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ON THE CROSSROADS OF ENUMERATIVE GEOMETRY
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Abstract
The subjects in the title are interwoven in many different and very deep ways.

I recently wrote several expository accounts that reflect a certain range of develop-
ments, but even in their totality they cannot be taken as a comprehensive survey. In
the format of a 30-page contribution aimed at a general mathematical audience, I
have decided to illustrate some of the basic ideas in one very interesting example –
that of Hilb(C2; n), hoping to spark the curiosity of colleagues in those numerous
fields of study where one should expect applications.

1 The Hilbert scheme of points in C2

1.1 Classical geometry. distinct points in the plane C2 is uniquely specified by the
corresponding ideal

IP = ff (p1) = � � � = f (pn) = 0g � C[x1; x2]

in the coordinate ring C2. The codimension of this ideal, i.e. the dimension of the
quotient

C[x1; x2]/IP = functions on P
def
= OP ;

clearly equals n.
If the points fpigmerge, the limit of IP stores more information than just the location

of points. For instance, for two points, it remembers the direction alongwhich they came
together. One defines

Hilb(C2; n) = fideals I � C[x1; x2] of codimension ng ;

and with its natural scheme structure Fantechi, Göttsche, Illusie, Kleiman, Nitsure, and
Vistoli [2005] and Kollár [1996] this turns out to be a smooth irreducible algebraic
variety — a special feature of the Hilbert schemes of surfaces that fails very badly in
higher dimensions.
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The map IP 7! P extends to a natural map

(1) �Hilb : Hilb(C2; n)! (C2)n/S(n)

which is proper and birational, in other words, a resolution of singularities of (C2)n/S(n).
This makes Hilb(C2; n) an instance of an equivariant symplectic resolution — a very
special class of algebraic varieties Kaledin [2009] and Beauville [2000] that plays a
central role in the current development of both enumerative geometry and geometric
representation theory. This general notion axiomatizes two key features of �Hilb:

• the source of � is an algebraic symplectic variety (here, with the symplectic form
induced from that of C2),

• the map is equivariant for an action of a torus T that contracts the target to a point
(here, T are the diagonal matrices in GL(2) and the special point is the origin in
(C2)n).

Both enumerative geometry and geometric representation theory really work with
algebraic varieties X and correspondences, that is, cycles (or sheaves, etc.) in X1 �X2,
considered up to a certain equivalence. These one can compose geometrically and they
form a nonlinear analog of matrices of linear algebra and classical representation the-
ory. To get to vector spaces and matrices, one considers functors like the equivariant
cohomology H

�

T (X), the equivariant K-theory etc., with the induced action of the cor-
respondences.

Working with equivariant cohomology whenever there is a torus action available is
highly recommended, in particular, because:

• equivariant cohomology is in many ways simpler than the ordinary, while also
more general. E.g. the spectrum of the ringH

�

T (Hilb(C
2; n)) is a union of explicit

essentially linear subvarieties over all partitions of n.

• the base ring H
�

T (pt; Q) = Q[Lie T] of equivariant cohomology introduces param-
eters in the theory, on which everything depends in a very rich and informative
way,

• equivariance is a way to trade global geometry for local parameters. For instance,
all formulas in the classical (that is, not quantum) geometry of Hilbert schemes
of points generalize Ellingsrud, Göttsche, and Lehn [2001] to the general surface
S with the substitution

c1(S) = t1 + t2 ; c2(S) = t1t2 ;

where diag(t1; t2) 2 Lie T.

The fundamental correspondence between Hilbert schemes of points is the Nakajima
correspondence

˛�k(
) � Hilb(S ; n + k) � Hilb(S ; n)

formed for k > 0 by pairs of ideals (I1; I2) such that I1 � I2 and the quotient I2/I1
is supported at a single point located along a cycle 
 in the surface S . This cycle is
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Lagrangian if 
 � S is an algebraic curve. ForS = C2, there are very few T-equivariant
choices for 
 and they are all proportional, e.g.

[fx2 = 0g] = t2[C
2]; [0] = t1t2[C

2] :

One defines ˛k(
) for k > 0 as (�1)k times the transposed correspondence (see section
3.1.3 in Maulik and Okounkov [2012] on the author’s preferred way to deal with signs
in the subject).

The fundamental result of Nakajima [1997] is the following commutation relation1

(2) [˛n(
); ˛m(
 0)] = �(
; 
 0)n ın+m ;

where the intersection pairing (
; 
 0) for S = C2 is ([0]; [C2]) = 1. One recognizes in
(2) the commutation relation for the Heisenberg Lie algebra bgl(1) — a central exten-
sion of the commutative Lie algebra of Laurent polynomials with values in gl(1). The
representation theory of this Lie algebra is very simple, yet very constraining, and one
deduces the identification

(3)
M
n�0

H
�

T (Hilb(S ; n)) Š S�
(span of f˛�k(
)gk>0)

with the Fock module generated by the vacuum H
�

T (Hilb(S ; 0)) = H
�

T (pt).
Fock spaces (equivalently, symmetric functions) are everywhere in mathematics and

mathematical physics and many remarkable computations and phenomena are naturally
expressed in this language. My firm belief is that geometric construction, in particular
the DT theory of 3-folds to be discussed below, are the best known way to think about
them.

The identification (3) is a good example to illustrate the general idea that the best
way to understand an algebraic variety X and, in particular, its equivariant cohomology
H

�

T (X), is to construct interesting correspondences acting on it.
For a general symplectic resolution

(4) � : X ! X0

the irreducible components of the Steinberg variety X �X0
X give important correspon-

dences. For X = Hilb(C2; n), these will be quadratic in Nakajima correspondences,
and hence not as fundamental. In Section 2 we will see one general mechanism into
which ˛k(
) fit.

Since bgl(1) acts irreducibly in (3), it is natural to express all other geometrically
defined operators in terms of ˛k(
). Of special importance in what follows will be
the operator of cup product (and also of the quantum product) by Chern classes of the
tautological bundle Taut = C[x1; x2]/I over the Hilbert scheme.

1 in which the commutator is the supercommutator for odd-dimensional cycles 
; 
 0. Similarly, the sym-
metric algebra in (3) is taken in the Z/2-graded sense.
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The operator of multiplication by the divisor c1(Taut)was computed by Lehn [1999]
as follows

c1(Taut)[ = � 1
2

X
n;m>0

�
˛�n ˛�m ˛n+m + ˛�n�m ˛n ˛m

�
+ (t1 + t2)

X
n>0

n � 1

2
˛�n ˛n(5)

with the following convention2 about the arguments of the ˛’s. If, say, we have 3 alphas,
and hence need 3 arguments, we take the Künneth decomposition of

[small diagonal] = [0] � [0] � [C2] 2 H
�

T ((C
2)3) :

Similarly, ˛�n ˛n is short for ˛�n([0])˛n([C2]). With this convention, (5) is clearly an
operator of cohomological degree 2. There is a systematic way to prove formulas like
(5) in the framework of Section 2, see Smirnov [2016a].

