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SYSTEMS OF POINTS WITH COULOMB INTERACTIONS

Sඒඅඏංൺ Sൾඋൿൺඍඒ

Abstract

Large ensembles of points with Coulomb interactions arise in various settings of
condensed matter physics, classical and quantum mechanics, statistical mechanics,
random matrices and even approximation theory, and give rise to a variety of ques-
tions pertaining to calculus of variations, Partial Differential Equations and prob-
ability. We will review these as well as “the mean-field limit” results that allow
to derive effective models and equations describing the system at the macroscopic
scale. We then explain how to analyze the next order beyond the mean-field limit,
giving information on the system at the microscopic level. In the setting of statisti-
cal mechanics, this allows for instance to observe the effect of the temperature and
to connect with crystallization questions.

1 General setups

We are interested in large systems of points with Coulomb-type interactions, described
through an energy of the form

(1-1) HN (x1; : : : ; xN ) =
1

2

X
i¤j

g(xi � xj ) +N

NX
i=1

V (xi ):

Here the points xi belong to the Euclidean space Rd, although it is also interesting to
consider points on manifolds. The interaction kernel g(x) is taken to be

(Log2 case) g(x) = � log jxj; in dimension d = 2;(1-2)

(Coul case) g(x) = 1

jxjd�2
; in dimension d � 3:(1-3)

This is (up to a multiplicative constant) the Coulomb kernel in dimension d � 2, i.e.
the fundamental solution to the Laplace operator, solving

(1-4) � ∆g = cdı0
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where ı0 is the Dirac mass at the origin and cd is an explicit constant depending only
on the dimension. It is also interesting to broaden the study to the one-dimensional
logarithmic case

(1-5) (Log1 case) g(x) = � log jxj; in dimension d = 1;

which is not Coulombic, and to more general Riesz interaction kernels of the form

(1-6) g(x) = 1

jxjs
s > 0:

The one-dimensional Coulomb interaction with kernel �jxj is also of interest, but we
will not consider it as it has been extensively studied and understood, see Lenard [1961],
Lenard [1963], and Kunz [1974].

Finally, we have included a possible external field or confining potential V , which
is assumed to be regular enough and tending to 1 fast enough at 1. The factor N in
front of V makes the total confinement energy of the same order as the total repulsion
energy, effectively balancing them and confining the system to a subset of Rd of fixed
size. Other choices of scaling would lead to systems of very large or very small size as
N ! 1.

The Coulomb interaction and the Laplace operator are obviously extremely impor-
tant and ubiquitous in physics as the fundamental interactions of nature (gravitational
and electromagnetic) are Coulombic. Coulomb was a French engineer and physicist
working in the late 18th century, who did a lot of work on applied mechanics (such as
modeling friction and torsion) and is most famous for his theory of electrostatics and
magnetism. He is the first one who postulated that the force exerted by charged par-
ticles is proportional to the inverse distance squared, which corresponds in dimension
d = 3 to the gradient of the Coulomb potential energy g(x) as above. More precisely
he wrote in Coulomb [1785] “ It follows therefore from these three tests, that the repul-
sive force that the two balls [which were] electrified with the same kind of electricity
exert on each other, follows the inverse proportion of the square of the distance.” He
developed a method based on systematic use of mathematical calculus (with the help
of suitable approximations) and mathematical modeling (in contemporary terms) to pre-
dict physical behavior, systematically comparing the results with the measurements of
the experiments he was designing and conducting himself. As such, he is considered
as a pioneer of the “mathematization” of physics and in trusting fully the capacities of
mathematics to transcribe physical phenomena Blondel and Wolff [2015].

Here we are more specifically focusing on Coulomb interactions between points, or
in physics terms, discrete point charges. There are several mathematical problems that
are interesting to study, all in the asymptotics of N ! 1:

(1) understand minimizers and possibly critical points of (1-1) ;

(2) understand the statistical mechanics of systems with energy HN and inverse tem-
perature ˇ > 0, governed by the so-called Gibbs measure

(1-7) dPN;ˇ (x1; : : : ; xN ) =
1

ZN;ˇ

e�ˇHN (x1;:::;xN )dx1 : : : dxN :
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Here, as postulated by statistical mechanics, PN;ˇ is the density of probability of
observing the system in the configuration (x1; : : : ; xN ) if the number of particles
is fixed to N and the inverse of the temperature is ˇ > 0. The constant ZN;ˇ

is called the “partition function” in physics, it is the normalization constant that
makes PN;ˇ a probability measure, 1 i.e.

(1-8) ZN;ˇ =

Z
(Rd)N

e�ˇHN (x1;:::;xN )dx1 : : : dxN ;

where the inverse temperature ˇ = ˇN can be taken to depend onN , as there are
several interesting scalings of ˇ relative to N ;

(3) understand dynamic evolutions associated to (1-1), such as the gradient flow of
HN given by the system of coupled ODEs

(1-9) ẋi = �
1

N
ri HN (x1; : : : ; xN );

conservative dynamics given by the systems of ODEs

(1-10) ẋi =
1

N
Jri HN (x1; : : : ; xN )

where J is an antisymmetric matrix (for example a rotation by �/2 in dimension
2), or the Hamiltonian dynamics given by Newton’s law

(1-11) ẍi = �
1

N
ri HN (x1; : : : ; xN );

(4) understand the previous dynamic evolutions with temperature ˇ�1 in the form of
an added noise (Langevin-type equations) such as

(1-12) dxi = �
1

N
ri HN (x1; : : : ; xN )dt +

p
ˇ�1dWi

with Wi independent Brownian motions, or

(1-13) dxi =
1

N
Jri HN (x1; : : : ; xN )dt +

p
ˇ�1dWi

with J as above, or

(1-14) dxi = vidt dvi = �
1

N
ri HN (x1; : : : ; xN )dt +

p
ˇ�1dWi :

From a mathematical point of view, the study of such systems touches on the fields
of analysis (Partial Differential Equations and calculus of variations, approximation
theory) particularly for (1)-(3)-(4), probability (particularly for (2)-(4)), mathematical
physics, and even geometry (when one considers such systems on manifolds or with

1One does not know how to explicitly compute the integrals (1-8) except in the particular case of (1-5) for
specific V ’s where they are called Selberg integrals (cf. Mehta [2004] and Forrester [2010])
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curved geometries). Some of the crystallization questions they lead to also overlap with
number theory as we will see below.

In the sequel we will mostly focus on the stationary settings (1) and (2), while men-
tioning more briefly some results about (3) and (4), for which many questions remain
open. Of course these various points are not unrelated, as for instance the Gibbs mea-
sure (1-7) can also be seen as an invariant measure for dynamics of the form (1-11) or

(1-12).
The plan of the discussion is as follows: in the next section we review various mo-

tivations for studying such questions, whether from physics or within mathematics. In
Section 3 we turn to the so-called “mean-field” or leading order description of systems
(1) to (4) and review the standard questions and known results. We emphasize that this
part can be extended to general interaction kernels g, starting with regular (smooth) in-
teractions which are in fact the easiest to treat. In Section 4, we discuss questions that
can be asked and results that can be obtained at the next order level of expansion of the
energy. This has only been tackled for problems (1) and (2), and the specificity of the
Coulomb interaction becomes important then.

2 Motivations

It is in fact impossible to list all possible topics in which such systems arise, as they are
really numerous. We will attempt to give a short, necessarily biased, list of examples,
with possible pointers to the relevant literature.

2.1 Vortices in condensed matter physics and fluids. In superconductors with ap-
plied magnetic fields, and in rotating superfluids and Bose–Einstein condensates, one
observes the occurrence of quantized “vortices” (which are local point defects of su-
perconductivity or superfluidity, surrounded by a current loop). The vortices repel
each other, while being confined together by the effect of the magnetic field or rota-
tion, and the result of the competition between these two effects is that, as predicted
by Abrikosov [1957], they arrange themselves in a particular triangular lattice pattern,
called Abrikosov lattice, cf. Fig. 12. Superconductors and superfluids are modelled by
the celebrated Ginzburg–Landau energy Landau and Ginzburg [1965], which in simpli-
fied form 3 can be written

(2-1)
Z

jr j
2 +

(1 � j j2)2

2"2

where  is a complex-valued unknown function (the “order parameter” in physics) and
" is a small parameter, and gives rise to the associated Ginzburg–Landau equation

(2-2) ∆ +
1

"2
 (1 � j j

2) = 0

2For more pictures, see www.fys.uio.no/super/vortex/
3The complete form for superconductivity contains a gauge-field, but we omit it here for simplicity.

www.fys.uio.no/super/vortex/
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Figure 1: Abrikosov lattice, H. F. Hess et al. Bell Labs Phys. Rev. Lett. 62, 214
(1989)

and its dynamical versions, the heat flow

(2-3) @t = ∆ +
1

"2
 (1 � j j

2)

and Schrödinger-type flow (also called the Gross–Pitaevskii equation)

