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Abstract
The purpose of this article is to survey some of the context, achievements, chal-

lenges and mysteries of the field of metric dimension reduction, including new per-
spectives on major older results as well as recent advances.

1 Introduction

From the point of view of theoretical computer science, mathematicians “stumbled
upon” metric dimension reduction in the early 1980s, as exemplified by the following
quote Vempala [2004].

Two decades ago, analysts stumbled upon a surprising fact [...], the Johnson–Lindenstrauss
Lemma, as a crucial tool in their project of extending functions in continuous ways.
This result [...] says that, if you project n points in some high dimensional space
down to a random O(logn)-dimensional plane, the chances are overwhelming that
all distances will be preserved within a small relative error. So, if distance is all
you care about, there is no reason to stay in high dimensions!

C. Papadimitriou, 2004 (forward to The random projection method by S. Vempala).

The above use of the term “stumbled upon” is justified, because it would be fair to say
that at the inception of this research direction mathematicians did not anticipate the re-
markable swath of its later impact on algorithms. However, rather than being discovered
accidentally, the investigations that will be surveyed here can be motivated by classical
issues in metric geometry. From the internal perspective of pure mathematics, it would
be more befitting to state that the aforementioned early work stumbled upon the unex-
pected depth, difficulty and richness of basic questions on the relation between “rough
quantitative geometry” and dimension. Despite major efforts by many mathematicians
over the past four decades, such questions remain by and large stubbornly open.

We will explain below key ideas of major developments in metric dimension reduc-
tion, and also describe the larger mathematical landscape that partially motivates these
investigations, most notably the bi-Lipschitz embedding problem into Rn and the Ribe
program. By choosing to focus on aspects of this area within pure mathematics, we will
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put aside the large (and growing) literature that investigates algorithmic ramifications
of metric dimension reduction. Such applications warrant a separate treatment that is
far beyond the scope of the present exposition; some aspects of that material are cov-
ered in the monographs Matoušek [2002], Vempala [2004], and Har-Peled [2011] and
the surveys Indyk [2001] and Linial [2002], as well as the articles of Andoni–Indyk–
Razenshteyn and Arora in the present volume.

Remark 1. The broader term dimension reduction is used ubiquitously in statistics and
machine learning, with striking applications whose full rigorous understanding some-
times awaits the scrutiny of mathematicians (see e.g. Burges [2010]). A common (pur-
posefully vague) description of this term is the desire to decrease the degrees of freedom
of a high-dimensional data set while approximately preserving some of its pertinent fea-
tures; formulated in such great generality, the area includes topics such as neural net-
works (see e.g. Hinton and Salakhutdinov [2006]). The commonly used term curse of
dimensionality refers to the perceived impossibility of this goal in many settings, and
that the performance (running time, storage space) of certain algorithmic tasks must
deteriorate exponentially as the underlying dimension grows. But, sometimes it does
seem that certain high-dimensional data sets can be realized faithfully using a small
number of latent variables as auxiliary “coordinates.” Here we restrict ourselves exclu-
sively to metric dimension reduction, i.e., to notions of faithfulness of low-dimensional
representations that require the (perhaps quite rough) preservation of pairwise distances,
including ways to prove the impossibility thereof.

Roadmap. The rest of the Introduction is an extensive and detailed account of the area
of metric dimension reduction, including statements of most of the main known results,
background and context, and many important open questions. The Introduction is thus
an expository account of the field, so those readers who do not wish to delve into some
proofs, could read it separately from the rest of the text. The remaining sections contain
further details and complete justifications of those statements that have not appeared in
the literature.

1.1 Bi-Lipschitz embeddings. Fixα > 1. A metric space (M; dM) is said to embed
with distortion α into a metric space (N; dN) if there is a mapping (an embedding)
f : M ! N and (a scaling factor) τ > 0 such that

(1) 8 x; y 2 M; τdM(x; y) 6 dN

�
f (x); f (y)

�
6 ατdM(x; y):

The infimumoverα 2 [1; 1] for which (M; dM) embedswith distortionα into (N; dN)

is denoted c(N;dN)(M; dM), or cN(M) if the underlying metrics are clear from the
context. If cN(M) < 1, then (M; dM) is said to admit a bi-Lipschitz embedding
into (N; dN). Given p 2 [1; 1), if N is an Lp(µ) space into which M admits a bi-
Lipschitz embedding, then we use the notation cLp(µ)(M) = cp(M). The numerical
invariant c2(M), which measures the extent to which M is close to being a (subset of
a) Euclidean geometry, is called the Euclidean distortion of M.
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A century of intensive research into bi-Lipschitz embeddings led to a rich theory with
many deep achievements, but the following problem, which is one of the first ques-
tions that arise naturally in this direction, remains a major longstanding mystery; see
e.g. Semmes [1999], Lang and Plaut [2001], Heinonen [2003], and Naor and Neiman
[2012]. Analogous issues in the context of topological dimension, differentiable mani-
folds and Riemannian manifolds were famously settled byMenger [1928] and Nöbeling
[1931], Whitney [1936] and Nash [1954], respectively.