A remarkable observation, made independently by several people, is that the operator
(5) is identical to the second-quantized trigonometric Calogero–Sutherland operator —
an classical object in many-body systems and symmetric functions (its eigenfunctions
being the Jack symmetric polynomials), see e.g. Costello and Grojnowski [2003] for a
comprehensive discussion.

The quantum CS Hamiltonian3

(6) HCS = 1
2

NX
i=1

�
wi

@

@wi

�2

+ �(� � 1)
X

i<j �N

1

jwi � wj j
2

; � = �
�
t1

ı
t2

�˙1
;

describes a system of N identical particles interacting with jwj�2-potential on the unit
circle jwj = 1. After conjugation by an eigenfunction

Q
i<j (wi � wj )

� , it preserves
symmetric Laurent polynomials in wi and stabilizes as N !1 to a limit in which the
left-movers and right-movers (that is, symmetric polynomials in wi and polynomials in
w�1

i ) decouple. This limit is (5) with ˛�k proportional to multiplication by
P

wk
i .

Another interpretation of the same equation (5) is an integrable quantum version of
the Benjamin–Ono equation of 1-dimensional hydrodynamics, see in particular Abanov
and Wiegmann [2005]. The BO equation describes waves on a 1-dimensional surface
of a fluid of infinite depth, and it involves the Hilbert transform— a nonlocal operation.
This nonlocal operation is precisely responsible for the term

P
n>0 n ˛�n ˛n which is

present in (5) and looks a bit unconventional when expressed in terms of the field˛(�) =P
˛�n�n. Note that other terms in (5) are the normally ordered constant terms in ˛(�)3

and ˛(�)2, respectively.
These by now classical connections are only a preview of the kind of connections

that exists between enumerative problems and quantum integrable systems in the full
unfolding of the theory. Crucial insights into this connection were made in the pioneer-
ing work of N. A. Nekrasov and Shatashvili [2009, 2010].

2Note that it differs by a sign from the convention used in Maulik and Okounkov [2012].
3Note that the well-known, but still remarkable strong/weak duality � 7! 1/� in the CS model becomes

simply the permutation of the coordinates in C2 in the geometric interpretation.
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1.2 Counting curves in Hilb(C2; n). Enumerative geometry of curves in an alge-
braic variety Y is a very old subject in mathematics, with the counts like the 27 lines on
a smooth cubic surface going as far back as the work of Cayley from 1849. While super-
ficially the subject may be likened to counting points of Y over some field , the actual
framework that the geometers have to construct to do the counts looks very different
from the number-theoretic constructions. In particular, the counts are defined treating
curves in Y as an excess intersection problem, with the result that the counts are invari-
ant under deformation even though there may be no way to deform actual curves.

Also, the subject draws a lot of inspiration from mathematical physics, where vari-
ous curve counts are interpreted as counts (more precisely, indices) of supersymmetric
states in certain gauge or string theories. This leaves a very visible imprint on the field,
ranging from how one organizes the enumerative data to what is viewed as an important
goal/result in the subject. In particular, any given count, unless it is something as beau-
tiful as 27 lines, is viewed as only an intermediate step in the quest to uncover universal
structures that govern a certain totality of the counts.

Depending on what is meant by a “curve” in Y , enumerative theories come in several
distinct flavors, with sometimes highly nontrivial interrelations between them. My per-
sonal favorite among them is the Donaldson–Thomas theory of 3-folds Donaldson and
Thomas [1996] and Thomas [2000], see, in particular, Okounkov [2017c] for a recent
set of lecture notes.

The DT theory views a curve C � Y as something defined by equations in Y , that
is, as a subsheaf IC � OY of regular functions on Y formed by those functions that
vanish on C . The DT moduli space for Y is thus

(7) Hilb(Y; curves) =
G
ˇ;n

Hilb(Y; ˇ; n)

where ˇ 2 H2(Y; Z)eff is the degree of the curve and n = �(OC ) is the holomorphic
Euler characteristic of OC = OY /IC . In particular, if C is a smooth connected curve
of genus g then n = 1 � g.

While similar in construction and universal properties to the Hilbert schemes of point
in surfaces, Hilbert schemes of 3-folds are, in general, highly singular varieties and
nearly nothing is known about their dimension or irreducible components. However,
viewed as moduli of sheaves of on Y of the form fIC g, they have a good deformation
theory and thus a virtual fundamental cycle of (complex) dimension ˇ � c1(Y ) Thomas
[2000]. The DT curve counts are defined by pairing this virtual cycle against natural
cohomology classes, such as those pulled back from Hilb(D; points) via a map that
assigns to C its pattern of tangency to a fixed smooth divisor D � Y , see Figure 1 and
the discussion in Section 2 of Okounkov [2017c]. Note that the divisor D =

F
Di may

be disconnected, as in Figure 1, in which case curve counts really define a tensor in a
tensor product of several Fock spaces, e.g. an operator from one Fock space to another
if there are two components. I believe that this is the geometric source of great many, if
not all, interesting tensors in Fock spaces.

There is a broader world of DT counts, in which one counts other 1-dimensional
sheaves on 3-folds (a very important example being the Pandharipande–Thomas moduli
spaces of stable pairs Pandharipande and Thomas [2009]), and even more broadly stable
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Figure 1: A fundamental object to count in DT theory are
algebraic curves, or more precisely, subschemes C �

Y of given (ˇ; �) constrained by how they meet a fixed
divisor D � Y .

objects in other categories that look like coherent sheaves on a smooth 3-fold. For all
of these, the deformation theory has certain self-duality features that makes K-theoretic
and otherwise refined enumerative information a well-behaved and a very interesting
object to study.

Since the virtual dimension does not depend on n, it is convenient to organize the
DT counts by summing over all n with a weight zn, where z is a new variable. These
are conjectured to be rational functions of z with poles at roots of unity Maulik, N.
Nekrasov, Okounkov, and Pandharipande [2006a,b]. This is known in many important
cases Maulik, Oblomkov, Okounkov, and Pandharipande [2011], Pandharipande and
Pixton [2013], Smirnov [2016b], and Toda [2010] and may be put into a larger conjec-
tural framework as in N. Nekrasov and Okounkov [2016], see Section 3.1.

An algebraic analog of cutting Y into pieces is a degeneration of Y to a transverse
union of Y1 and Y2 along a smooth divisorD0 as in Figure 2. A powerful result of Levine
and Pandharipande [2009] shows that any smooth projective 3-fold can be linked to a
product of projective spaces (or any other basis in algebraic cobordism) by a sequence
of such moves. The DT counts satisfy a certain gluing formula for such degeneration
Li and Wu [2015] in which the divisor D0 is added to the divisors from Figure 1. This
highlights the importance of understanding the DT counts in certain basic geometries
which can serve as building blocks for arbitrary 3-folds.

One set of basic geometries is formed by S-bundles over a curve B

(8) S
� � // Y

g

��
B ;
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where S is a smooth surface4. One take D =
S

g�1(bi ) for fbig � B and, by de-
generation, this defines a TQFT on B with the space of states H

�

T (Hilb(S)), where
T � Aut(S) is a maximal torus. This TQFT structure is captured by the counts for
B = P1 � fb1; b2; b3g, which define a new, z- and ˇ-dependent supercommutative
multiplication in this Fock space. It is a very interesting question to describe this multi-
plication explicitly5.