(2-4) i@t = ∆ +
1

"2
 (1 � j j

2):

When restricting to a two-dimensional situation, it can be shown rigorously (this
was pioneered by Bethuel, Brezis, and Hélein [1994] for (2-1) and extended to the full
gauged model Bethuel and Rivière [1995] and Sandier and Serfaty [2007, 2012]) that
the minimization of (2-1) can be reduced, in terms of the vortices and as " ! 0, to the
minimization of an energy of the form (1-1) in the case (1-2) (for a formal derivation,
see also Serfaty [2015, Chap. 1]) and this naturally leads to the question of understand-
ing the connection between minimizers of (1-1) + (1-2) and the Abrikosov triangular
lattice. Similarly, the dynamics of vortices under (2-3) can be formally reduced to (1-9),
respectively under (2-4) to (1-10). This was established formally for instance in L. Peres
and Rubinstein [1993] and E [1994a] and proven for a fixed number of vortices N and
in the limit " ! 0 in F. H. Lin [1996], Jerrard and Soner [1998], Colliander and Jerrard
[1998, 1999], F.-H. Lin and Xin [1999a,b], and Bethuel, Jerrard, and Smets [2008] until
the first collision time and in Bethuel, Orlandi, and Smets [2005], Smets, Bethuel, and
Orlandi [2007], Bethuel, Orlandi, and Smets [2007], and Serfaty [2007] including after
collision.

Vortices also arise in classical fluids, where in contrast with what happens in su-
perconductors and superfluids, their charge is not quantized. In that context the energy
(1-1)+(1-2) is sometimes called the Kirchhoff energy and the system (1-10) with J taken
to be a rotation by �/2, known as the point-vortex system, corresponds to the dynam-
ics of idealized vortices in an incompressible fluid whose statistical mechanics analysis
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was initiated by Onsager, cf. Eyink and Sreenivasan [2006] (one of the motivations for
studying (1-13) is precisely to understand fluid turbulence as he conceived). It has thus
been quite studied as such, see Marchioro and Pulvirenti [1994] for further reference.
The study of evolutions like (1-11) is also motivated by plasma physics in which the
interaction between ions is Coulombic, cf. Jabin [2014].

2.2 Fekete points and approximation theory. Fekete points arise in interpolation
theory as the points minimizing interpolation errors for numerical integration Saff and
Totik [1997]. More precisely, if one is looking for N interpolation points fx1; : : : ; xN g

in K such that the relation Z
K

f (x)dx =

NX
j=1

wjf (xj )

is exact when f is any polynomial of degree � N � 1, one sees that one needs to
compute the coefficients wj such that

R
K
xk =

PN
j=1wjx

k
j for 0 � k � N � 1,

and this computation is easy if one knows to invert the Vandermonde matrix of the
fxj gj=1:::N . The numerical stability of this operation is as large as the condition number
of the matrix, i.e. as the Vandermonde determinant of the (x1; : : : ; xN ). The points that
minimize the maximal interpolation error for general functions are easily shown to be
the Fekete points, defined as those that maximizeY

i¤j

jxi � xj j

or equivalently minimize
�

X
i¤j

log jxi � xj j:

They are often studied on manifolds, such as thed-dimensional sphere. In Euclidean
space, one also considers “weighted Fekete points” which maximizeY

i<j

jxi � xj je�N
P

i V (xi )

or equivalently minimize

�
1

2

X
i¤j

log jxi � xj j +N

NX
i=1

V (xi )

which in dimension 2 corresponds exactly to the minimization of HN in the particular
case Log2. They also happen to be zeroes of orthogonal polynomials, see Simon [2008].

Since � log jxj can be obtained as lims!0
1
s
(jxj�s �1), there is also interest in study-

ing “Riesz s-energies”, i.e. the minimization of

(2-5)
X
i¤j

1

jxi � xj js
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Figure 2: The triangular lattice solves the sphere packing problem in dimension
2

for all possible s, hence a motivation for (1-6). For these aspects, we refer to the the
review papers Saff and Kuijlaars [1997] and Brauchart, Hardin, and Saff [2012] and
references therein.

Varying s from 0 to1 connects Fekete points to the optimal sphere packing problem,
which formally corresponds to the minimization of (2-5) with s = 1.

The optimal sphere packing problem has been solved in 1, 2 and 3 dimensions, as
well as in dimensions 8 and 24 in the recent breakthrough Viazovska [2017] and Cohn,
Kumar, Miller, Radchenko, and Viazovska [2017] (we refer the reader to the nice pre-
sentation in Cohn [2017] and the review Sloane [1998]). The solution in dimension 2 is
the triangular lattice Fejes [1940] (i.e. the same as the Abrikosov lattice, see Figure 2),
in dimension 3 it is the FCC (face-centered cubic) lattice Hales [2005], in dimension 8
the E8 lattice Viazovska [2017], and in dimension 24 the Leech lattice Cohn, Kumar,
Miller, Radchenko, and Viazovska [2017].

In other dimensions, the solution is in general not known and it is expected that in
high dimension, where the problem is important for error-correcting codes, it is not a
lattice (in dimension 10 already, the so-called “Best lattice”, a non-lattice competitor, is
known to beat the lattices), see Conway and Sloane [1999] for these aspects.

2.3 Statistical mechanics and quantum mechanics. The ensemble given by (1-7)
in the Log2 case is called in physics a two-dimensionalCoulomb gas or one-component
plasma and is a classical ensemble of statistical mechanics (see e.g. Alastuey and Jan-
covici [1981], Jancovici, Lebowitz, and Manificat [1993], Jancovici [1995], Sari and
Merlini [1976], Kiessling [1993], and Kiessling and Spohn [1999]). The Coulomb case
with d = 3 can be seen as a toy (classical) model for matter (see e.g. Penrose and
Smith [1972], Jancovici, Lebowitz, and Manificat [1993], Lieb and Lebowitz [1972],
and Lieb and Narnhofer [1975]). Several additional motivations come from quantum
mechanics. Indeed, the Gibbs measure of the two-dimensional Coulomb gas happens to
be directly related to the Laughlin wave-function in the fractional quantum Hall effect
Girvin [2004] and Stormer [1999]: this is the “plasma analogy”, cf. Laughlin [1983],
Girvin [1999], and Laughlin [1999], and for recent mathematical progress using this
correspondence, cf. Rougerie, Serfaty, and Yngvason [2014], Rougerie and Yngvason
[2015], and Lieb, Rougerie, and Yngvason [2018]. For ˇ = 2 it also arises as the
wave-function density of the ground state for the system ofN non-interacting fermions
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confined to a plane with a perpendicular magnetic field Forrester [2010, Chap. 15].
The 1-dimensional log gas Log1 also arises as the wave-function density in several ex-
actly solvable quantum mechanics systems: examples are the Tonks–Girardeau model
of “impenetrable” Bosons Girardeau,Wright, and Triscari [2001] and Forrester, Frankel,
Garoni, and Witte [2003], the Calogero–Sutherland quantum many-body Hamiltonian
Forrester, Jancovici, and McAnally [2001] and Forrester [2010] and finally the density
of the many-body wave function of non-interacting fermions in a harmonic trap Dean,
Le Doussal, Majumdar, and Schehr [2016]. It also arises in several non-intersecting
paths models from probability, cf. Forrester [2010].

The general Riesz case (1-6) can be seen as a generalization of the Coulomb case,
motivations for studying Riesz gases are numerous in the physics literature (in solid
state physics, ferrofluids, elasticity), see for instance Mazars [2011], Barré, Bouchet,
Dauxois, and Ruffo [2005], Campa, Dauxois, and Ruffo [2009], and Torquato [2016],
they can also correspond to systems with Coulomb interaction constrained to a lower-
dimensional subspace: for instance in the quantum Hall effect, electrons confined to a
two-dimensional plane interact via the three-dimension Coulomb kernel.

In all cases of interactions, the systems governed by the Gibbs measure PN;ˇ are
considered as difficult systems of statistical mechanics because the interactions are truly
long-range, singular, and the points are not constrained to live on a lattice.

As always in statistical mechanics K. Huang [1987], one would like to understand
if there are phase-transitions for particular values of the (inverse) temperature ˇ in the
large volume limit. For the systems studied here, one may expect, after a suitable blow-
up of the system, what physicists call a liquid for small ˇ, and a crystal for large ˇ. The
meaning of crystal in this instance is not to be taken literally as a lattice, but rather as a
system of points whose 2-point correlation function �(2)(x; y) defined as the probability
to have jointly one point at x and one point at y (see Section 3.1) does not decay too
fast as x � y ! 1. A phase-transition at finite ˇ has been conjectured in the physics
literature for the Log2 case (see e.g. Brush, Sahlin, and Teller [1966], Caillol, Levesque,
Weis, and Hansen [1982], and Choquard and Clerouin [1983]) but its precise nature is
still unclear (see e.g. Stishov [1998] for a discussion).

