [0; t ]: Having made
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the observation, we can use the local martingale given by the left-hand side of (9) and
the Girsanov theorem to understand the local behavior of the path as it gets near �. To
establish the Minkowski content, one needs to improve this to a “two-point” estimate,

Pfdist(�; 
) � ��; dist(�0; 
) � �� j dist(�; 
) � �; dist(�0; 
) � �g ∼ �2(2�d):

The natural parametrization satisfies a kind of Markovian property. Suppose D is a
bounded domain, z; w are distinct boundary points, and 
(t) is an SLE� path from z

to w inD. Let Θt = ContD(
t ). Then

E[Θ1] =

Z
D

GD(�; z; w) dA(�):

(10) E [Θ1 j 
t ] = Θt +Ψt ; Ψt :=

Z
Dt

GDt
(�; 
(t); w) dA(�)

where Dt = D n 
t . Since E [Θ1 j 
t ] is a martingale, we can characterize Θt as the
unique increasing process such that Ψt +Θt is a martingale (Doob–Meyer decomposi-
tion). The first construction Lawler and Sheffield [2011] and Lawler and Zhou [2013]
of the natural parametrization used this characterization and it is important in the proof
of the discrete parametrization of LERW to the natural parametrization of SLE2.

Another way of viewing a “d -dimensional” parametrization is in terms of the Hölder
exponent. Under the natural parametrization, the SLE� curves are Hölder continuous
for all ˛ < 1/d Zhan [2017a].

7 Gaussian field

Maybe the most fundamental random field is the Gaussian (free) field, that is, variables
fZx : x 2 Xg indexed by a set which can be finite, countable, or uncountable, such
that each finite dimensional distribution is multivariate Gaussian. The distribution is
determined by the means and the covariances and we say it is centered if the means are
zero. A relationship between random paths and Gaussian fields has been known for a
while, (see, e.g., Brydges, Fröhlich, and Spencer [1982], Dynkin [1984], and Symanzik
[1969]) but what we describe here relating to loop measures is more recent due to Le Jan
[2010, 2011] and Lupu [2016].

We started with a discrete-time, discrete-space loop measure and then described the
Brownian loop measure which is continuous-time, continuous space. We will also con-
sider continuous-time, discrete space. There are two ways to get a loop measure with
continuous times on a discrete space. Le Jan’s approach is to use a definition analogous
to Brownian loop measure by having paths from a continuous time Markov chain. The
other is to start with discrete time loops and then add waiting times. Both approaches
have advantages; we will use the latter approach here. Suppose we have a finite set X
and a real-valued symmetric function q on edges; for ease, we will assume q(x; x) = 0

although the definitions here can be adapted to allow for self-edges. Such a weight gives
a measure on paths by multiplying the weight of the edges and hence also gives a weight
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on loops. We will assume that this weight is actually a measureX
!

jq(!)j < 1:

where the sum is over all finite length paths in A. In particular the Green’s function can
be written as

G(x; y) = [I �Q]�1
x;y =

X
!:x!y

q(!):

A particular case is when q are the transition probabilities for a subMarkov chain. There
corresponds a weight on rooted loops m(l) = mq(l) = q(l)/jl j and the corresponding
measure on unrooted loops. The centered Gaussian field fZx : x 2 Xg with covari-
ance matrix G is the random vector whose Radon–Nikodým derivative with respect to
independent, standard Gaussians isq

det(I �Q) exp

(X
e

qe Ze

)
where the sum is over all undirected edges e = fx; yg and Ze = ZxZy . If we consider
the random field T̄ = fTx = Z2

x/2; x 2 Xg, then the density of T̄ can be written as

g(t̄)
q
det(I �Q)E

"
exp

(X
e

2Je qe

p
te

)#
where g(t̄) is the density for independent �21/2 random variables; the sum is over all
edges e = fx; yg, te = txty , Je = JxJy ; and fJxg are independent with PfJx =

˙1g = 1/2.
To get a realization of T̄ we can proceed as follows.

• Start with a realization of T̄ for independent standard normals, that is, ft 0xg inde-
pendent with �21/2 distributions.

• Take a realization of the discrete loop soup giving local times fnxg.

• Replace each nx with the sum of nx independent exponentials with rate 1 and add
this to ft 0xg to get ftxg.

There are several ways to verify it; in Lawler [2017], motivated by Lupu and Werner
[2016], it was done in a way to also get the joint distribution with the distribution on
currents, that is, functions k̄ on edges with the property that each vertex has an an even
number of edges coming out of it. We start with a realization of the loop soup from m

with intensity 1/2. If q � 0, this induces a probability distribution on currents k̄. Given
k̄, we also get the local times nx on vertices (nx is 1/2 times the number of edges in k̄
that intersect x). A little work shows that the probability that the current fke : e 2 Eg

with corresponding local times fnx : x 2 Xg is chosen isq
det(I �Q)

"Y
x2X

Γ(nx + 1
2
)

p
�

# "Y
e2E

�
ke
e

ke!