Figure 2: Basic building blocks of DT theory are S bun-
dles over a curve B as in (8). As B degenerates to a
nodal curve B1 [ B2, Y degenerates to a transverse
union of Y1 and Y2 along a smooth divisor D0 Š S . DT
counts satisfy a gluing formula for such degenerations.

Geometric representation theory provides an answer when S itself is a symplectic
resolution, which concretely means an ADE surface — a minimal resolution of the
corresponding surface singularity S0. In this case, Hilb(S ; n) is a symplectic resolution
of (S0)

n/S(n), just like (1), and the multiplication above is nothing but the quantum
multiplication in H

�

T (Hilb(S)), see Maulik and Oblomkov [2009] and Okounkov and
Pandharipande [2010].

Recall that the quantum product ? is a supercommutative, associative deformation of
the classical [-product in H

�

T (X) whose structure constants are the counts of 3-pointed
rational curves in X

(9) (˛ ? ˇ; 
) =
X

d2H2(X;Z)eff

zd # of degree d rational curves
meeting cycles dual to ˛; ˇ; 
 :

This is made mathematically precise using the correspondence

(10)
X

d

zd ev�

�h
M0;3(X; d )

i
vir

�
2 H�(X �X �X)[[z]]

obtained from the virtual fundamental cycle of the moduli space of 3-pointed stable
rational maps to X , see Hori, Katz, Klemm, Pandharipande, Thomas, Vafa, Vakil, and
Zaslow [2003] for an introduction.

4It suffices to take S 2 fA0 = C2; A1; A2g, where An is the minimal resolution of the corresponding
surface singularity, to generate a basic set of counts.

5In particular, there are very interesting results and conjectures for K3 surface fibrations, see Oberdieck
[2018]. Note that the dimension counts work out best when c1(S) = 0.
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A closely related structure is the quantum differential equation, or Dubrovin connec-
tion rX , which is a flat connection on trivial bundle over H 2(X; C) 3 � with fiber
H

�

T (X; C). Its flat sections satisfy

(11)
d

d�
Ψ(z) = � ? Ψ(z) ;

d

d�
zd = (�; d ) zd ;

and contain very important enumerative information. For X = Hilb(C2), the quantum
multiplication ring is generated by the divisor, so the two structures are really the same.

With the z 7! �z substitution, the ?-deformation of (5) for X = Hilb(C2) was
computed in Okounkov and Pandharipande [2010] as follows

(12) c1(Taut)? = c1(Taut) [+(t1 + t2)
X
d>0

d
zd

1 � zd
˛�d ˛d + : : : ;

with the same convention about the arguments of ˛n as in (5) and with dots denoting a
scalar operator of no importance for us now. Note the simplicity of the purely quantum
terms6.

The largest and the richest class of equivariant symplectic resolutions known to date
is formed by the Nakajima quiver varieties Nakajima [1994], of which Hilb(C2) is an
example. Formula (12) illustrates many general features of the quantum cohomology
of Nakajima quiver varieties proven in Maulik and Okounkov [2012], such as:

• the purely quantum terms are given by a rational function with values in Steinberg
correspondences

(13) purely quantum 2 „Htop(X �X0
X)˝ Q(z) ;

where
„ = �(t1 + t2)

is the equivariant weight of the symplectic form.

• the shift z 7! �z is an example of the shift by a canonical element ofH 2(X; Z/2),
called the theta-characteristic in Maulik and Okounkov [ibid.].

• there is a certain Lie algebra gQ associated to an arbitrary quiverQ in Maulik and
Okounkov [ibid.], whose positive roots are represented by effective curve classes
d 2 H2(X; Z). Among these, there is a finite set of Kähler roots of X such that

(14) �? = � [ �„
X

d2fpositive rootsg

(�; d )
zd

1 � zd
Cd ;

whereCd 2 g�d gd is the corresponding root components of the Casimir element,
that is, the image of the invariant bilinear form ong�d˝gd . ForX = Hilb(C2; n),

6 If one interprets (5) as a quantum version of the Benjamin–Ono equation then the new terms deform it
to a quantization of the intermediate long wave (ILW) equation. This observation has been rediscovered by
many authors.



ENUMERATIVE GEOMETRY AND REPRESENTATION THEORY 847

the quiver is the quiver with one vertex and one loop with gQ = bgl(1), Cd =

˛�d ˛d , and

(15) positive Kähler roots = f1; : : : ; ng � Z :

• the Cartan subalgebra h � gQ acts by central elements and by the ranks of the
tautological bundles. The operator of cup products by other characteristic classes
of the tautological bundles, together with g, generate a Hopf algebra deformation
Y(gQ) of U(gQ[t ]) known as the Yangian.

The operators of quantum multiplication form a remarkable family of maximal
commutative subalgebras ofY(gQ) known as the Baxter subalgebras in the theory
of quantum integrable systems, see Section 2.1. They are parametrized by z and,
as z ! 0, they become the algebra Y(h) � Y(gQ) of cup products by tautological
classes.

The identification between the ?-product ring and Baxter’s quantum integrals of
motion was predicted by Nekrasov and Shatashvili based on their computation of
the spectra of the operators. This served as very important inspiration for Maulik
and Okounkov [ibid.].

• The Yangian description identifies the quantum differential equation with the
Casimir connection for the Lie algebra gQ, as studied (in the finite-dimensional
case) in Toledano Laredo [2011]. This fits very nicely with the conjecture of
Bezrukavnikov and collaborators about the monodromy rX , see below, and was
another important inspiration for Maulik and Okounkov [2012], see the historical
notes there.

For general symplectic resolutions, there is a definite gap between what is known ab-
stractly, and what can be seen in known examples. I expect that a complete classification
of the equivariant symplectic resolutions is within the reach of the current generation of
algebraic geometers, and we will see how representative the known examples are. For
general symplectic resolutions, the Steinberg correspondence in (13) are constructed in
Braverman, Maulik, and Okounkov [2011], while the rationality in z remains abstractly
a conjecture that can be checked in all known cases.

A generalization of these structures appears In enumerative K-theory. There, instead
of pairing virtual cycles with cohomology classes, we compute the Euler characteristics
of natural sheaves, including the virtual structure sheaf Ovir, on the moduli spaces in
question (here, the Hilbert scheme of curves in Y ).

From its very beginning, K-theory has been inseparable from the indices of differ-
ential operators and related questions in mathematical physics. Equivariant K-theoretic
DT counts represent a Hamiltonian approach to supersymmetric indices in a certain
physical theory (namely, the theory on a D6 brane), in which the space is Y and the time
is periodic7. Morally, what one computes is the index of a certain infinite-dimensional
Dirac operator as a representation of Aut(Y ) which is additionally graded by (ˇ; n).