2.4 Two component plasma case. The two-dimensional “one component plasma”,
consisting of positively charged particles, has a “two-component” counterpart which
consists in N particles x1; : : : ; xN of charge +1 and N particles y1; : : : ; yN of charge
�1 interacting logarithmically, with energy

HN (x1; : : : ; xN ; y1; : : : ; yN ) = �
X
i¤j

log jxi �xj j�
X
i¤j

log jyi �yj j+
X
i;j

log jxi �yj j

and the Gibbs measure
1

ZN;ˇ

e�ˇHN (x1;:::;xN ;y1;:::;yN )dx1 : : : dxN dy1 : : : dyN :

Although the energy is unbounded below (positive and negative points attract), the
Gibbs measure is well defined for ˇ small enough, more precisely the partition func-
tion converges for ˇ < 2. The system is then seen to form dipoles of oppositely
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charged particles which attract but do not collapse, thanks to the thermal agitation.
The two-component plasma is interesting due to its close relation to two important
theoretical physics models: the XY model and the sine-Gordon model (cf. the re-
view Spencer [1997]), which exhibit a Berezinski–Kosterlitz–Thouless phase transition
Bietenholz and Gerber [2016] consisting in the binding of these “vortex-antivortex”
dipoles. For further reference, see Fröhlich [1976], Deutsch and Lavaud [1974], Fröh-
lich and Spencer [1981], and Gunson and Panta [1977].

2.5 Random matrix theory. The study of (1-7) has attracted a lot of attention due
to its connection with random matrix theory (we refer to Forrester [2010] for a compre-
hensive treatment). Random matrix theory (RMT) is a relatively old theory, pioneered
by statisticians and physicists such as Wishart, Wigner and Dyson, and originally moti-
vated by the study of sample covariance matrices for the former and the understanding
of the spectrum of heavy atoms for the two latter, see Mehta [2004]. For more recent
mathematical reference see Anderson, Guionnet, and Zeitouni [2010], Deift [1999], and
Forrester [2010]. The main question asked by RMT is : what is the law of the spectrum
of a large random matrix ? As first noticed in the foundational papers of Wigner [1955]
and Dyson [1962], in the particular cases (1-5) and (1-2) the Gibbs measure (1-7) cor-
responds in some particular instances to the joint law of the eigenvalues (which can be
computed algebraically) of some famous random matrix ensembles:

• for Log2, ˇ = 2 and V (x) = jxj2, (1-7) is the law of the (complex) eigenvalues
of anN �N matrix where the entries are chosen to be normal Gaussian i.i.d. This
is called the Ginibre ensemble Ginibre [1965].

• for Log1, ˇ = 2 and V (x) = x2/2, (1-7) is the law of the (real) eigenvalues of
an N � N Hermitian matrix with complex normal Gaussian iid entries. This is
called the Gaussian Unitary Ensemble.

• for Log1, ˇ = 1 and V (x) = x2/2, (1-7) is the law of the (real) eigenvalues of
an N �N real symmetric matrix with normal Gaussian iid entries. This is called
the Gaussian Orthogonal Ensemble.

• for Log1, ˇ = 4 and V (x) = x2/2, (1-7) is the law of the eigenvalues of an
N �N quaternionic symmetric matrix with normal Gaussian iid entries. This is
called the Gaussian Symplectic Ensemble.

• the general-ˇ case of Log1 can also be represented, in a slightly more compli-
cated way, as a randommatrix ensemble Dumitriu and Edelman [2002] and Killip
and Nenciu [2004].

One thus observes in these ensembles the phenomenon of “repulsion of eigenvalues”:
they repel each other logarithmically, i.e. like two-dimensional Coulomb particles.

The stochastic evolution (1-12) in the case Log1 is (up to proper scaling) the Dyson
Brownian motion, which is of particular importance in random matrices since the GUE
process is the invariant measure for this evolution, it has served to prove universality
for the statistics of eigenvalues of general Wigner matrices, i.e. those with iid but not
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necessarily Gaussian entries, see Erdős and Yau [2017] (and Tao and Vu [2011] for
another approach).

For the Log1 and Log2 cases, at the specific temperature ˇ = 2, the law (1-7) ac-
quires a special algebraic feature: it becomes a determinantal process, part of a wider
class of processes (see Hough, Krishnapur, Y. Peres, and Virág [2009] and Borodin
[2011]) for which the correlation functions are explicitly given by certain determinants.
This allows for many explicit algebraic computations, and is part of integrable proba-
bility on which there is a large literature Borodin and Gorin [2016].

2.6 Complex geometry and theoretical physics. Coulomb systems and higher-di-
mensional analogues involving powers of determinantal densities are also of interest to
geometers as a way to construct Kähler–Einstein metrics with negative Ricci curvature
on complex manifolds, cf. Berman [2017] and Berman, Boucksom, and Witt Nyström
[2011].

Another important motivation is the construction of Laughlin states for the Fractional
Quantum Hall effect on complex manifolds, which effectively reduces to the study of a
two-dimensional Coulomb gas on a manifold. The coefficients in the expansion of the
(logarithm of the) partition function have interpretations as geometric invariants, cf. for
instance Klevtsov [2016].

3 The mean field limits and macroscopic behavior

3.1 Questions. The first question that naturally arises is to understand the limit as
N ! 1 of the empirical measure defined by 4

(3-1) �N :=
1

N

NX
i=1

ıxi

for configurations of points that minimize the energy (1-1), critical points, solutions of
the evolution problems, or typical configurations under the Gibbs measure (1-7), thus
hoping to derive effective equations or minimization problems that describe the average
or mean-field behavior of the system. The term mean-field refers to the fact that, from
the physics perspective, each particle feels the collective field generated by all the other
particles, averaged by dividing it by the number of particles. That collective field is
g � �N , except that it is singular at each particle, so to evaluate it at xi one first has to
remove the contribution of xi itself.

Another point of view is that of correlation functions. One may denote by

(3-2) �
(k)
N (x1; : : : ; xk)

the k-point correlation function, which is the probability density (for each specific prob-
lem) of observing a particle at x1, a particle at x2, : : : , and a particle at xk (these func-
tions should of course be symmetric with respect to permutation of the labels). For

4Note that the configurations contain N points which also implicitly depend on N themselves, but we do
not keep track of this dependence for the sake of lightness of notation.



SYSTEMS OF POINTS WITH COULOMB INTERACTIONS 945

instance, in the case (1-7), �(N )
N is simply PN;ˇ itself, and the �(k)N are its marginals

(obtained by integrating PN;ˇ with respect to all its variables but k). One then wants
to understand the limit as N ! 1 of each �(k)N , with fixed k. Mean-field results will
typically imply that the limiting �(k)’s have a factorized form

(3-3) �(k)(x1; : : : ; xk) = �(x1) : : : �(xk)

for the appropriate � which is also equal to �(1). This is called molecular chaos accord-
ing to the terminology introduced by Boltzmann, and can be interpreted as the particles
becoming independent in the limit. When looking at the dynamic evolutions of prob-
lems (3) and (4), starting from initial data for which �(k)(0; �) are in such a factorized
form, one asks whether this remains true for �(k)(t; �) for t > 0, if so this is called
propagation of (molecular) chaos. It turns out that the convergence of the empirical
measure (3-1) to a limit � and the fact that each �(k) can be put in factorized form are
essentially equivalent, see Hauray andMischler [2014] and Golse [2016] and references
therein — ideally, one would also like to find quantitative rates of convergences in N ,
and they will typically deteriorate as k gets large. In the following we will focus on the
mean-field convergence approach, via the empirical measure.

In the case of minimizers (1), a major question is to obtain an expansion asN ! 1

for minHN . In the setting of manifolds, the coefficients in such an expansion have
geometric interpretations. In the same way, in the statistical mechanics setting (2), one
searches for expansions as N ! 1 of the so-called free energy �ˇ�1 logZN;ˇ . The
free energy encodes a lot of the physical quantities of the system. For instance, points of
non-differentiability of logZN;ˇ as a function of ˇ are interpreted as phase-transitions.

We will see below that understanding the mean-field behavior of the system essen-
tially amounts to understanding the leading order term in the large N expansion of the
minimal energy or respectively the free energy, while understanding the next order term
in the expansion essentially amounts to understanding the next order (or fluctuations)
of the system.

3.2 The equilibrium measure. The leading order behavior of HN is related to the
functional

(3-4) IV (�) :=
1

2

“
Rd�Rd

g(x � y)d�(x)d�(y) +

Z
Rd
V (x)d�(x)

defined over the space P (Rd) of probability measures on Rd (which may also take
the value +1). This is something one may naturally expect since IV (�) appears as
the continuum version of the discrete energy HN . From the point of view of statistical
mechanics, IV is the mean-field limit energy of HN , while from the point of view of
probability, IV plays the role of a rate function.