#
; �e = 2qe:
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This formula works for nonpositive integrable weights if we interpret the Poisson pro-
cess as the measure on loops. With this the validity of the claim above is straightforward
to verify.

The loop soup and some extra randomness give the square of the field Z2
x , but that

is insufficient for determining the signs. For positive weights, the signs of the field
can be chosen so that the clusters formed by the loop soup are all of the same sign.
However, some more randomness is needed. Suppose V � X and let GV ; GV c be the
corresponding Green’s functions for the random walks restricted to those sets. Then the
density of the random field on X with respect to independent fields on V and X n V

with covariance GV ; GV c is given by

exp

(
�
1

2

X
`2L�

m(`)

)
exp

(X
e2E�

qe Ze

)
;

where E� denote the set of edges with one vertex in V and one in V c , and L� denotes
the set of loops that intersect both V and V c . This gives a way, first proposed by Lupu,
to put the signs on the field.

• Take a Poissonian realization of the loop measure giving the local times nx and
then choose continuous local times giving tx .

• Open each edge e that has been traversed by a loop in the soup.

• Independently, open each edge with probability 1 � expf�2qe

p
teg.

• Give each Zx in a connected cluster the same sign using independent fair coins
in each cluster.

This formulation has started with a measure on discrete time loops and added some
waiting times. The original construction started with a continuous time loop measure
that can be derived from the discrete time measure by adding exponential waiting times
of mean one which is the same as �22/2. In this formulation, one also needs to have
some “trivial loops” that do not move and whose time duration have a �21/2 distribution.
Another nice variation due to Lupu [2016] only uses a loop soup on a slightly different
graph (metric graph or cable system) and some random coin flips. In this case the con-
nected clusters for the loop soup are exactly the clusters for which one choose random
coin flips.

We note that when nx is large, it makes little difference whether we use nx or tx .
Indeed,

tx = nx + Yx +O(1);

where Yx is an independent, mean zero, random variable with variance nx andp
2tx =

p
2nx +

Yx
p
2nx

+O(n
�1/2
x );

where fYxg are conditionally independent given fnxg with mean zero and variance nx .
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8 Continuous Gaussian field and quantum gravity

As fundamental a conformal invariant as Brownian motion in C is the (continuous)
Gaussian free field. One way that it can be obtained is as a limit of the Gaussian field
from the previous section. Let D be a simply connected bounded subdomain of C
containing the origin. Let gD denote the Green’s function for the Laplacian: if D is
the unit disk and f : D ! D is a conformal transformation with f (z) = 0, then
gD(z; w) = � log jf (w)j. LetN be a large integer; in the spirit of nonstandard analysis
Nelson [1987] we can consider N ' 1. We will use the notation from Section 3 with
lattice spacing 1/N and corresponding setsDN � D and AN � Z2 \ND.

Let GN = GAN
denote the Green’s function for the usual random walk killed upon

leaving AN , and let gN denote the function gN (z; w) = (�/2)GN (zN;wN ): For
standard z; w 2 D with z ¤ w,

gN (z; w) ' gD(z; w)

(precise error estimates can be given, see, e.g., Kozdron and Lawler [2005], but we
will not discuss them). The Gaussian field on AN , fZz : z 2 AN g can be viewed
as a piecewise constant function �N (z) =

p
�/2ZwN for z 2 Sw (we do not need

to worry about the values on the boundaries of the squares Sw ). In the terminology of
nonstandard analysis, the Gaussian free field � onD with Dirichlet boundary conditions
is the “standard part” of �N .

The macroscopic object � is a little tricky because it is not defined pointwise. For
example, �N (0) is a normal random variable of variance (up to an infinitesimal)

gN (0; 0) = logN � log jf 0(0)j + c0

and hence the standard part is not defined. One way to get well-defined quantities is to
take averages. For example, if f is a standard L2 function on D, then we can define
�(f ) to be the standard part ofZ

DN

f (z)�N (z) dA(z) =

r
�

2
N�2

X
z2AN

f (z/N )Zz ;

which is a centered normal random variable with varianceZ
D

Z
D

f (z)f (w)gD(z; w) dA(z) dA(w):

This observation gives one way to construct the continuous field rigorously — as the
centered Gaussian process indexed by functions f with

E [�f �h] =

Z
D

Z
D

f (z) h(w)gD(z; w) dA(z) dA(w):

We will retain the discrete picture to consider what is sometimes called Liouville
quantum gravity. This is a fancy term for the exponential e
� where 
 is a constant that
we will choose to be nonnegative. To make sense of this, consider the field  N (z) =
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N�
2/2 expf
�N (z)g. We choose this normalization so that the expected value is of
order one,

E [ N (z)] = N�
2/2 E [expf
�N (z)g] = N�
2/2 exp
�

2 Var(�N )

2

�
� 1:

We let �N be the random measure on DN whose Radon–Nikodým derivative with re-
spect to area is  N , that is, �N [Sz ] = N�2  n(z): Let � be the standard part of this
measure. It is not so clear whether this make sense. By construction we can see that
�N is a random measure on D such that E[�N (D)] � 1. However, it does not follow
from this calculation that the “typical” value of �N (D) is of order 1; it is possible that
the typical value is infinitesimal. Whether or not this is true depends on the value 
 .