7Or, more precisely, quasiperiodic, with a twist by an element of T � Aut(Y ) after a full circle of time.
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Because this is the index of a Dirac operator, the right analog of the virtual cycle is the
symmetrized virtual structure sheaf

(16) bOvir = Ovir ˝K
1/2
vir ˝ : : :

where K
1/2
vir is a square root of the virtual canonical bundle Kvir, the importance of

which was emphasized by N. Nekrasov [2005], and the existence of which is shown in
N. Nekrasov and Okounkov [2016]. The dots in (16) denote a certain further twist by a
tautological line bundle of lesser importance, see N. Nekrasov and Okounkov [ibid.].

While it is not uncommon for different moduli spaces to give the same or equivalent
cohomological counts, the K-theoretic counts really feel every point in the moduli space
and are very sensitive to the exact enumerative setup. In particular, for both the existence
of (16) and the computations with this sheaf, certain self-duality features of the DT
deformation theory are crucial. It remains to be seen whether computations with moduli
spaces like M0;3(X), that lack such self-duality, can really reproduce the K-theoretic
DT counts.

In K-theory, the best setup for counting curves in X = Hilb(C2; n) is the moduli
space of stable quasimaps toX , see Ciocan-Fontanine, Kim, andMaulik [2014]. Recall
that

X =
˚
x1; x2 2 End(Cn); v 2 Cn

ˇ̌
[x1; x2] = 0

	
//GL(n) ;

where the stability condition in the GIT quotient is equivalent to C[x1; x2]v spanning
Cn. By definition Ciocan-Fontanine, Kim, and Maulik [ibid.], a stable quasimap from
B to a GIT quotient is a map to the quotient stack8 that evaluates to a stable point away
from a finite set of point in B . In return for allowing such singularities, quasimaps offer
many technical advantages.

If Y in (8) is a fibration in S = C2, one can consider quasimap sections of the corre-
spondingX -bundle overB , and these are easily seen to be identical to the Pandharipande–
Thomas stable pairs for Y . Recall that by definition Pandharipande and Thomas [2009],
a stable pair is a complex of the form

OY
s

����! F

where F is a pure 1-dimensional sheaf and dimCoker s = 0. For our Y , g�F is a
vector bundle on B , the section s gives v, while x1; x2 come from multiplication by
the coordinates in the fiber. If the fiber S contains curve, the picture becomes modified
and the PT spaces for the An-fibrations, n > 0, are related to quasimaps via a certain
sequence of wall crossings.

The K-theoretic quasimap counts to Hilb(C2) and, in fact, to all Nakajima varieties
have been computed in Okounkov [2017a] and Okounkov and Smirnov [2016], and
their structure is a certain q-difference deformation of what we have seen for the coho-
mological counts. In particular, the Yangian Y(g) is replaced by a quantum loop algebra
U„(bg) formed by K-theoretic analogs of the correspondences that define the action of
Y(g), see Sections 2.2 and 3.1.

8i.e. a principal G-bundle on B together with a section of the associated bundle of prequotients, where G

is the group by which we quotient. For G = GL(n), a principal G-bundle is the same as a vector bundle on
B of rank n.
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2 Geometric actions of quantum groups

Geometric representation theory in the sense of making interesting algebras act by cor-
respondences is a mature subject and its exposition in Chriss and Ginzburg [2010] is a
classic. Geometric construction of representation of quantum groups has been a very
important stimulus in the development of the theory of Nakajima quiver varieties Naka-
jima [1998, 2001].

Below we discuss a complementary approach of Maulik and Okounkov [2012],
which mixes geometry and algebra in a different proportion. It has certain convenient
hands-off features, in the sense that it constructs a certain category of representations
without, for example, a complete description of the algebra by generators and relations.
In algebraic geometry, one certainly prefers having a handle on the category Coh(X) to
a complete list of equation that cut out X inside some ambient variety, so the construc-
tion should be of some appeal to algebraic geometers. It also interact very nicely with
the enumerative question, as it has certain basic compatibilities built in by design.

2.1 Braiding. IfG is a group then the category ofG-modules over a field has a tensor
product — the usual tensor product M1 ˝ M2 of vector spaces in which an element
g 2 G acts by g ˝ g. There is also a trivial representation g 7! 1 2 End(), which
is the identity for ˝. This reflects the existence of a coproduct, that is, of an algebra
homomorphism

(17) G 3 g
∆

�����! g ˝ g 2 G ˝G ;

where G is the group algebra of G, with the counit

G 3 g
"

����! 1 2 :

There are also dual module M � = Hom( M; ) in which g acts by (g�1)T , reflecting the
antiautomorphism

G 3 g
antipode

��������! g�1
2 G :

Just like the inverse in the group, the antipode is unique if it exist, and so it will be
outside of our focus in what follows, see Etingof and Schiffmann [2002].

An infinitesimal version of this for a Lie or algebraic group G is to replace G by the
universal enveloping algebra U(g), g = LieG, with the coproduct obtained from (17)
by Leibniz rule

∆(�) = � ˝ 1 + 1˝ � ; � 2 g :

The multiplication, comultiplication, unit, counit, and the antipode form an beautiful
algebraic structure known as a Hopf algebra, see e.g. Etingof and Schiffmann [ibid.].
Another classical example is the algebra [G] of regular functions on an algebraic group.
Remarkably, the axioms of a Hopf algebra are self-dual under taking duals and reversing
all arrows. Observe that all of the above examples are either commutative, or cocom-
mutative.
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Broadly, a quantum group is a deformation of the above examples in the class of
Hopf algebras. Our main interests is in Yangians and quantum loop algebras that are
deformations of

(18) U(g[t ]) Y(g) ; U(g[t˙1]) U„(bg) ;

respectively. Their main feature is the loss of cocommutativity. In other words, the
order of tensor factors now matters and

M1 ˝M2 6ŠM2 ˝M1 ;

in general, or at least the permutation of the tensor factors is no longer an intertwining
operator. While tensor categories are very familiar to algebraic geometers, this may be
an unfamiliar feature. But, as the representation-theorists know, a mild noncommuta-
tivity of the tensor product makes the theory richer and more constrained.

The Lie algebras g[t ] and g[t˙1] in (18) are g-valued functions on the additive, re-
spectively multiplicative, group of the field and they have natural automorphisms

t 7! t + a ; resp. t 7! at ; a 2 G ;

where we use G as a generic symbol for either an additive or multiplicative group. The
action of G will deform to an automorphism of the quantum group9 and we denote by
M (a) the module M , with the action precomposed by an automorphism from G.