Assuming some lower semi-continuity of V and that it grows faster than g at 1, it
was shown in Frostman [1935] that the minimum of IV over P (Rd) exists, is finite and
is achieved by a unique �V (unique by strict convexity of IV ), which has compact sup-
port and a density, and is uniquely characterized by the fact that there exists a constant
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c such that

(3-5)

8<: h�V + V � c in Rd

h�V + V = c in the support of �V

where

(3-6) h�V (x) :=

Z
Rd

g(x � y)d�V (y) = g � �V

is the “electrostatic” potential generated by �V .
This measure �V is called the (Frostman) equilibrium measure, and the result is true

for more general repulsive kernels than Coulomb, for instance for all regular kernels or
inverse powers of the distance which are integrable.

Example 3.1. When g is the Coulomb kernel, applying the Laplacian on both sides of
(3-5) gives that, in the interior of the support of the equilibrium measure, if V 2 C 2,

(3-7) cd�V = ∆V

i.e. the density of the measure on the interior of its support is given by ∆V
cd

. For example
if V is quadratic, this density is constant on the interior of its support. If V (x) = jxj2

then by symmetry �V is the indicator function of a ball (up to a multiplicative factor),
this is known as the circle law for the Ginibre ensemble in the context of RandomMatrix
Theory. An illustration of the convergence to this circle law can be found in Figure 3.
In dimension d = 1, with g = � log j � j and V (x) = x2, the equilibrium measure is
�V (x) =

1
2�

p
4 � x21jxj�2, which corresponds in the context of RMT (GUE and GOE

ensembles) to the famousWigner semi-circle law, cf. Wigner [1955] and Mehta [2004].

In the Coulomb case, the equilibrium measure �V can also be interpreted in terms
of the solution to a classical obstacle problem (and in the Riesz case (1-6) with d � 2 �

s < d a “fractional obstacle problem”), which is essentially dual to the minimization of
IV , and better studied from the PDE point of view (in particular the regularity of �V

and of the boundary of its support). For this aspect, see Serfaty [2015, Chap. 2] and
references therein.

Frostman’s theorem is the basic result of potential theory. The relations (3-5) can be
seen as the Euler–Lagrange equations associated to the minimization of IV . They state
that in the static situation, the total potential, sum of the potential generated by �V and
the external potential V must be constant in the support of �V , i.e. in the set where the
“charges” are present.

More generallyr(h�+V ) can be seen as the total mean-field force acting on charges
with density � (i.e. each particle feels the average collective force generated by the
other particles), and for the particle to be at rest one needs that force to vanish. Thus
r(h� + V ) should vanish on the support of �, in fact the stationarity condition that
formally emerges as the limit for critical points of HN is

(3-8) �r(h� + V ) = 0:
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The problem with this relation is that the product �rh� does not always make sense,
since a priori � is only a probability measure and rh� is not necessarily continuous,
however, in dimension 2, one can give a weak form of the equation which always makes
sense, inspired by Delort’s work in fluid mechanics Delort [1991], cf. Sandier and
Serfaty [2007, Chap. 13].

3.3 Convergence of minimizers.

Theorem 1. We have

(3-9) lim
N !1

minHN

N 2
= minIV = IV (�V )

and if (x1; : : : ; xN ) minimize HN then

(3-10) lim
N !1

1

N

NX
i=1

ıxi
* �V

in the weak sense of probability measures.

This result is usually attributed to Choquet [1958], one may see the proof in Saff
and Totik [1997] for the logarithmic cases, the general case can be treated exactly in
the same way Serfaty [2015, Chap. 2], and is valid for very general interactions g (for
instance radial decreasing and integrable near 0). In modern language it can be phrased
as a Γ-convergence result. It can also easily be expressed in terms of convergence of
marginals, as a molecular chaos result.

3.4 Parallel results forGinzburg–Landau vortices. The analoguemean field result
and leading order asymptotic expansion of the minimal energy has also been obtained
for the two-dimensional Ginzburg–Landau functional of superconductivity (2-1), see
Sandier and Serfaty [2007, Chap. 7]. It is phrased as the convergence of the vorticity
r �hi ;r i, normalized by the proper number of vortices, to an equilibrium measure,
or the solution to an obstacle problem. The analogue of (3-8) is also derived for critical
points in Sandier and Serfaty [ibid., Chap. 13].

3.5 Deterministic dynamics results - problems (3). For general reference on prob-
lems of the form (3) and (4), we refer to Spohn [2004]. In view of the above discussion,
in the dynamical cases (1-9) or (1-10), one expects as analogue results the convergences
of the (time-dependent) empirical measures 1

N

PN
i=1 ıxi

to probability densities � that
satisfy the limiting mean-field evolutions

(3-11) @t� = div (r(h� + V )�)

respectively

(3-12) @t� = �div (Jr(h� + V )�)
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where again h� = g � � as in (3-6). These are nonlocal transport equations where the
density� is transported along the velocity field�r(h�+V ) (respectively Jr(h�+V ))
i.e. advected by the mean-field force that the distribution generates.

In the two-dimensional Coulomb case (1-2) with V = 0, (3-12) with J chosen as
the rotation by �/2 is also well-known as the vorticity form of the incompressible Euler
equation, describing the evolution of the vorticity in an ideal fluid, with velocity given
by the Biot–Savart law. As such, this equation is well-studied in this context, and the
convergence of solutions of (1-10) to (3-12), also known as the point-vortex approxi-
mation to Euler, has been rigorously proven, see Schochet [1996] and Goodman, Hou,
and Lowengrub [1990].

As for (3-11), it is a dissipative equation, that can be seen as a gradient flow on the
space of probability measures equipped with the so-called Wasserstein W2 (or Monge–
Kantorovitch) metric. In the dimension 2 logarithmic case, it was first introduced by
Chapman, Rubinstein, and Schatzman [1996] and E [1994b] as a formal model for su-
perconductivity, and in that setting the gradient flow description has been made rig-
orous (see Ambrosio and Serfaty [2008]) using the theory of gradient flows in metric
spaces of Otto [2001] and Ambrosio, Gigli, and Savaré [2005]. The equation can also
be studied by PDE methods F. Lin and Zhang [2000] and Serfaty and Vázquez [2014],
which generalize to the Coulomb interaction in any dimension. The derivation of this
gradient flow equation (3-11) from (2-3) can be guessed by variational arguments, i.e.
“Γ-convergence of gradient flows”, see Serfaty [2011]. In the non Coulombic case, i.e.
for (1-6), (3-11) is a “fractional porous medium equation”, analyzed in Caffarelli and
Vazquez [2011], Caffarelli, Soria, and Vázquez [2013], and Zhou and Xiao [2017].

We have the following result which states in slightly informal terms that the desired
convergence holds provided the limiting solution is regular enough.

Theorem 2 (Serfaty and Duerinckx [2018]). For any d, any case (1-2), (1-5) or (1-6)
withd�2 � s < d, let fxi g solve (1-9), respectively (1-10)with initial data xi (0) = x0i .
Then if the limit �0 of the initial empirical measure 1

N

PN
i=1 ıx0

i
is regular enough so

that the solution �t of (3-11), resp. (3-12), with initial data �0 exists until time T > 0

and is regular enough, and if the initial condition is well-prepared in the sense that

lim
N !1

1

N 2
HN (fx0i g) =

“
Rd�Rd

g(x � y)d�0(x)d�0(y);

then we have that for all t 2 [0; T ),

1

N

NX
i=1

ıxi (t) ! �t as N ! 1:

Note that the existence of regular enough solutions that exist for all time, provided
the initial data is regular enough, is known to hold for all Coulomb cases and all Riesz
cases with s < d � 1 Zhou and Xiao [2017].

The difficulty in proving this convergence result is due to the singularity of the
Coulomb interaction combined with the nonlinear character of the product h�� (and
its discrete analogue) which prevents from directly taking limits in the equation.
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Prior results existed for less singular interactions Hauray [2009], Carrillo, Choi, and
Hauray [2014], and Jabin and Wang [2017] or in dimension 1 Berman and Onnheim
[2016]. Theorem 2 was first proven in the dissipative case in dimensions 1 and 2 in
Duerinckx [2016], then in all dimensions and in the conservative case in Serfaty and
Duerinckx [2018]. Both proofs rely on a “modulated energy” approach inspired from
Serfaty [2017]. It consists in considering a Coulomb-based (or Riesz-based) distance
between probability densities, more precisely the distance defined by

dg(�; �)
2 =

“
Rd�Rd

g(x � y)d (� � �)(x)d (� � �)(y)

which is a good metric thanks to the particular properties of the Coulomb and Riesz
kernels. One can prove a “weak-strong” stability result for the limiting equations (3-11),
(3-12) in that metric: if � is a smooth enough solution to (3-11), resp. (3-12), and if �
is any solution to the same equation, then

(3-13) dg(�(t); �(t)) � eC tdg(�(0); �(0));

which is proved by showing a Gronwall inequality. One may then exploit this stability
property by taking� to be the smooth enough expected limiting solution, and � to be the
empirical measure of the solution to the discrete evolution (1-9) or (1-10), after giving
an appropriate renormalized meaning to the Coulomb distance (which is otherwise
infinite) in that setting. We are able to prove that a relation similar to (3-13) holds, thus
proving the desired convergence.