We can do a “back of the envelope” calculation to find the critical value. Suppose Φ
is a normal random variable withmean zero, variance �2 = logN+O(1), and Y = e
Φ.
If we tilt the distribution by Y , that is consider the random variableΦ under the measure
tilted by e�
2/2 e
Φ, the induced distribution on Φ is that of a normal random variable
with mean 
�2 and variance �2. The original probability of getting a value as large
as 
�2 is of order e�
�2/2. That is, the typical value of  N (z) in the tilted measure
is of order N 
2/2 and the probability (in the original measure) of such of value is of
order N�
2/2. Since there are of order N 2 points, we see that critical value is 
 = 2; if

 < 2, then we would expect that the measure � would be supported on a set ofN 2�


2

2

squares, that is, on a set of “fractal dimension” 2 �

2

2
.

We will now use Liouville quantum gravity to reparametrize a curve. Let us consider
the loop-erased randomwalkwhich has dimension d = 5/4. Thenwe can reparametrize
the curve as in (5) and get a curve whose macroscopic time duration is finite and pos-
itive. The number of points visited by a typical path is comparable to N d and the
amount of time it spends on each of these points is N�d = [area(Sz)]

�d/2. Suppose
an independent realization of the Liouville quantum gravity is given. Then we can also
reparametrize our curve so that the amount of time spent on square Sz is [

p
�N (Sz)]

�˛:

Here we can view ˛ as the “quantum fractal dimension” of the path chosen so thatX
z

[
q
�N (Sz)]

�˛
� 1:

If a random set of dimension d is chosen independently of the Gaussian field, then the
expected value of the left-hand side is comparable to

N d E
h
(�N (Sz))

�˛/2
i

where z is a typical interior point for which we see that

E
h
(�N (Sz))

�˛/2
i
= N�˛(1+ 
2

4 ) E [exp f˛
ZNz/2g] � N�˛(1+ 
2

4 )+˛2 
2

8 :

This gives the KPZ relation

(11) d = ˛

�
1 +


2

4

�
�
˛2 
2

8
;
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which is often written in terms of the scaling exponents x;∆ defined by d = 2�2x; ˛ =

2 � 2∆,

x =

�
1 �


2

4

�
∆+


2

4
∆2:

As in the case of the loop measure, for each � � 4, there is a corresponding value of

 . In this case 
 is chosen so that the quantum fractal dimension ˛0 of the SLE� path
is 1. Using (11) we can see which 
 to choose for each �.

• If 
2 = �, then the quantum fractal dimension of an independent set of Euclidean
fractal dimension 1 + �

8
is one.

In the case of the loop-erased random walk, we choose 
 =
p
2, and then we have

a one-dimensional parametrization of the d -dimensional curve. For �0 > 4, a similar
association is appropriate; indeed, the outer boundary of SLE�0 curves are locally like
SLE� curves with � �0 = 16. These values of �; �0 share the same central charge.

One of the most exciting recent developments in conformally invariant systems has
been the work of Scott Sheffield, Jason Miller, Bertrand Duplantier, and others in under-
standing the random geometry and surfaces produced by taking independent realizations
of the Gaussian free field (and hence of the quantum gravity) and realizations of SLE�

or SLE�0 curves and loops. I am not going to try to explain this work for two reasons:
it would take too much space to give even a reasonable description and I do not feel I
have sufficient expertise to do it justice. I suggest the paper Duplantier [2014b] whose
abstract starts with the inviting sentence “There is a simple way to “glue together” a cou-
pled pair of continuum random trees (CRTs) to produce a topological sphere”, but then
is followed by a very technical paper of over 200 pages! Another major breakthrough
by Miller and Sheffield [2015] is making rigorous the relation between the 
2 = 8/3

(c = 0) case and combinatorial models for random graphs and the Brownian map Le
Gall [2014].

9 Random simple loops

A rooted self-avoiding loop (rSAL) is a path [l0; l1; : : : ; l2n] with l0 = l2n and all other
vertices distinct. We will call ` an (unrooted) self-avoiding loop (SAL) if it is an equiv-
alence class of rooted self-avoiding loops as before. For self-avoiding loops, there are
exactly 2n rooted loops associated to an SAL. We have retained the orientation of the
loop. A self-avoiding polygon (SAP) is an equivalence class of SAL where we ignore
the orientation; to each SAP of length 2n > 2, there are 2 SALs and 4n rSALs.