The main feature of the theory is the existence of intertwiner (known as the braiding,
or the R-matrix)

(19) R_(a1 � a2) : M1(a1)˝M2(a2)!M2(a2)˝M1(a1)

which is invertible as a rational function of a1 � a2 2 G and develops a kernel and
cokernel for those values of the parameters where the two tensor products are really not
isomorphic. One often works with the operator R = (12) ı R_ that intertwines two
different actions on the same vector space

(20) R(a1 � a2) : M1(a1)˝M2(a2)!M1(a1)˝opp M2(a2) :

As the word braiding suggest, there is a constraint on the R-matrices coming from two
different ways to put three tensor factors in the opposite order. In our situation, the
corresponding products of intertwiners will be simply be equal, corresponding to the
Yang–Baxter equation

(21) RM1;M2
(a1 � a2)RM1;M3

(a1 � a3)RM2;M3
(a2 � a3) =

= RM2;M3
(a2 � a3)RM1;M3

(a1 � a3)RM1;M2
(a1 � a2) ;

satisfied by the R-matrices.
There exists general reconstruction theorem that describe tensor categories of a cer-

tain shape and equipped with a fiber functor to vector spaces as representation categories
9In fact, for U„(bg), it is natural to view this loop rotation automorphism as part of the Cartan torus.
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of quantum groups, see Etingof, Gelaki, Nikshych, and Ostrik [2015] and Etingof and
Schiffmann [2002]. For practical purposes, however, one may be satisfied by the fol-
lowing simple-minded approach that may be traced back to the work of the Leningrad
school of quantum integrable systems N. Y. Reshetikhin [1989].

Let fMig be a collection of vector spaces over a field and

RMi ;Mj
(a) 2 GL(M1 ˝M2; (a))

a collection of operators satisfying the YB equation (21). From this data, one constructs
a certain category C of representation of a Hopf algebra Y as follows. We first extend
the R-matrices to tensor products by the rule

RM1(a1);M2(a2)˝M3(a3) = RM1;M3
(a1 � a3)RM1;M2

(a1 � a2) ; etc.

It is clear that these also satisfy the YB equation. One further extends R-matrices to dual
vector spaces using inversions and transpositions, see N. Y. Reshetikhin [ibid.]. Note
that in the noncocommutative situation, one has to distinguish between left and right
dual modules. For simplicity, we may assume that the set fMig is already closed under
duals.

The objects of the category C are thus M =
N

Mi (ai ) and we define the quantum
group operators in M as the as the matrix coefficients of the R-matrices. Concretely,
we have

(22) TM0;m0
(u)

def
= trM0

(m0 ˝ 1)RM0(u);M 2 End(M )˝ (u)

for any operator m0 of finite rank in an auxiliary space M0 2 Ob(C). The coefficients
of u in (22) give us a supply of operators

Y�
Y
M

End(M ) :

The YB equation (21) can now be read in two different ways, depending on whether we
designate one or two factors as auxiliary. With these two interpretations, it gives either:

• a commutation relation between the generators (22) of Y, or

• a braiding of two Ymodules.

Further, anymorphism inC , that is, any operator that commutes withYgives us relations
in Ywhen used in the auxiliary space. This is a generalization of the following classical
fact: if G �

Q
GL(Mi ) is a reductive algebraic group, then to know the equations of

G is equivalent to knowing how˝Mki
decompose as G-modules.

The construction explained below gives geometric R-matrices, that is, geometric
solutions of the YB equation acting in spaces like (3) in the Yangian situation, or in the
corresponding equivariant K-theories for U„(bg). This gives a quantum group Ywhich
is precisely of the right size for the enumerative application. With certain care, see
Maulik and Okounkov [2012], the above construction works over a ring like= H

�

T (pt).
The construction of R-matrices uses stable envelopes, which is a certain technical

notion that continues to find applications in both in enumerative and representation-
theoretic contexts.
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Let z be an operator in each Mi such that

[z ˝ z; RM1;M2
] = 0 :

A supply of such is provided by the Cartan torus exp(h) where, in geometric situations,
h acts by the ranks of the universal bundles. A classical observation of Baxter then
implies that �

TM0;z(u); TM 0
0;z(u

0)
�
= 0

for fixed z and anyM0(u) andM 0
0(u

0). In general, these depend rationally on the entries
of z as it is not, usually, an operator of finite rank. The corresponding commutative
subalgebras of Y are known as the Baxter, or Bethe subalgebras. They have a direct
geometric interpretation as the operators of quantum multiplication, see below.

2.2 Stable envelopes. There are twoways inwhich a symplectic resolutionX
�
�! X0

may break up into simpler symplectic resolutions. One of them is deformation. There
is a stratification of the deformation space Def(X; !) = Pic(X)˝Z C by the different
singularities that occur, the open stratum corresponding to smooth X0 or, equivalently,
affine X , see Kaledin [2009]. In codimension 1, one sees the simplest singularities
into which X can break, and this is related to the decompositions (13) and (14), see
Braverman, Maulik, and Okounkov [2011], and so to the notion of the Kähler roots
of X introduced above. In the context of Section 3.2, the hyperplanes of the quantum
dynamical Weyl group may be interpreted as a further refinement of this stratification
that records singular noncommutative deformations of X0.

A different way to break up X into simpler pieces is to consider the fixed points XA

of a symplectic torus A � Aut(X; !). The first order information about the geometry
of X around XA is given by the A-weights in the normal bundle NX/XA . These are
called the equivariant roots for the action of A, or just the equivariant roots of X if A is
a maximal torus in Aut(X; !).

There is a certain deep Langlands-like (partial) duality for equivariant symplectic res-
olutions that interchanges the roles of equivariant and Kähler variables. The origin of
this duality, sometimes called the 3-dimensional mirror symmetry, is in 3-dimensional
supersymmetric gauge theories, see Intriligator and Seiberg [1996] and de Boer, Hori,
Ooguri, and Oz [1997] and also e.g. Bullimore, Dimofte, and Gaiotto [2017], Bullimore,
Dimofte, Gaiotto, and Hilburn [2016], and Braden, Licata, Proudfoot, and Webster
[2010] for a thin sample of references. As this duality interchanges K-theoretic enumer-
ative information, the quantum difference equation forX becomes the shift operators for
its dual X_, see Okounkov [2017a] for an introduction to these notions. Among other
things, the Kähler and equivariant roots control the poles in these difference equations,
which makes it clear that they should be exchanges by the duality.

For the development of the theory, it is very important to be able to both breakX into
simpler piece and also to find X as such a piece in a more complex ambient geometry.

For instance for X = Hilb(C2; n), we can take the maximal torus A � SL(2), in
which case XA is a finite set of monomial ideals

I� � C[x1; x2] ; j�j = n ;
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indexed by partitions� of the number n. At I�, the normal weights are f˙hook(�)g�2�,
with the result that

(23) equivariant roots of Hilb(C2; n) = f˙1; : : : ;˙ng :

Notice the parallel with (15). It just happens that Hilb(C2; n) is self-dual, we will see
other manifestations of this below.

More importantly, products
Qr

i=1 Hilb(C2; ni ) may be realized in a very nontrivial
way as fixed loci of a certain torus A on an ambient variety M(r;

P
ni ). Here M(r; n)

is the moduli space of framed torsion free sheaves F on P2 of rank r and c2(F ) = n.
A framing is a choice of an isomorphism

� : F
ˇ̌
L

∼
��! O˚r

L ; L = P2
n C2 ;

on which the automorphism group GL(r) acts by postcomposition. The spaces M(r; n)

are the general Nakajima varieties associated to the quiver with one vertex and one loop.
They play a central role in supersymmetric gauge theories as symplectic resolutions of
the Uhlenbeck spaces of framed instantons, see Nakajima [1999]. It is easy to see that
M(1; n) = Hilb(C2; n) and

M(r; n)A =
G

P
ni=n

rY
i=1

Hilb(C2; ni ) ;

where A � GL(r) is the maximal torus. For general Nakajima varieties, there is a
similar decomposition for the maximal torus A of framing automorphisms.