The analogue of the rigorous passage from (1-9) or (1-10) to (3-11) or (3-12) was ac-
complished at the level of the full parabolic and Schrödinger Ginzburg–Landau PDEs
(2-3) and (2-4) Kurzke and Spirn [2014], Jerrard and Spirn [2015], and Serfaty [2017].
The method in Serfaty [2017] relies as above on a modulated energy argument which
consists in finding a suitable energy, modelled on the Ginzburg–Landau energy, which
measures the distance to the desired limiting solution, and for which a Gronwall inequal-
ity can be shown to hold.

As far as (1-11) is concerned, the limiting equation is formally found to be the
Vlasov–Poisson equation

(3-14) @t� + v � rx� + r(h� + V ) � rv� = 0

where �(t; x; v) is the density of particles at time t with position x and velocity v, and
�(t; x) =

R
�(t; x; v)dv is the density of particles. The rigorous convergence of (1-11)

to (3-14) and propagation of chaos are not proven in all generality (i.e. for all initial
data) but it has been established in a statistical sense (i.e. randomizing the initial condi-
tion) and often truncating the interactions, see Kiessling [2014], Boers and Pickl [2016],
Hauray and Jabin [2015], Lazarovici [2016], Lazarovici and Pickl [2017], and Jabin and
Wang [2016] and also the reviews on the topic Jabin [2014] and Golse [2016].

3.6 Noisy dynamics - problems (4). The noise terms in these equations gives rise to
an additive Laplacian term in the limiting equations. For instance the limiting equation
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for (1-12) is expected to be the McKean equation

(3-15) @t� =
1

ˇ
∆� � div (r(h� + V )�)

and the convergence is known for regular interactions since the seminal work ofMcKean
[1967], see also the reviews Sznitman [1991] and Jabin [2014].

For singular interactions, the situation has been understood for the one-dimensional
logarithmic case Cépa and Lépingle [1997], then for all Riesz interactions (1-6) Berman
and Onnheim [2018]. Higher dimensions with singular interactions is largely open, but
recent progress of Jabin and Wang [2017] allows to treat possibly rough but bounded
interactions, as well as some Coulomb interactions, and prove convergence in an appro-
priate statistical sense.

For the conservative case (1-13) the limiting equation is a viscous conservative equa-
tion of the form

(3-16) @t� =
1

ˇ
∆� � div (r?(h� + V )�)

which in the two-dimensional logarithmic case (1-2) is the Navier–Stokes equation in
vorticity form. The convergence in that particular case was established in Fournier,
Hauray, and Mischler [2014], while the most general available result is that of Jabin
and Wang [2017].

For the case of (1-14), the limiting equation is the McKean–Vlasov equation

(3-17) @t� + v � rx� + r(h� + V ) � rv� �
1

ˇ
∆� = 0

with the same notation as for (3-14), and convergence in the case of bounded-gradient
kernels is proven in Jabin and Wang [2016], see also references therein.

3.7 With temperature: statistical mechanics. Let us now turn to problem (2) and
consider the situation with temperature as described via the Gibbs measure (1-7). One
can determine that two temperature scaling choices are interesting: the first is taking
ˇ independent of N , the second is taking ˇN = ˇ

N
with some fixed ˇ. In the former,

which can be considered a “low temperature” regime, the behavior of the system is still
governed by the equilibrium measure �V . The result can be phrased using the language
of Large Deviations Principles (LDP), cf. Dembo and Zeitouni [2010] for definitions
and reference.

Theorem 3. The sequence fPN;ˇ gN of probability measures on P (Rd) satisfies a large
deviations principle at speed N 2 with good rate function ˇÎV where ÎV = IV �

minP (Rd) IV = IV � IV (�V ). Moreover

(3-18) lim
N !+1

1

N 2
logZN;ˇ = �ˇIV (�V ) = �ˇ min

P (Rd)
IV :

The concrete meaning of the LDP is that if E is a subset of the space of probability
measures P (Rd), after identifying configurations (x1; : : : ; xN ) in (Rd)N with their
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empirical measures 1
N

PN
i=1 ıxi

, we may write

(3-19) PN;ˇ (E) � e�ˇN 2(minE IV �minIV );

which in view of the uniqueness of the minimizer of IV implies that configurations
whose empirical measure does not converge to �V as N ! 1 have exponentially
decaying probability. In other words the Gibbs measure concentrates as N ! 1 on
configurations for which the empirical measure is very close to�V , i.e. the temperature
has no effect on the mean-field behavior.

This result was proven in the logarithmic cases in Petz and Hiai [1998] (in dimen-
sion 2), Ben Arous and Guionnet [1997] (in dimension 1) and Ben Arous and Zeitouni
[1998] (in dimension 2) for the particular case of a quadratic potential (and ˇ = 2), see
also Berman [2014] with results for general powers of the determinant in the setting of
multidimensional complexmanifolds, or Chafaı̈, Gozlan, and Zitt [2014] which recently
treated more general singularg’s and V ’s. This result is actually valid in any dimension,
and is not at all specific to the Coulomb interaction (the proof works as well for more
general interaction potentials, see Serfaty [2015]).

In the high-temperature regime ˇN = ˇ
N
, the temperature is felt at leading order and

brings an entropy term. More precisely there is a temperature-dependent equilibrium
measure �V;ˇ which is the unique minimizer of

(3-20) IV;ˇ (�) = ˇIV (�) +

Z
� log�:

Contrarily to the equilibrium measure, �V;ˇ is not compactly supported, but decays
exponentially fast at infinity. This mean-field behavior and convergence of marginals
was first established for logarithmic interactions Kiessling [1993] and Caglioti, Lions,
Marchioro, and Pulvirenti [1992] (see Messer and Spohn [1982] for the case of regular
interactions) using an approach based on de Finetti’s theorem. In the language of Large
Deviations, the same LDP as above then holds with rate function IV;ˇ �min IV;ˇ , and the
Gibbs measure now concentrates asN ! 1 on a neighborhood of�V;ˇ , for a proof see
García-Zelada [2017]. Again the Coulomb nature of the interaction is not really needed.
One can also refer to Rougerie [2014, 2016] for the mean-field and chaos aspects with
a particular focus on their adaptation to the quantum setting.

4 Beyond the mean field limit: next order study

We have seen that studying systems with Coulomb (or more general) interactions at
leading order leads to a good understanding of their limiting macroscopic behavior. One
would like to go further and describe their microscopic behavior, at the scale of the
typical inter-distance between the points, N�1/d. This in fact comes as a by-product of
a next-to-leading order description of the energy HN , which also comes together with
a next-to-leading order expansion of the free energy in the case (1-7).

Thinking of energy minimizers or of typical configurations under (1-7), since one
already knows that

PN
i=1 ıxi

�N�V is small, one knows that the so-called discrepancy
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in balls Br(x) for instance, defined as

D(x; r) :=

Z
Br (x)

NX
i=1

ıxi
�N d�V

is o(rdN ) as long as r > 0 is fixed. Is this still true at the mesoscopic scales for r
of the order N�˛ with ˛ < 1/d? Is it true down to the microscopic scale, i.e. for
r = RN�1/d with R � 1? Does it hold regardless of the temperature? This would
correspond to a rigidity result. Note that point processes with discrepancies growing like
the perimeter of the ball have been called hyperuniform and are of interest to physicists
for a variety of applications, cf. Torquato [2016], see also Ghosh and Lebowitz [2017]
for a review of the link between rigidity and hyperuniformity. An addition question is:
howmuch of the microscopic behavior depends on V or in another words is there a form
of universality in this behavior? Such questions had only been answered in details in
the one-dimensional case (1-5) as we will see below.