When studying SALs or SAPs in DN , we can either consider loops in the (scaled)
lattice or the dual lattice. We note that SAPs on the dual lattice are in one-to-one cor-
respondence with finite simply connected subsets of Z2 where the correspondence is
given by the boundary. For finite (not necessarily simply) connected subsets we can fill
in the bounded components of the complement (giving the hull of the set) and then take
the outer boundary. Of course, this is not a bijection since the outer boundary of a set
is the same as the outer boundary of its hull. We will be studying measures on SAPS or
SALs with an emphasis on the macroscopic (that is, noninfinitesimal) diameter. Some
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of these measures will be infinite because they give large measure to small loops, but
the measure on large loops is bounded.

We start by considering a simple to define measure on loops using the random walk
measure similar to one in Kozdron and Lawler [2007]. We will define it as a measure on
SALs, but one could equally consider it as a measure on SAPs (being careful of factors
of 2 since the relation between SALs and SAPs is 2-to-1). There are two variants of
the measure, depending on whether the loops lie on the lattice or the dual lattice. In
either case we will be considering the random walk loop measure on the original lattice.
Recall that if � is a loop in the lattice, then

F�(A) = exp

8<:�
X

`�A;`\�¤¿
m(`)

9=; :
Here ` \ � ¤ ¿ means that the loops share a vertex. If � is a loop in the dual lattice,
we define F�(A) in the same way but in this case ` � A means that the edges of ` are
parts of boundaries of squares centered at z 2 A, and ` \ � ¤ ¿ means that ` includes
a vertex adjacent to �. Our simple candidate for a measure is to give each � measure

(12) mA(�) = e�ˇ j�j F�(A)
�c/2;

where ˇ = ˇc is a critical value and c denotes the central charge. Part of the conjecture
is a form of hyperscaling, which can be stated roughly that at the critical value of ˇ,
the total measure of loops of diameter at least 1 contained in D is of order 1. The
conjecture is that many of the interesting measures on loops are absolutely continuous
with respect to this measure but that there may be domain corrections that will depend
on the particular model studied.

One way to compensate, which will turn out to be natural at least in the case c = �2,
is to include an extra term

m̂A(�) = e�ˇ j�j [HA(�; @A)F�(A)]
�c/2

;

whereHA(�; @A) denotes an “excursion measure” term,

HA(�; @A) =
X
x2�

Es�;A(x) =
1

4

X
x2�

X
jy�xj=1

[1 � g(y)]:

Here g(x) = g�;A(x) is the probability that a simple random walk starting at x reaches
� before A (so that g � 1 on �), and Es�A

(x) = �∆g is the probability that a sim-
ple random walk starting at � reaches @A before returning to �. If the scaled walk �
is of diameter 1 and is not too close to the boundary, then HA(�; @A) � 1. Indeed,
(2/�)HA(�; @A) ∼ r�1 where r is chosen so that annular region between � and @DA

is conformally equivalent to f1 < jxj < erg. In particular, the continuum limit is a
conformal invariant at least for transformations of the annular region. In this case one
can show similarly to Field and Lawler [2013] that the limit

lim
A"Z2

HA(�; @A)F�(A)

exists and is nontrivial.
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9.1 c = 0: Self-avoiding polygons. The case c = 0 where m̂A(�) depends only
on j�j is a version of one of the big open questions in the intersection of probability,
combinatorics, and statistical physics. The value eˇ is called the connective constant
and its value is not known (although it is known on the honeycomb lattice Duminil-
Copin and Smirnov [2012]). However, its continuum limit is perhaps the easiest to
construct because it satisfies the restriction property: the value m̂A(�) does not change
if A changes, provided that � � A.

A very similar measure can be constructed from the random walk loop measure. To
each unrooted loop we can associate its outer boundary. To be more precise, the set
of vertices visited by an unrooted loop is a connected set and this set can become a
simply connected A by filling in the finite holes. The outer boundary is the simple loop
in the dual lattice given by @DA. Mandelbrot [1982] made the remarkable heuristic
observation that the outer boundary of these loops looked like self-avoiding walks. The
random walk loop measure therefore generates a measure on SAPs on the dual lattice
(one could also specify or choose a random orientation to get a measure on SALs). For
the continuous limit, Brownian motion, this was proved, first in Lawler, Schramm, and
Werner [2003] where it was shown that locally the paths are the same as SLE8/3 paths.
A direct construction of SLE8/3 loops without topological constraints on a domain was
done by Werner [2008].