The cohomological stable envelope is a certain Lagrangian correspondence

(24) Stab � X �XA ;

which may be seen as an improved version of the attracting manifold

Attr =
n
(x; y)

ˇ̌
lim
a!0

a � x = y
o
� X �XA :

The support of (24) is the full attracting set Attrf � X � XA, which is the smallest
closed subset that contains the diagonal and is closed under taking Attr( � ).

To define attracting and repelling manifolds, we need to separate the roots for A-
weights into positive and negative, that is, we need to choose a chamber C � LieA
in the complement of the root hyperplanes. Note this gives an ordering on the set of
components

F
Fi = XA of the fixed locus: F1 > F2 if Attrf (F1) meets F2.

For

(25) LieA = fdiag(a1; : : : ; ar)g � gl(r)

as in Section 2.2, the roots are fai � aj g, and so a choice of C is the usual choice of a
Weyl chamber. As we will see, it will correspond to an ordering of tensor factors as in
Section 2.1.

The stable envelope is characterized by:
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• it is supported on Attrf ,

• it equals10 ˙Attr near the diagonal in XA �XA � X �XA,

• for an off-diagonal component F2 � F1 of XA �XA, we have

(26) degLie(A) Stab
ˇ̌̌
F2�F1

< 1
2
codimF2 = degLie(A) Attr

ˇ̌̌
F2�F2

;

where the degree is the usual degree of polynomials for

H
�

A(X
A; Z) Š H

�
(XA)˝ Z[LieA]:

Condition (26) is a way to quantify the idea that Stab
ˇ̌
F2�F1

is smaller than Attr(F2).
This makes the stable envelope a canonical representative of Attr(F1) modulo cycles
supported on the lower strata of Attrf .

The existence and uniqueness of stable envelopes are proven, under very general as-
sumptions on X in Maulik and Okounkov [2012]. As these correspondences are canon-
ical, they are invariant under the centralizer of A and, in particular, act in T-equivariant
cohomology for any ambient torus T.

To put ourselves in the situation of Section 2.1, we define a category in which the
objects are

(27) F(a1; : : : ; ar) =
M
n�0

H
�

T (M(r; n))

and the maps defined by stable envelopes, like

(28) F(a1)˝ F(a2)

Stab+
++

Stab�

33 F(a1; a2) ;

where C˙ = fa1 ? a2g, are declared to be morphisms. Since both maps in (28) are
isomorphisms after A-equivariant localization, we get a rational matrix

(29) R(a1 � a2) = Stab�1
� ıStab+ 2 End(F(a1)˝ F(a2))˝ Q(a1 � a2) :

Its basic properties are summarized in the following

Theorem 1 (Maulik and Okounkov [ibid.]). The R-matrix (29) satisfies the YB equa-
tion and defines, as in Section 2.1, an action of Y(bgl(1)) in equivariant cohomology of
M(r; n). The Baxter subalgebras in Y(bgl(1)) are the algebras of operators of quan-
tum multiplication. In particular, the vacuum-vacuum elements of the R-matrix are the
operators of classical multiplication in M(r; n).

10The ˙ a choice here, reflecting a choice of a polarization of X , which is a certain auxiliary piece of data
that one needs to fix in the full development of the theory.



ENUMERATIVE GEOMETRY AND REPRESENTATION THEORY 855

Here z in the Cartan torus of bgl(1) acts by zn in the nth term of (27), which clearly
commutes with R-matrices. The vacuum in (27) is the n = 0 term.

For a general Nakajima variety, it is proven in Maulik and Okounkov [ibid.] that the
corresponding R-matrices define an action of Y(g) for a certain Borcherds–Kac–Moody
Lie algebra

g = h˚
M
˛¤0

g˛ ;

with finite-dimensional root spaces g˛ . This Lie algebra is additionally graded by the
cohomological degree and it has been conjectured in Okounkov [n.d.] that graded di-
mensions of g˛ are given by the Kac polynomial for the dimension vector ˛. A slightly
weaker version of this conjecture is proven in Schiffmann [2008a,b].

Again, the operators of classical multiplication are given by the vacuum-vacuumma-
trix elements of the R-matrix, while for the quantummultiplication we have the formula
already announced in Section 1.2

Theorem 2 (Maulik and Okounkov [2012]). For a general Nakajima variety, quantum
multiplication by divisors is given by the formula (14) and hence the quantum differen-
tial equation is the Casimir connection for Y(g).

Back to the Hilbert scheme case, the R-matrix (29) acting in the tensor product of
two Fock spaces is a very important object for which various formulas and descriptions
are available. The following description was obtained in Maulik and Okounkov [ibid.].

The operators
˛˙

n = ˛n ˝ 1˙ 1˝ ˛n

act in the tensor product of two Fock spaces, and form two commuting Heisenberg
subalgebras. They are analogous to the center of mass and separation coordinates in a
system of two bosons, and we can similarly decompose

(30) F(a1)˝ F(a2) = F+(a1 + a2)˝ F�(a1 � a2) ;

where to justify the labels we introduce the zero modes ˛0(
) that act on F(ai ) by
�ai

R

 . Here integral denotes the equivariant integration of 
 2 H

�

T (C
2). Consider

the operators Ln defined by

(31)
X

Ln��n =
1

4
:˛�(�)

2: ˙
1

2
„ @˛�(�) �

1

4

Z
„
2 ;

where :˛�(�)
2: is the normally ordered square of the operator ˛�(�) =

P
˛�

n �n, which
now has a constant term in �, and @ stands for � @

@�
. For the cohomology arguments of

˛�
n , we use the conventions of Section 1.1. For either choice of sign, (31) form the

Virasoro algebra

(32) [Ln; Lm] = (m � n)Ln+m +
(n3 � n)

12

�
1 + 6

Z
„
2

�
ın+m ;

in a particular free field realization that is very familiar from the work of B. Feigin and
Fuchs [1990] and from CFT. Note that, for generic a1 � a2, F�(a1 � a2) is irreducible
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with highest weight

L0

ˇ̌˛
=

1

4

Z
((a1 � a2)

2
� „

2)
ˇ̌˛

;

which, like (32) is invariant under a1 $ a2 and „ 7! �„

Theorem 3 (Maulik and Okounkov [2012]). The R-matrix is the unique operator in F�

in (30) that preserves the vacuum
ˇ̌˛
and interchanges the two signs in (31).

This is the technical basis of numerous fruitful connection between Y(bgl(1)) and
CFT. For instance, the operator R_ = (12) ı R is related to the reflection operator in
Liouville CFT, see Zamolodchikov and Zamolodchikov [1996], and the YB equation
satisfied by R reveals new unexpected features of affine Toda field theories.