4.1 Expanding the energy to next order. The first step that we will describe is how
to expand the energy HN around the measureN�V , following the approach initiated in
Sandier and Serfaty [2015b] and continued in Sandier and Serfaty [2015a], Rougerie and
Serfaty [2016], Petrache and Serfaty [2017], and Leblé and Serfaty [2017]. It relies on
a splitting of the energy into a fixed leading order term and a next order term expressed
in terms of the charge fluctuations, and on a rewriting of this next order term via the
“electric potential” generated by the points. More precisely, exploiting the quadratic
nature of the interaction, and letting 4 denote the diagonal in Rd � Rd, let us expand

HN (x1; : : : ; xN ) =
1

2

X
i¤j

g(xi � xj ) + N

NX
i=1

V (xi )

=
1

2

“
4c

g(x � y)d
� NX

i=1

ıxi

�
(x)d

� NX
i=1

ıxi

�
(y) + N

Z
Rd

Vd
� NX

i=1

ıxi

�
(x)

=
N 2

2

“
4c

g(x � y)d�V (x)d�V (y) + N 2

Z
Rd

Vd�V

+ N

“
4c

g(x � y)d�V (x)
� NX

i=1

ıxi
� N�V

�
(y) + N

Z
Rd

Vd
� NX

i=1

ıxi
� N�V

�
+

1

2

“
4c

g(x � y)d
� NX

i=1

ıxi
� N�V

�
(x)d

� NX
i=1

ıxi
� N�V

�
(y):(4-1)

Recalling that �V is characterized by (3-5), we see that the middle term

(4-2) N

“
g(x � y)d�V (x)d (

NX
i=1

ıxi
�N�V )(y) +N

Z
Rd
Vd (

NX
i=1

ıxi
�N�V )

= N

Z
Rd

(h�V + V )d (

NX
i=1

ıxi
�N�V )

can be considered as vanishing (at least it does if all the points xi fall in the support of
�V ). We are then left with

(4-3) HN (x1; : : : ; xN ) = N 2IV (�V ) + F
�V

N (x1; : : : ; xN )
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with
(4-4)

F
�V

N (x1; : : : ; xN ) =
1

2

“
4c

g(x � y)d
� NX

i=1

ıxi
�N�V

�
(x)d

� NX
i=1

ıxi
�N�V

�
(y):

The relation (4-3) is a next-order expansion of HN (recall (3-9)), valid for arbitrary
configurations. The “next-order energy” F �V

N can be seen as the Coulomb energy of
the neutral system formed by the N positive point charges at the xi ’s and the diffuse
negative charge �N�V of same mass. To further understand F �V

N let us introduce the
potential generated by this system, i.e.

(4-5) HN (x) =

Z
Rd

g(x � y)d
� NX

i=1

ıxi
�N�V

�
(y)

(compare with (3-6)) which solves the linear elliptic PDE (in the sense of distributions)

(4-6) � ∆HN = cd
� NX

i=1

ıxi
�N�V

�
and use for the first time crucially the Coulomb nature of the interaction to write

(4-7)
“

4c

g(x � y)d
� NX

i=1

ıxi
�N�V

�
(x)d

� NX
i=1

ıxi
�N�V

�
(y)

' �
1

cd

Z
Rd
HN∆HN =

1

cd

Z
Rd

jrHN j
2

after integrating by parts by Green’s formula. This computation is in fact incorrect
because it ignores the diagonal terms which must be removed from the integral, and
yields a divergent integral

R
jrHN j2 (it diverges near each point xi of the configuration).

However, this computation can be done properly by removing the infinite diagonal terms
and “renormalizing” the infinite integral, replacing

R
jrHN j2 byZ

Rd
jrHN;�j

2
�Ncdg(�)

where we replace HN by HN;� , its “truncation” at level � (here � = ˛N�1/d with
˛ a small fixed number) — more precisely HN;� is obtained by replacing the Dirac
masses in (4-5) by uniform measures of total mass 1 supported on the sphere @B(xi ; �)

— and then removing the appropriate divergent part cdg(�). The name renormalized
energy originates in the work of Bethuel, Brezis, and Hélein [1994] in the context of
two-dimensional Ginzburg–Landau vortices, where a similar (although different) renor-
malization procedure was introduced. Such a computation allows to replace the double
integral, or sum of pairwise interactions of all the charges and “background”, by a single
integral, which is local in the potentialHN . This transformation is very useful, and uses
crucially the fact that g is the kernel of a local operator (the Laplacian).
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This electric energy
R

Rd jrHN;�j2 is coercive and can thus serve to control the “fluc-
tuations”

PN
i=1 ıxi

�N�V , in fact it is formally 1
cd

kr∆�1(
PN

i=1 ıxi
�N�V )k

2
L2 . The

relations (4-3)–(4-7) can be inserted into the Gibbsmeasure (1-7) to yield so-called “con-
centration results” in the case with temperature, see Serfaty [2014] (for prior such con-
centration results, see Maı̈da and Maurel-Segala [2014], Borot and Guionnet [2013a],
and Chafai, Hardy, and Maida [2018]).

4.2 Blow-up and limiting energy. As we have seen, the configurations we are inter-
ested in are concentrated on (or near) the support of �V which is a set of macroscopic
size and dimension d, and the typical distance between neighboring points is N�1/d.
The next step is then to blow-up the configurations byN 1/d and take theN ! 1 limit
in F �V

N . This leads us to a renormalized energy that we define just below. It allows to
compute a total Coulomb interaction for an infinite system of discrete point charges in a
constant neutralizing background of fixed density 1. Such a system is often called a jel-
lium in physics, and is sometimes considered as a toy model for matter, with a uniform
electron sea and ions whose positions remain to be optimized.

From now on, we assume that Σ, the support of �V is a set with a regular boundary
and �V (x) is a regular density function in Σ. Centering at some point x in Σ, we may
blow-up the configuration by setting x0

i = (N�V (x))
1/d (xi � x) for each i . This way

we expect to have a density of points equal to 1 after rescaling. Rescaling and taking
N ! 1 in (4-6), we are led toHN ! H withH solving an equation of the form

(4-8) � ∆H = cd(C � 1)

where C is a locally finite sum of Dirac masses.

Definition 4.1 (Sandier and Serfaty [2015b,a], Rougerie and Serfaty [2016], and Petra-
che and Serfaty [2017]). The (Coulomb) renormalized energy ofH is

(4-9) W(H ) := lim
�!0

W�(H )

where we let

(4-10) W�(H ) := lim sup
R!1

1

Rd

Z
[� R

2 ; R
2 ]d

jrH�j
2

� cdg(�)

andH� is a truncation ofH performed similarly as above.
We define the renormalized energy of a point configuration C as

(4-11) W (C) := inffW(H ) j � ∆H = cd(C � 1)g

with the convention inf(¿) = +1.

It is not a priori clear how to define a total Coulomb interaction of such a jellium
system, because of the infinite size of the system and because of its lack of local charge
neutrality. The definitions we presented avoid having to go through computing the sum
of pairwise interactions between particles (it would not even be clear how to sum them),
but instead replace it with (renormalized variants of) the extensive quantity

R
jrH j2.
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The energy W can be proven to be bounded below and to have a minimizer; more-
over, its minimum can be achieved as the limit of energies of periodic configurations
(with larger and larger period), for all these aspects see for instance Serfaty [2015].

4.3 Crystallization questions for minimizers. Determining the value of minW is
an open question, with the exception of the one-dimensional analogues for which the
minimum is achieved at the lattice Z Sandier and Serfaty [2015a] and Leblé [2016].

The only question that we can completely answer so far is that of the minimization
over the restricted class of lattice configurations in dimensiond = 2, i.e. configurations
which are exactly a lattice ZEu+ ZEv with det(Eu; Ev) = 1.

Theorem 4. The minimum of W over lattices of volume 1 in dimension 2 is achieved
uniquely by the triangular lattice.

Here the triangular lattice means Z+Zei�/3, properly scaled, i.e. what is called the
Abrikosov lattice in the context of superconductivity. This result is essentially equiva-
lent (see Osgood, Phillips, and Sarnak [1988] and Chiu [1997]) to a result on the mini-
mization of the Epstein � function of the lattice

�s(Λ) :=
X

p2Λnf0g

1

jpjs

proven in the 50’s by Cassels, Rankin, Ennola, Diananda, cf. Montgomery [1988] and
references therein. It corresponds to the minimization of the “height” of flat tori, in the
sense of Arakelov geometry. In dimension d � 3 the minimization of W restricted
to the class of lattices is an open question, except in dimensions 4, 8 and 24 where a
strict local minimizer is known Sarnak and Strömbergsson [2006] (it is the E8 lattice
in dimension 8 and the Leech lattice in dimension 24, which were already mentioned
before).

One may ask whether the triangular lattice does achieve the global minimum of W
in dimension 2. The fact that the Abrikosov lattice is observed in superconductors,
combined with the fact that W can be derived as the limiting minimization problem of
Ginzburg–Landau, see Sandier and Serfaty [2012], justify conjecturing this.

Conjecture 4.2. The triangular lattice is a global minimizer of W in dimension 2.

It was also recently proven in Bétermin and Sandier [2018] that this conjecture is
equivalent to a conjecture of Brauchart, Hardin, and Saff [2012] on the next order term
in the asymptotic expansion of the minimal logarithmic energy on the sphere (an im-
portant problem in approximation theory, also related to Smale’s “7th problem for the
21st century”), which is obtained by formal analytic continuation, hence by very differ-
ent arguments. In addition, the result of Coulangeon and Schürmann [2012] essentially
yields the local minimality of the triangular lattice within all periodic (with possibly
large period) configurations.