9.2 c = �2: Loop-erased loops. We will call a SAW � a near-SAL if � has an odd
number of steps and ends distance 1 from the starting position. In other words, � can
be turned into a SAL by adding the edge connecting the initial and terminal vertices.
For each SAL � with 2n steps, there exist 2n near-SALs � (each with 2n � 1 steps)
that produce �. For each � = [x = �0; �1; : : : ; y = �k ] in A the quantity 4�k F�(A)

represents the expected number of times that one views � if one starts a random walk
at x, erases loops as they appear chronologically, and stops the walk when it leaves A.
Equivalently,

4�k F�(A) =
X

!:x!y;LE(!)=�

4�j!j;

where the sum is over all ordinary (not necessarily self-avoiding) random walks in A
from x to y whose loop-erasure is �. In analogy with the case of the loop measure, if
we give each near-SAL measure

(13)
1

4 (j�j + 1)
4�k F�(A);

then the induced measure on SALs is mA.
Using Beneš, Lawler, and Viklund [2016], one can see that the expected number of

times that the loop-erasing process starting at x (not too close to the boundary) produces
a near-SALwith diameter greater than 1 is comparable toN�3/4, and the typical number
of steps of such a near-SAL is of orderN 5/4. Hence the total mass of the measure in (13)
for near-SALs rooted at x of diameter greater than one is comparable toN�2. Summing
over theO(N 2) points, see that the measure �A of macroscopic loops is comparable to
one. For macroscopic loops that are not too close to @A we also get that H@A(�;A) is
comparable to one.
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The measure m̂ arises naturally in the study of uniform spanning trees. IfA is a finite
subset of Z2 with n elements, then a wired spanning tree is a spanning tree of the graph
of n + 1 vertices obtained by identifying all the boundary points as a single vertex we
can call @A. Using Wilson’s algorithm with @A as the root, we can see that the number
of wired spanning trees is 4n det[I �QA] = 4n/F (A);whereQA is the matrix indexed
by A withQA(x; y) = 1/4 if x; y are nearest neighbors and equals zero otherwise.

As an extension if the boundary is partitioned into two sets @1 and @2 and we wire
@1; @2 separately, giving a graph of n+ 2 vertices, then the number of spanning trees is

4n+1

F (A)H@A(@1; @2)
;

where
H@A(@1; @2) =

X
x2@1

Es@1
(x) =

X
x2@2

Es@2
(x)

and Es@j
(x) is the probability that a simple random walk starting at x reaches @3�j be-

fore returning to @j . Indeed, this is what is output fromWilson’s algorithm if one makes
@1 the root and @2 the initial vertex from which loop-erased random walks are chosen.
In the case of an annular region with @1; @2 being the components of the boundary we
call it a (wired) crossing spanning tree.

If � is an SAL of length n surrounding the origin, we say that a spanning tree includes
� if all but one of the edges of � are included in the tree (it is impossible for all the
edges of � to be included). We claim that the probability that a uniform spanning tree
contains � is m̂(�). Indeed, if we partition the vertices on A into �;A�

� ; A
+
� where A�

�

is the connected component of A n � containing the origin, then we can choose a tree T
including � as follows:

• Choose any crossing spanning tree T + of A+
� from � to @A in A� and add those

edges to T .

• Choose any wired spanning tree T � in A�
� ; and add those edges to T .

Given (T +; T �), T is determined as follows.

• There is a unique �j such that T + contains a path from �j to @A. Add all the
edges of � to T except for (�j ; �j+1).

The number of choices for T + is 4#(A
+
� )+1 [F (A+

� ) H@A(�; @A)]
�1, and the number of

choices for T � is 4#(A�
� ) F (A�

� )
�1. Since A+

� and A�
� are separate connected compo-

nents and hence no loop in one intersects the other, we have

F�(A) =
F (A)

F (A+
� )F (A+

� )
;

which gives our claim. An alternative approach would be to use Wilson’s algorithm to
find the probability that the path from �j+1 to @A includes the path � with (�j ; �j+1)

removed. See Kassel and Kenyon [2017] for another approach to these ideas.
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9.3 0 < c � 1: Conformal loop ensembles. Another measure on loops can be
obtained from the random walk loop soup with different intensities. The construction
of the Gaussian field used the soup with intensity 1/2 and we will generalize this to
intensities c/2 for 0 < c � 1. Given a realization of the loop soup, there are connected
clusters of points. If c � 1/2, these clusters will be finite. Indeed, if the clusters were
not finite for c = 1/2, then the construction of the Gaussian field as described in Section
7 would output a field with all values of the same sign. For each cluster, we can consider
the outer boundary (the boundary of the unbounded component of the complement) as
a SAP in the dual lattice. For each simply connected A let us write �A for this measure
on SAPs (on the dual lattice) in A.

In order for � to be the outer boundary of a cluster two things must be true:

• The loop � is not hit by the loop soup.

• All the points “inside” � that are adjacent to � must be in the same connected
component.

We call such an � an outermost loop if it also satisfies:

• There is no �0 in the annular region between � and @D that satisfies the first two
conditions and disconnects � from @D.

While this measure does not have the exact form (12), we will do some heuristics to
see that it is similar. First, if A � A0, we note that

�A0(�)

�A(�)
=
mA0(�)

mA(�)
=

�
F�(A)

F�(A0)

�c/2
:

where the right-hand side is the probability that the loop soup in A0 contains a loop that
intersects both � and A0 n A. Of course an outermost loop in A may no longer be an
outermost loop in A0.