3 Some further directions

3.1 K-theoretic counts. K-theoretic counts require a definite technical investment
to be done properly, but offer an ample return producing deeper and more symmetric
theories. For example, the dualities already mentioned in Section 2.2 reveal their full
power only in equivariant K-theory.

Focusing on Hilb(C2; n), its self-duality may be put into an even deeper and, not
surprisingly, widely conjectural framework of M-theory, which is a certain unique 11-
dimensional supergravity theory with the power to unify many plots in modern the-
oretical physics as well as pure mathematics. Its basic actors are membranes with a
3-dimensional world volume that may appear as strings or even point particles to a low-
resolution observer, see Bagger, Lambert, Mukhi, and Papageorgakis [2013] for a recent
review. The supersymmetric index for membranes of the form

C � S1
� Z � S1 ;

where C is a complex curve in a complex Calabi–Yau 5-fold Z, should be a virtual
representation of the automorphisms Aut(Z;Ω5

Z) that preserve the 5-form, so a certain
K-theoretic curve count in Z. See N. Nekrasov and Okounkov [2016] for what it might
look like and a conjectural equivalence with K-theoretic DT counts for

Y = ZC�
z ;

for any C�
z � Aut(Z;Ω5

Z) with a purely 3-dimensional fixed locus. The most striking
feature of this equivalence is the interpretation of the variable z

z = degree-counting variable in (12)
= the �(OC )-counting variable in DT theory, see Section 1.2
!
= equivariant variable z 2 C�

z in M-theory :(33)

Note that in cohomology equivariant variables take values in a Lie algebra, and so cannot
be literally on the same footing as Kähler variables.
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As a local model, one can take the total space

(34) Z =

L1 ˚L2 ˚L3 ˚L4

#

B

;

4O
i=1

Li = KB ;

of 4 line bundles over a smooth curve B . In this geometry, one can designate any two
Li to form Y by making z scale the other two line bundles with opposite weights. Thus
the counting of Section 1.2 with S = C2, when properly set up in K-theory, has a
conjectural S(4)-symmetry that permutes the weights

(t1; t2;
z

p
qt1t2

;
1

z
p

qt1t2
) ;

�
t1

t2

�
2 Aut(C2) ;

where q�1 is the Chern root of KB .
This theory is described by certain q-difference equation that describes the change

of the counts as the degrees of fLig change, and correspondingly the variables t1; t2; z

are shifted by powers of q. In fact, similar q-difference equations can be defined for
any Nakajima variety including M(r; n) from Section 2.2. For those, there are also
difference equations in the framing equivariant variables ai .

Theorem 4 (Okounkov [2017a] and Okounkov and Smirnov [2016]). The q-difference
equations in variables ai are the quantum Knizhnik–Zamolodchikov (qKZ) equations
for U„(

bbgl(1)) and the q-difference equation in z is the lattice part of the dynamical
Weyl group of this quantum group. Same is true for a general Nakajima variety and the
corresponding quantum loop algebra U„(g).

The qKZ equations, introduced in Frenkel and N. Reshetikhin [1992], have the form

(35) Ψ(qa1; a2; : : : ; an) = (z ˝ 1˝ � � � ˝ 1)R1;n(a1/an) : : : R1;2(a1/a2)Ψ

with similar equations in other variables ai , where z is as in (25). For the R-matrices of
U„(bg), where dimg <1, these play the same role in integrable 2-dimensional lattice
models as the classical KZ equations play for their conformal limits, see e.g. Jimbo and
Miwa [1995].

For U„(
bbgl(1)), the R-matrix is a generalization of the R-matrix of Theorem 3 con-

structed using the K-theoretic stable envelopes. The algebra U„(
bbgl(1)) is constructed

from this R-matrix using the general procedure of Section 2.1. For this particular geome-
try, it also coincides with the algebras constructed by many authors by different means,
including explicit presentations see e.g. Burban and Schiffmann [2012], B. Feigin, E.
Feigin, Jimbo, Miwa, and Mukhin [2011], Negut [2015], and Schiffmann and Vasserot
[2013] for a sample of references where the same algebra appears.

It takes a certain development of the theory to define and make concrete the opera-
tors from the quantum dynamical Weyl group of an algebra like U„(bg). They crucially
depend on certain features of K-theoretic stable envelopes that are not visible in coho-
mology.
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In the search for the right K-theoretic generalization of (26), one should keep in
mind that the correct notion of the degree of a multivariate Laurent polynomial is its
Newton polytope, that is, the convex hull of its exponents, considered up to translation.
Translations correspond to multiplication by monomials, which are invertible functions.
The right generalization of (26) is then

(36) Newton
�
Stab

ˇ̌̌
F2�F1

�
� Newton

�
Attr

ˇ̌̌
F2�F2

�
+ shiftF1;F2

;

for a certain collection of shifts in A_ ˝ R, where A_ is the character lattice of the
torus A. Shifts come from weights of fractional line bundles L 2 Pic(X) ˝ R at the
fixed points, see Okounkov [2017a] for a survey. This fractional line bundle, called
the slope of the stable envelope is a new parameter, the dependence on which is locally
constant and quasiperiodic — if the slopes differ by integral line bundle L, then the
corresponding stable envelopes differ by a twist by L.

Stable envelopes change across certain hyperplanes in Pic(X)˝R that form a Pic(X)-
periodic hyperplane arrangement closely related to the Kähler roots of X . For example,
for bgl(1) the roots are f˛g = N n f0g and so the affine root hyperplanes are all rationals

(37) fxj 9˛ h˛; xi 2 Zg = Q � R :

The dynamical Weyl group element Ba/b in (39) corresponding to a wall a
b
2 Q acts triv-

ially in KT(Hilb(C2; n) if b > n, reflecting the fact that the Kähler roots of Hilb(C2; n)

form a finite subset f˙1; : : : ;˙ng of the roots of bgl(1).
The change across a particular wall is recorded by a certain wall R-matrix Rwall and

the R-matrices corresponding to a change of chamberC as in (29) factor into an infinite
product of those, see Okounkov [2017a] and Okounkov and Smirnov [2016]. Each term
in such factorization corresponds to a certain root subalgebra

U„(gwall) � U„(bg)
stable under the action of

(38) bz 2 Cartan torus of g � C�
q ;

where C�
q acts by loop rotation automorphisms of U„(bg). One defines Okounkov and

Smirnov [2016] the dynamical Weyl group by taking certain specific (z; q)-dependent
elements

(39) Bwall 2 U„(gwall) :

For finite-dimensional g, we have gwall = sl(2) for every wall and the construction
specializes to the classical construction of Etingof and Varchenko [2002]. The operators
Bwall satisfy the braid relations of the wall arrangement. Because each Bwall depends on
(38) through the equation of the corresponding wall, these relations look like the Yang–
Baxter equations (21), in which each term depends on a = (a1; a2; a3) through the
equation ai � aj = 0 of the hyperplane being crossed in LieA.
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3.2 Monodromy and derived equivalences. As a special bz-independent case, the
dynamical Weyl group contains the so-called:

(w) quantum Weyl group of U„(bg), which plays many roles, including
(m) this is the monodromy group of the quantum differential equation (11), and

(p) this group describes the action on KT(X) of the derived automorphisms of X

constructed by Bezrukavnikov and Kaledin using quantizations bXc of X in char-
acteristic p � 0, see Bezrukavnikov and Finkelberg [2014], Bezrukavnikov and
Kaledin [2008], Bezrukavnikov and Losev [2013], Kaledin [2008], and Losev
[2014, 2017a, 2016, 2017b]. It thus plays the same role in modular representa-
tion theory of bXc as the Hecke algebra plays in the classical Kazhdan–Lusztig
theory.