Note that the triangular lattice, the E8 lattice in dimension 8 and Leech lattice in di-
mension 24, mentioned above, are also conjectured by Cohn and Kumar [2007] to have
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universally minimizing properties i.e. to be the minimizer for a broad class of interac-
tions. The proof of this conjecture in dimensions 8 and 24 was recently announced by
the authors of Cohn, Kumar, Miller, Radchenko, and Viazovska [2017], and it should
imply that these lattices also minimize W .

One may expect that in general low dimensions, the minimum of W is achieved
by some particular lattice. Folklore knowledge is that lattices are not minimizing in
large enough dimensions, as indicated by the situation for the sphere packing problem
mentioned above.

These questions belongs to the more general family of crystallization problems, see
Blanc and Lewin [2015] for a review. A typical such question is, given an interaction
kernel g in any dimension, to determine the point positions that minimizeX

i¤j

g(xi � xj )

(with some kind of boundary condition), or rather

lim
R!1

1

jBRj

X
i¤j;xi ;xj 2BR

g(xi � xj );

and to determine whether the minimizing configurations are lattices. Such questions
are fundamental in order to understand the crystalline structure of matter. There are
very few positive results in that direction in the literature, with the exception of Theil
[2006] generalizing Radin [1981] for a class of very short range Lennard–Jones poten-
tials, which is why the resolution of the sphere packing problem and the Cohn–Kumar
conjecture are such breakthroughs.

4.4 Convergence results for minimizers. Given a (sequence of) configuration(s)
(x1; : : : ; xN ), we examine as mentioned before the blow-up point configurations

f(�V (x)N )1/d (xi � x)g

and their infinite limits C. We also need to let the blow-up center x vary over Σ, the
support of �V . Averaging near the blow-up center x yields a “point process” P x

N : a
point process is precisely defined as a probability distribution on the space of possibly
infinite point configurations, denoted Config. Here the point process P x

N is essentially
the Dirac mass at the blown-up configuration f(�V (x)N )1/d (xi � x)g. This way, we
form a “tagged point process” PN (where the tag is the memory of the blow-up center),
probability on Σ � Config, whose “slices” are the P x

N . Taking limits N ! 1 (up to
subsequences), we obtain limiting tagged point processes P , which are all stationary,
i.e. translation-invariant. We may also define the renormalized Coulomb energy at the
level of tagged point processes as

W (P ) :=
1

2cd

Z
Σ

Z
W (C)dP x(C)dx:

In view of (4-3) and the previous discussion, wemay expect the following informally
stated result (which we state only in the Coulomb cases, for extensions to (1-5) see
Sandier and Serfaty [2015a] and to (1-6) see Petrache and Serfaty [2017]).



SYSTEMS OF POINTS WITH COULOMB INTERACTIONS 957

Theorem 5 (Sandier and Serfaty [2015b] and Rougerie and Serfaty [2016]). Consider
configurations such that

HN (x1; : : : ; xN ) �N 2IV (�V ) � CN 2� 2
d :

Then up to extraction PN converges to some P and

(4-12) HN (x1; : : : ; xN ) ' N 2IV (�V ) +N
2� 2

d W (P ) + o(N 2� 2
d )

5 and in particular

(4-13) minHN = N 2IV (�V ) +N
2� 2

d minW + o(N 2� 2
d ):

Since W is an average of W , the result (4-13) can be read as: after suitable blow-up
around a point x, for a.e. x 2 Σ, the minimizing configurations converge to minimizers
of W . If one believes minimizers of W to ressemble lattices, then it means that mini-
mizers of HN should do so as well. In any case, W can distinguish between different
lattices (in dimension 2, the triangular lattice has less energy than the square lattice)
and we expect W to be a good quantitative measure of disorder of a configuration (see
Borodin and Serfaty [2013]).

The analogous result was proven in Sandier and Serfaty [2012] for the vortices in
minimizers of the Ginzburg–Landau energy (2-1): they also converge after blow-up
to minimizers of W , providing a first rigorous justification of the Abrikosov lattice
observed in experiments, modulo Conjecture 4.2. The same result was also obtained in
Goldman, Muratov, and Serfaty [2014] for a two-dimensional model of small charged
droplets interacting logarithmically called the Ohta–Kawasaki model – a sort of variant
of Gamov’s liquid drop model, after the corresponding mean-field limit results was
established in Goldman, Muratov, and Serfaty [2013].

One advantage of the above theorem is that it is valid for generic configurations
and not just for minimizers. When using the minimality, better “rigidity results” (as
alluded to above) of minimizers can be proven: points are separated by C

(N k�V k1)1/d

for some fixed C > 0 and there is uniform distribution of points and energy, down to
the microscopic scale, see Petrache and Serfaty [2017], Nodari and Serfaty [2015], and
Petrache and Rota Nodari [2018].

Theorem 5 relies on two ingredients which serve to prove respectively a lower bound
and an upper bound for the next-order energy. The first is a general method for proving
lower bounds for energies which have two intrinsic scales (here the macroscopic scale
1 and the microscopic scale N�1/d) and which is handled via the introduction of the
probability measures on point patterns PN described above. This method (see Sandier
and Serfaty [2015b] and Serfaty [2015]), inspired by Varadhan, is reminiscent of Young
measures and of Alberti and Müller [2001]. The second is a “screening procedure”
which allows to exploit the local nature of the next-order energy expressed in terms of
HN , to paste together configurations given over large microscopic cubes and compute
their next-order energy additively. To do so, we need to modify the configuration in a
neighborhood of the boundary of the cube so as to make the cube neutral in charge and to

5In dimension d = 2, there is an additional additive term N
4 logN in both relations
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make rHN tangent to the boundary. This effectively screens the configuration in each
cube in the sense that it makes the interaction between the different cubes vanish, so
that the energy

R
jrHN j2 becomes proportional to the volume. One needs to show that

this modification can be made while altering only a negligible fraction of the points and
a negligible amount of the energy. This construction is reminiscent of Alberti, Choksi,
and Otto [2009]. It is here crucial that the interaction is Coulomb so that the energy
is expressed by a local function of HN , which itself solves an elliptic PDE, making it
possible to use the toolbox on estimates for such PDEs.

The next order study has not at all been touched in the case of dynamics, but it has
been tackled in the statistical mechanics setting of (1-7).

4.5 Next-order with temperature. Here the interesting temperature regime (to see
nontrivial temperature effects) turns out to be ˇN = ˇN

2
d �1.

In contrast to the macroscopic result, several observations (e.g. by numerical sim-
ulation, see Figure 3) suggest that the behavior of the system at the microscopic scale
depends heavily on ˇ, and one would like to describe this more precisely. In the par-

Figure 3: Case Log2 with N = 100 and V (x) = jxj2, for ˇ = 400 (left) and
ˇ = 5 (right).

ticular case of (1-5) or (1-2) with ˇ = 2, which both arise in Random Matrix Theory,
many things can be computed explicitly, and expansions of logZN;ˇ as N ! 1, Cen-
tral Limit Theorems for linear statistics, universality in V (after suitable rescaling) of
the microscopic behavior and local statistics of the points, are known Johansson [1998],
Shcherbina [2013], Borot and Guionnet [2013a], Borot and Guionnet [2013b], Bour-
gade, Erdős, and Yau [2014, 2012], Bekerman, Figalli, and Guionnet [2015], and Bek-
erman and Lodhia [2016]. Generalizing such results to higher dimensions and all ˇ’s is
a significant challenge.

4.6 Large Deviations Principle. A first approach consists in following the path
taken for minimizers and using the next-order expansion of HN given in (4-12). This
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Figure 4: Simulation of the Poisson point process with intensity 1 (left), and the
Ginibre point process with intensity 1 (right)

expansion can be formally inserted into (1-7), however this is not sufficient: to get a
complete result, one needs to understand precisely how much volume in configuration
space (Rd)N is occupied near a given tagged point process P — this will give rise
to an entropy term — and how much error (in both volume and energy) the screening
construction creates. At the end we obtain a Large Deviations Principle expressed at
the level of the microscopic point processes P , instead of the macroscopic empirical
measures � in Theorem 3. This is sometimes called “type-III large deviations” or large
deviations at the level of empirical fields. Such results can be found in Varadhan [1988],
Föllmer [1988], the relative specific entropy that we will use is formalized in Föllmer
and Orey [1988] (for the non-interacting discrete case), Georgii [1993] (for the interact-
ing discrete case) and Georgii and Zessin [1993] (for the interacting continuous case).

To state the result precisely, we need to introduce the Poisson point process with
intensity 1, denotedΠ, as the point process characterized by the fact that for any bounded
Borel set B in Rd

Π(N (B) = n) =
jBjn

n!
e�jBj

whereN (B) denotes the number of points inB . The expectation of the number of points
in B can then be computed to be jBj, and one also observes that the number of points
in two disjoint sets are independent, thus the points “don’t interact”, see Figure 4 for a
picture. The “specific” relative entropy ent with respect to Π refers to the fact that it
has to be computed taking an infinite volume limit, see Rassoul-Agha and Seppäläinen
[2015] for a precise definition. One can just think that it measures how close the point
process is to the Poisson one.