The continuous analogue of this construction (as well as a different construction that
we will not describe here) was carried out by Sheffield and Werner [2012] focusing on
the outermost loops. They used the following property to characterize the measure on
outermost loops. Suppose A � A0 are simply connected and we observe the outermost
loops that intersect A0 n A. Let V be A with the points surrounded by these loops re-
moved. Then the conditional distribution on the remainder of the outermost loops is that
of the outermost loops of (the connected components) of V . The exact lattice construc-
tion wementionmay be unsolved, but there is a closely related construction van de Brug,
Camia, and Lis [2016] that focuses only on large (macroscopic and some mesoscopic)
loops in the random walk clusters and then shows that the macroscopic clusters are the
same as those from Brownian clusters. It is in this regime that the coupling Lawler and
Trujillo Ferreras [2007] between the random walk and Brownian loop soups works and
hence they can reduce the problem to the Sheffield–Werner construction. One would
expect that the exact nature of microscopic loops should not play a big factor in the
scaling limit but this is still open.

Another way to get a measure on loops is to observe a field and to consider the loops
that separate values of different signs. One case where this has been done is the Gaussian
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field. It is useful to consider an equivalent definition of the free field, this time with non-
zero boundary conditions, as having the density with respect to normalized Lebesgue
measure

Q
x2A(dzx/

p
2�) ofq

det(I �Q) exp
�
�
1

2
E(z̄)

�
; E(z̄) =

1

4

X
e

[zx � zy ]
2;

where in this case the sum is over all edges e = fx; yg with at least one vertex inA; and
zx = 0 for x 2 @A (other boundary conditions can be given).

Suppose a SAP � in the dual lattice is give, and let V +
� ; V

�
� denote the adjacent

vertices to � that are outside and inside � respectively. We will consider the event that
zx < c for x 2 V +

� and zy > c for y 2 V �
� . We first consider the exponential term for

edges that cross �. This gives a distribution on zx ;2 V� := V +
� [ V �

� up to an additive
constant that we then fix so that average of zx (as seen from far away) in V +

� is 0. We
let � be the average value in V �

� as seen, say, from a point on the inside. (The boundary
value will have local microscopic fluctuations but look constant from a macroscopic
distance away.)

Given fzx : x 2 V g, we choose the rest of the Gaussian free field on the remaining
pointsA+; A� to be independent fields with zero boundary condition plus a mean given
by the harmonic extension of the boundary values. Away from �, this harmonic exten-
sion looks like 0 on A+ and � on A�. The energy contribution given by the harmonic
extension is local near � and should give a term linear in the length of �. So, roughly
speaking, the probability of getting the curve � should look like

e�ˇ j�j
p
F (A+)

p
F (A�)p

F (A)
= e�ˇ j�j F�(A)

�1/2
;

for some ˇ. There is a lot of hand waving here, but we can see how a form like (12)
arises.

To make arguments like this rigorous in the continuum, one can reverse the operation
Schramm and Sheffield [2013] and Wang and Wu [2017] One starts with a measure on
loops, one finds a critical value of �, and then given the loop one constructs independent
Gaussian fields on the outside (with boundary value 0) and the inside (with boundary
value �). Then one shows that this construction combines to give a Gaussian field in
the large domain. In some since the curve is a level curve for the final Gaussian field
(and we can view it as a “function” of that field).

The idea of starting with a Gaussian field and defining curves and loops as a function
of the field was proposed in Dubédat [2009] and has been developed by many under the
name “imaginary geometry” to get results about SLE and loops, see, e.g., Miller and
Sheffield [2016a] A similar result for loops in the Ising model can be found in Benoist
and Hongler [2016].

10 SLE� loops

There is a direct way to define SLE� loops that work for all � < 8 that is analogous to
the definition for the Brownian loop measure. This defines a measure on loops in the
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entire plane that is invariant under dilations and rotations, but leaves open the question
how to modify the measure for a bounded domain.

Using the Loewner equation with a driving function of a killed process in a quasi-
invariant distribution, one can define a � -finite measure on loops rooted at a particular
point. We write 
t = 
 [0; t ] and Dt for the unbounded component of C n 
t . For the
moment, we parametrize the curves by capacity in the upper half plane: if F : C nD !

Dt is a conformal transformation fixing 1, then as z ! 1, jF 0(z)j ∼ et jzj.

• The set of loops with total capacity greater than t is c e�t(d�2) for some fixed
constant c.

• Conditioned on the total capacity of the loop being greater than t , the conditional
distribution of 
(s); s � t given 
t is that of chordal SLE� from 
(t) to 
(0) in
Dt .