Theorem 5 (Bezrukavnikov and Okounkov [n.d.]). We have (w) = (m) = (p) for all
Nakajima varieties.

Other known infinite series of equivariant symplectic resolutions are also considered
in Bezrukavnikov and Okounkov [ibid.]. For finite-dimensional g, the description of
the monodromy of the Casimir connection via the quantum Weyl group is a conjecture
of V. Toledano Laredo [2011]. The equality (m) = (p) for all equivariant symplectic
resolutions is a conjecture of Bezrukavnikov and the author, see the discussion in Anno,
Bezrukavnikov, and Mirković [2015] and Okounkov [2017b].

Here bXc is an associative algebra deformation of the Poisson algebra of functions on
X orX0. While it may be studied abstractly, quantizations of Nakajima varieties may be
described concretely as quantum Hamiltonian reductions, see Etingof [2007] and Gan
and Ginzburg [2006]. For X = Hilb(C2; n), bXc is the algebra generated by symmet-
ric polynomials in fw1; : : : ; wng, and the operators of the rational Calogero quantum
integrable systems — a commutative algebra of differential operators that includes the
following rational analog of (6)

(40) HC,rat =
1
2

NX
i=1

@2

@w2
i

� c(c + 1)
X

i<j �N

1

(wi � wj )2
:

The kinship between (6) and (40) is closer than normal because of the self-duality of
Hilb(C2; n). Recall that duality swaps equivariant and Kähler variables and instead of
an equivariant variable � in (6) we have a Kähler variable c in (40). It parametrizes
deformations of bXc in the same way as Pic(X)˝Z parametrizes deformations of X

over a field .
For p � 0, the BK theory produces derived equivalences

(41) Db CohX (1) ∼
 ���! Db bXc-mod

∼
 ���! Db CohX

(1)
flop

for every nonsingular value of c 2 Z. A shift c 7! c + p twists (41) by O(1). Here
X (1) denotes the Frobenius twist of X and Xflop refers to a change of stability condition
in the GIT construction of X .
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In the (m) = (p) interpretation, the composed equivalence in (41) becomes the
transport of the QDE from the point z = 0, that corresponds to X , to the point z =1,
that corresponds to Xflop, along the ray with

arg z = �2�
c

p
:

In particular, this identifies the singularities of the QDE, given by the Kähler roots of
X , with the limit limp!1

1
p
fcsingg of the singular parameters of the quantization. See

Bezrukavnikov and Okounkov [n.d.] for details.
Monodromy of a flat connection with regular singularities is an analytic map between

algebraic varieties that may be seen as a generalization of the exponential map of a Lie
group. There is a long tradition, going back to at least the work of Kohno andDrinfeld of
computing the monodromy of connections of representation-theoretic origin in terms of
closely related algebraic structures. Just like for the exponential map, there is a certain
progression in this, as one goes from additive variables to multiplicative, and also from
multiplicative— to elliptic. E.g. in the case at hand the QDE (= the Casimir connection)
is defined for modulesM over the Yangian Y(g), and is computed in terms of the action
of U„(bg) in a closely related representation11, see in particular Gautam and Toledano
Laredo [2016].

A key step in capturing the monodromy algebraically is typically a certain compat-
ibility constraint between the monodromy for M = M1 ˝ M2 and the monodromy
for the tensor factors. The framework introduced above gives a very conceptual and
powerful way to prove such statements. Recall that, geometrically, ˝ arises as a spe-
cial correspondence between XA and X , where A is a torus that acts on X preserving
the symplectic form. Therefore, it is natural to ask, more generally, for a compatibility
between the monodromy of the QDE for X and XA.

In fact, one can ask a more general question about the compatibility of the corre-
sponding q-difference equations as in Theorem 4. Let

Z = Pic(X)˝Z C�

be the Kähler torus of X and Z be the toric compactification of Z corresponding to the
fan of ample cones of flops of X . Its torus-fixed points 0Xflop 2 Z correspond to all
possible flops of X . A regular q-difference connection on a smooth toric variety is an
action of the the cocharacter lattice

Pic(X) 3 �! q�
2 Z ; q 2 C� ;

on a (trivial) vector bundle over Z. Shift operators define a commuting regular q-difference
connections in the variables a 2 A � A, where A is the toric variety given by the fan
of the chambers C. The q-difference connection for XA sits overs the torus fixed points
0C 2 A.

11geometrically, the right relation between HT(X), where the Yangian acts, and KT(X) of X , where
U„(bg) acts, is given by a certain Γ-function analog of the Mukai vector, as in the work of Iritani [2009]
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The most interesting analytic feature here is that the connections in z and a, while
compatible and separately regular, are not regular jointly. This can never happen for dif-
ferential equations, see Deligne [1970], but is commonplace for q-difference equations
as illustrated by the system:

f (qz; a) = af (z; a) ; f (z; qa) = zf (z; a) :

As a result, near any point (0X ; 0C) 2 Z � A, we get two kinds of solutions. Those
naturally arising enumeratively are holomorphic in z in a punctured neighborhood of
0X and meromorphic in a with poles accumulating to 0C. These may be called the z-
solutions. For a-solutions, the roles of z and a are exchanged. These naturally appear in
the Langlands dual setup and the initial conditions at a = 0C for them are the z-solutions
for XA.

Transitionmatrices between the a-solutions and the z-solutions, which is by construc-
tion elliptic, intertwine the monodromy forXA andX , and vice versa. Note these transi-
tion matrices may, in principle, be computed from the series expansions near (0X ; 0C),
which differentiates them from more analytic objects like monodromy or Stokes matri-
ces.

Figure 3: z-solutions are convergent power series in z

with coefficients in Q(a), and the poles (solid lines in
the picture) of these coefficients accumulate to a = 0C.
The poles of a-solutions, the dashed lines in the figure,
similarly accumulate to z = 0X .

Theorem 6 (Aganagic and Okounkov [2016]). The transformation from the a-solutions
to z-solutions is given by elliptic stable envelopes, a certain elliptic analog of Stab
constructed in Aganagic and Okounkov [ibid.].

To complete the picture, one can give Mellin–Barnes-type integral solutions to the
quantum q-difference equations, and so, in particular to the qKZ and dynamical equa-
tions for U„(bg) in tensor products of evaluation representations Aganagic and Ok-
ounkov [2017]. It is well-known that the stationary phase q ! 1 limit in such integrals
diagonalizes the Baxter subalgebra and hence generalizes the classical ideas of Bethe
Ansatz.
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