For any ˇ > 0, we then define a free energy functional F ˇ as

(4-14) F ˇ (P ) :=
ˇ

2
W (P ) + ent[P jΠ]:
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Theorem 6 (Leblé and Serfaty [2017]). Under suitable assumptions, for any ˇ > 0 a
Large Deviations Principle at speed N with good rate function F ˇ � inf F ˇ holds in
the sense that

PN;ˇ (PN ' P ) ' e�N (F ˇ(P )�infF ˇ)

This way, the the Gibbs measure PN;ˇ concentrates on microscopic point processes
which minimize F ˇ . This minimization problem corresponds to some balancing (de-
pending on ˇ) between W , which prefers order of the configurations (and expectedly
crystallization in low dimensions), and the relative entropy term which measures the
distance to the Poisson process, thus prefers microscopic disorder and decorrelation
between the points. As ˇ ! 0, or temperature gets very large, the entropy term domi-
nates and one can prove Leblé [2016] that the minimizer of F ˇ converges to the Poisson
process. On the contrary, when ˇ ! 1, the W term dominates, and prefers regular
and rigid configurations. (In the case (1-5) where the minimum of W is known to be
achieved by the lattice, this can be made into a complete proof of crystallization as
ˇ ! 1, cf. Leblé [ibid.]). When ˇ is intermediate then both terms are important and
one does not expect crystallization in that sense nor complete decorrelation. For sepa-
ration results analogous to those quoted about minimizers, one may see Ameur [2017]
and references therein.

The existence of a minimizer to F ˇ is known, it is certainly nonunique due to the
rotational invariance of the problem, but it is not known whether it is unique modulo
rotations, nor is the existence of a limiting point process P (independent of the subse-
quence) in general. The latter is however known to exist in certain ensembles arising
in random matrix theory: for (1-5) for any ˇ, it is the so-called sine-ˇ process Kurzke
and Spirn [2014] and Valkó and Virág [2009], and for (1-2) for ˇ = 2 and V quadratic,
it is the Ginibre point process Ginibre [1965], shown in Figure 4. It was also shown
to exist for the jellium for small ˇ in Imbrie [1982/83]. A consequence of Theorem
6 is to provide a variational interpretation to these point processes. One may hope to
understand phase-transitions at the level of these processes, possibly via this variational
interpretation, however this is completely open. While in dimension 1, the point pro-
cess is expected to always be unique, in dimension 2, phase-transitions and symmetry
breaking in positional or orientational order may happen. One would also like to un-
derstand the decay of the two-point correlation function and its possible change in rate,
corresponding to a phase-transition. In the one-dimensional logarithmic case, the limits
of the correlation functions are computed for rational ˇ’s Forrester [1993] and indicate
a phase-transition.

A second corollary obtained as a by-product of Theorem 6 is the existence of a next
order expansion of the free energy �ˇ�1 logZN;ˇ .

Corollary 4.3 (Leblé and Serfaty [2017]).

(4-15) � ˇ�1 logZN;ˇ = N 1+ 2
d IV (�V ) +N min F + o(N )

in the cases (1-3); and in the cases (1-2), (1-5),

�ˇ�1 logZN;ˇ = N 2IV (�V ) �
N

2d logN +N min F ˇ + o(N )
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or more explicitly

(4-16) � ˇ�1 logZN;ˇ =

= N 2IV (�V )�
N

2d logN +NCˇ +N

�
1

ˇ
�

1

2d

� Z
Σ

�V (x) log�V (x) dx+o(N );

where Cˇ depends only on ˇ, but not on V .

This formulae are to be compared with the results of Shcherbina [2013], Borot and
Guionnet [2013a], Borot and Guionnet [2013b], and Bekerman, Figalli, and Guionnet
[2015] in the Log1 case, the semi-rigorous formulae in Zabrodin andWiegmann [2006]
in the dimension 2 Coulomb case, and are the best-known information on the free en-
ergy otherwise. We recall that understanding the free energy is fundamental for the
description of the properties of the system. For instance, the explicit dependence in V
exhibited in (4-16) will be the key to proving the result of the next section.

Finally, note that a similar result to the above theorem and corollary can be obtained
in the case of the two-dimensional two-component plasma alluded to in Section 2.4, see
Leblé, Serfaty, and Zeitouni [2017].

4.7 A Central Limit Theorem for fluctuations. Another approach to understand-
ing the rigidity of configurations and how it depends on the temperature is to examine
the behavior of the linear statistics of the fluctuations, i.e. consider, for a regular test
function f , the quantity

NX
i=1

f (xi ) �N

Z
fd�V :

Theorem 7 (Leblé and Serfaty [2018]). In the case (1-2), assume V 2 C 4 and the
previous assumptions on �V and @Σ, and let f 2 C 4

c (R
2) or C 3

c (Σ). If Σ has m �

2 connected components Σi , add m � 1 conditions
R

@Σi
∆f Σ = 0 where f Σ is the

harmonic extension of f outside Σ. Then

NX
i=1

f (xi ) �N

Z
Σ

f d�V

converges in law as N ! 1 to a Gaussian distribution with

mean =
1

2�

�
1

ˇ
�

1

4

� Z
R2

∆f (1Σ + log∆V )Σ variance=
1

2�ˇ

Z
R2

jrf Σ
j
2:

The result can moreover be localized with f supported on any mesoscale N�˛ , ˛ < 1
2
;

and it is true as well for energy minimizers, taking formally ˇ = 1.

This result can be interpreted in terms of the convergence ofHN (of (4-5)) to a suit-
able so-called “Gaussian Free Field”, a sort of two-dimensional analogue of Brownian
motion. This theorem shows that if f is smooth enough, the fluctuations of linear statis-
tics are typically of order 1, i.e. much smaller than the sum of N iid random variables
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which is typically or order
p
N . This a manifestation of rigidity, which even holds

down to the mesoscales. Note that the regularity of f is necessary, the result is false if
f is discontinuous, however the precise threshold of regularity is not known.

In dimension 1, this theorem was first proven in Johansson [1998] for polynomial
V and f analytic. It was later generalized in Shcherbina [2013], Borot and Guionnet
[2013a], Borot and Guionnet [2013b], Bekerman and Lodhia [2016], Webb [2016], and
Bekerman, Leblé, and Serfaty [2017]. In dimension 2, this result was proven for the
determinantal case ˇ = 2, first in Rider and Virág [2007] (for V quadratic), Berman
[n.d.] assuming just f 2 C 1, and then Ameur, Hedenmalm, and Makarov [2011] un-
der analyticity assumptions. It was then proven for all ˇ simultaneously as Leblé and
Serfaty [2018] in Bauerschmidt, Bourgade, Nikula, and Yau [n.d.], with f assumed to
be supported in Σ. The approach for proving such results has generally been based on
Dyson–Schwinger (or “loop”) equations.

If the extra conditions do not hold, then the CLT is not expected to hold. Rather, the
limit should be a Gaussian convolved with a discrete Gaussian variable, as shown in the
Log1 case in Borot and Guionnet [2013b].

To prove Theorem 7, following the approach pioneered by Johansson [1998], we
compute the Laplace transform of these linear statistics and see that it reduces to un-
derstanding the ratio of two partition functions, the original one and that of a Coulomb
gas with potential V replaced by Vt = V + tf with t small. Thanks to Serfaty and
Serra [n.d.] the variation of the equilibrium measure associated to this replacement is
well understood. We are then able to leverage on the expansion of the partition function
of (4-16) to compute the desired ratio, using also a change of variables which is a trans-
port map between the equilibrium measure �V and the perturbed equilibrium measure.
Note that the use of changes of variables in this context is not new, cf. Johansson [1998],
Borot and Guionnet [2013a], Shcherbina [2013], and Bekerman, Figalli, and Guionnet
[2015]. In our approach, it essentially replaces the use of the loop or Dyson–Schwinger
equations.

4.8 More general interactions. It remains to understand how much of the behavior
we described are really specific to Coulomb interactions. Already Theorems 5 and 6
were shown in Petrache and Serfaty [2017] and Leblé and Serfaty [2017] to hold for the
more general Riesz interactions with d � 2 � s < d. This is thanks to the fact that the
Riesz kernel is the kernel for a fractional Laplacian, which is not a local operator but can
be interpreted as a local operator after adding one spatial dimension, according to the
procedure of Caffarelli and Silvestre [2007]. The results of Theorem 6 are also valid in
the hypersingularRiesz interactions s > d (see Hardin, Leblé, Saff, and Serfaty [2018]),
where the kernel is very singular but also decays very fast. The Gaussian behavior of
the fluctuations seen in Theorem 7 is for now proved only in the logarithmic cases, but
it remains to show whether it holds for more general Coulomb cases and even possibly
more general interactions as well.
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