If fr(z) = rz denotes dilation by r then the measure �0 satisfies fr ı �0 = r2�d �0:

We can also consider this as a measure on curves with the natural parametrization. Let
T
 = Contd (
). Then (by choosing c appropriately) we get a measure on naturally
parametrized loops with (recall that a loop of capacity t typically has content of order
td )

• The set of loops with T
 � T has measure T 1� d
2 :

As in the case of Brownian loops, we will try to integrate the rooted loop measure
over the starting points to give a measure on unrooted loops. As before, this leads to
overcounting so we compensate by considering the measure �z given by

d�z

d�z

=
1

T


; �z =

Z
C
�z dA(z):

Again, we think of this as a measure on unrooted loops. Even for the measure on rooted
loops, we get the scaling relation fr ı � = �.

Laurie Field and I were studying this and had gotten this far; indeed, one of the
motivations for understanding natural parametrization was to try a construction like
this in order to give a measure on loops of the type suggested by Kontsevich and Suhov
[2007]. However, there was a technical question that we were unable to answer that was
necessary to continue this program. There is a property of Brownian loops that it almost
“obvious” and is used in the proof of the conformal invariance: if 
(t); 0 � t � 1 has the
distribution of a Brownian bridge and 0 < s < 1, then the distribution of 
̃(t) := 
(t +

s) � 
(s) is also that of a Brownian bridge. (Here addition is modulo 1.) The analogue
for the SLE� loop measure is that the measure conditioned on fixedMinkowski content
has the same property. This has recently been proved by Zhan [2017b].

The conformal invariance here is only for the dilations. There is still the hard ques-
tion about how to restrict the measure to bounded domains. This does not arise for
the Brownian loop measure because it satisfies the restriction property. There is not a
unique possibility, and the exact version should depend on the particular problem being
analyzed.
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11 Scaling limit of loop-erased walk

Suppose z; w are distinct boundary points onD. We will consider two processes:

• Chordal SLE2 
 from z0 to w0 inD.

• Take the discrete approximation DN and corresponding boundary points z; w 2

DN , and let � be a (scaled) LERW from z to w

These processes are close and, in this section we discuss recent results showing that the
“naturally parametrized” curves are close. At the moment this is the only process for
which this strong convergence is known.

To establish the result, we start by proving a result about the LERW that can be
considered a “local limit theorem”. We compare the probability that the LERW goes
through the origin with the probability that a chordal SLE2 path goes through the square
S0 of side length N�2. Let rD = rD(0) and SD = SD(0; z; w) be the parameters as
in Section 6. Using stochastic calculus techniques one can show that there exist c0; u
(independent ofD; z;w) such that

Pf
 \ S ¤ ¿g = c0N
�3/4 r

�3/4
D S3

D [1 +O(N�u)]:

(This was established for a disk rather than a square in Lawler and Rezaei [2015], but
the argument can be adapted for a square. The constant c0, which is different for squares
and disks, is not known explicitly.)

We will describe work in Beneš, Lawler, and Viklund [2016] and Lawler [2014] that
established the analogous result for LERW: there exists an absolute c1 such that for all
domains

Pf0 2 �g = c1N
�3/4 r

�3/4
D S3

D [1 +O(N�u)]:

Note that this not only gives the correct scaling exponent (which had been established
by Kenyon [2000]) but also the dependence of the constant factor in the asymptotics to
the domain, establishing that it is a conformally covariant quantity. The proof combines
a key ingredient of Kenyon’s proof with the machinery of loop measures, this time with
measures that can take negative values.

LetA be a finite, simply connected subset of Z2 containing the origin, and letDA be
the corresponding “union of squares” domain. We will not scaleDA, so if f : D ! A

is a conformal transformation with f (0) = 0, then rA := jf 0
A(0)j � dist(0; @A). if

z1; z2 2 @A, we can also find the angle SA from this map. We will compare three num-
bers: HA(z; w), the measure of usual random walks from z tow in A; ĤA(z; w; E01) the
measure of such walks whose loop erasure uses the directed edge E01; and ĤA(z; w; E10),
the measure of such walks that use the edge E10. The probability that the undirected edge
f0; 1g is used is then

ĤA(z; w; E01) + ĤA(z; w; E10)

HA(z; w)
:

Using a determinantal formula first given by Fomin [2001], one can give an exact ex-
pression for the difference,

ĤA(z; w; E01) � ĤA(z; w; E10) =
1

4
F01(A) [HA0(z; 0)HA0(w; 1) �HA0(z; 1)HA0(w; 0)]
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where A0 = A n f0; 1g. Unfortunately, this is a formula for a difference rather than a
sum on the left-hand side. Kenyon’s trick is to change some of the weights to negative;
more precisely, we can draw a vertical half line (“zipper”) on the edges of the dual graph
f
1
2
+ iy : �y0 < y < 0g where 1

2
� iy0 is the first point on @DA reached. Then for

each edge of A that crosses the zipper we give weight �1/4 rather than 1/4. This new
assignment of edge weights gives a newmeasure on paths, and hence loops, that we will
denote as q. Fomin’s identity is a combinatorial bijection that works with any weights
on the bonds; in particular,

Ĥ
q
A
(z; w; E01) � Ĥ

q
A
(z; w; E10) =

1

4
F

q
01(A)

�
H

q
A0(z; 0)H

q
A0(w; 1) �H

q
A0(z; 1)H

q
A0(w; 0)

�
where we use the superscript q to mean quantities computed with that measure.
We use expressions as before

ĤA(z; w; E01) =
X

�

4�j�j F�(A); Ĥ
q
A(z; w;

E01) =
X

�

(�1)J (�) 4�j�j F q
� (A);

where the sum is over all SAWs � from z to w using the directed edge E01. Here J (�)
is the number of times that � crosses the zipper. We now use simple connectivity of the
domain and some simple topology to observe two facts:

• If z; w are ordered correctly, every SAW from z; w that uses the directed edge E01

crosses the zipper an even number of times while SAWs that use E10 cross an odd
number of times.

• Any loop that crosses the zipper an odd number of times must intersect every �
using E01 or E10.

This gives

Ĥ
q
A(z; w;

E01) � Ĥ
q
A(z; w;

E10) = exp f�2m(OA)g
h
ĤA(z; w; E01) + ĤA(z; w; E10)

i
;

whereOA denotes the set of loops that intersect the zipper an odd number of times. This
gives an exact expression for the quantity we want in terms of random walk quantities
(including some for the signed measure q):

1

4
F

q
01(A) e2m(OA)

"
H

q

A0 (z; 0)

HA(0; z)

H
q

A0 (w; 1)

HA(0; w)
�

H
q

A0 (z; 1)

HA(0; z)

H
q

A0 (w; 0)

HA(0; w)

# �
HA(z; w)

HA(0; z)HA(0; w)

��1

There is a lot of machinery to handle random walk convergence to Brownian motion
and in two dimensions one can often get good estimates uniform over all boundary
conditions. There is work involved for sure, but we show that

H
q
A0(z; 0)

HA(0; z)

H
q
A0(w; 1)

HA(0; w)
�
H

q
A0(z; 1)

HA(0; z)

H
q
A0(w; 0)

HA(0; w)
= c1 r

�1
A [SA +O(r�u

A )];

�
HA(z; w)

HA(0; z)HA(0; w)

��1

= c2 [S
2
A +O(r�u

A )];
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and it is not hard to show that F q
01(A) = c3 + O(r�u

A ). The final estimate boils down
to

m[O(A)] =
1

8
log rA + c4 + o(r

�u
A ):

This requires comparison to the Brownian loop measure. Suppose An is the discrete
ball of radius en. Thenm[O(An+1)]�m[O(An)] denotes the measure of loops inAn+1

that are not contained in An and intersect the zipper an odd number of times. For n
large, this boils down to estimating the measure of loops of odd winding number about
the origin, and by the strong coupling of random walk and Brownian loop measures,
this is about the same as the Brownian motion loop measure of loops in the disk of en+1

that are not in disk of en and have odd winding number about the origin. By conformal
invariance, this is independent of n and a computation using Brownian bubbles as in (6)
gives the value 1/8. Being more careful about the approximation, we get

m[O(An+1)] �m[O(An)] =
1

8
+O(e�un):

More general domains than disks are handled similarly, again using the coupling and
the conformal invariance of the Brownian loop measure.

Given the sharp estimate we can establish the strong scaling limit for LERW. Let us
consider our domain D with two boundary points and let us view the scaled LERW at
a macroscopic scale. It was shown in Lawler, Schramm, and Werner [2004] that if we
ignore parametrization, the path of the LERW looks like a chordal SLE2. In Lawler
and Viklund [2016] it is shown how to combine these ideas with the sharp estimate for
LERW above to show that the scaled natural parametrization of the LERW also con-
verges to (an absolute constant times) the Minkowski content of the SLE path. While
the proof is technical, the basic idea is as follows. Suppose we have seen part of the
curve. Then the expected total length of a curve given the initial condition is the length
of that segment plus the expected length of the remaining curve, see (10). A similar (and
more elementary) formula holds for the number of steps of the LERW. The expected
length of the remaining curve given the curve is given by the integral of the Green’s
function (discrete or continuous). Using the estimate in Beneš, Lawler, and Viklund
[2016] (and the fact that the estimate does not require smoothness on the boundaries),
the two expected lengths are the same. Roughly speaking, the difference of the lengths
in the coupling is a martingale whose quadratic variation is very small and hence must
be small.

While the structure of the proof in Lawler and Viklund [2016] is potentially appli-
cable to other models, it requires the very sharp estimates for the discrete model. At
the moment, there is no other model for which the Green’s function can be estimated so
precisely. A similar, but at the moment not sufficiently precise, result about the Ising
model was shown in Chelkak, Hongler, and Izyurov [2015]; the technique of negative
weights above is related to the spinors in that paper. The other model for which there
is a relatively strong local theorem is the percolation exploration process, see Garban,
Pete, and Schramm [2013].
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