Problem 2 (the bi-Lipschitz embedding problem into Rk). Obtain an intrinsic charac-
terization of those metric spaces (M; dM) that admit a bi-Lipschitz embedding into Rk

for some k 2 N.

Problem 2 is one of the qualitative underpinnings of the issues that will be surveyed
here. We say that it is “qualitative” because it ignores the magnitude of the distortion
altogether, and therefore one does not need to specify which norm on Rk is considered
in Problem 2, since all the norms on Rk are (bi-Lipschitz) equivalent. Problem 2 is
also (purposefully) somewhat vague, because the notion of “intrinsic characterization”
is not well-defined. We will return to this matter in Section 3 below, where candidates
for such a characterization are discussed. At this juncture, it suffices to illustrate what
Problem 2 aims to achieve through the following useful example. If one does not impose
any restriction on the target dimension and allows for a bi-Lipschitz embedding into
an infinite dimensional Hilbert space, then the following intrinsic characterization is
available. A metric space (M; dM) admits a bi-Lipschitz embedding into a Hilbert
space if and only if there exists C = CM 2 [0; 1) such that for every n 2 N and every
positive semidefinite symmetric matrix A = (aij ) 2 Mn(R) all of whose rows sum
to zero (i.e.,

Pn
j=1 aij = 0 for every i 2 f1; : : : ; ng), the following quadratic distance

inequality holds true.

(2) 8 x1; : : : ; xn 2 M;

nX
i=1

nX
j=1

aij dM(xi ; xj )
2 6 C

nX
i=1

nX
j=1

jaij jdM(xi ; xj )
2:

In fact, one can refine this statement quantitatively as follows. A metric space embeds
with distortion α 2 [1; 1) into a Hilbert space if and only if in the setting of (2) we
have
(3)

8 x1; : : : ; xn 2 M;

nX
i=1

nX
j=1

aij dM(xi ; xj )
2 6

α2 � 1

α2 + 1

nX
i=1

nX
j=1

jaij jdM(xi ; xj )
2:

The case α = 1 of (3), i.e., the case of isometric embeddings, is a famous classical
theorem of Schoenberg [1938], and the general case of (3) is due to Linial, London,
and Rabinovich [1995, Corollary 3.5]. The above characterization is clearly intrinsic,
as it is a family of finitary distance inequalities among points of M that do not make
reference to any other auxiliary/external object. With such a characterization at hand,
one could examine the internal structure of a given metric space so as to determine if it
can be represented faithfully as a subset of a Hilbert space. Indeed, Linial, London, and
Rabinovich [ibid.] uses (3) to obtain an algorithm that takes as input an n-point metric
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space (M; dM) and outputs in polynomial time an arbitrarily good approximation to its
Euclidean distortion c2(M).

A meaningful answer to Problem 2 could in principle lead to a method for determin-
ing if a member of a family F of metric spaces admits an embedding with specified
distortion into a member of a family G of low dimensional normed spaces. Formulated
in such great generality, this type of question encompasses all of the investigations into
metric dimension reduction that will be discussed in what follows, except that we will
also examine analogous issues for embeddings with guarantees that are substantially
weaker (though natural and useful) than the “vanilla” bi-Lipschitz requirement (1).

Remark 3. Analogues of the above questions are very natural also when the target low-
dimensional geometries are not necessarily normed spaces. Formulating meaningful
goals in such a setting is not as straightforward as it is for normed spaces, e.g. requiring
that the target space is a manifold of low topological dimension is not very useful, so
one must impose geometric restrictions on the target manifold. As another example
(to which we will briefly return later), one could ask about embeddings into spaces of
probability measures that are equipped with a Wasserstein (transportation cost) metric,
with control on the size of the underlying metric space. At present, issues of this type
are largely an uncharted terrain whose exploration is likely to be interesting and useful.

1.2 Local theory and the Ribe program. Besides being motivated by the bi-Lip-
schitz embedding problem into Rk , much of the inspiration for the studies that will
be presented below comes from a major endeavour in metric geometry called the Ribe
program. This is a large and active research area that has been (partially) surveyed
in Kalton [2008], Naor [2012b], Ball [2013], M. I. Ostrovskii [2013], and Godefroy
[2017]. It would be highly unrealistic to attempt to cover it comprehensively here, but
we will next present a self-contained general introduction to the Ribe program that is
intended for non-experts, including aspects that are relevant to the ensuing discussion
on metric dimension reduction.

Martin Ribe was a mathematician who in the 1970s obtained a few beautiful results
in functional analysis, prior to leaving mathematics. Among his achievements is a very
influential rigidity theorem Ribe [1976] which shows that the local linear theory of
Banach spaces could in principle be described using only distances between points, and
hence it could potentially apply to general metric spaces.

Before formulating the above statement precisely, it is instructive to consider a key
example. The infimal cotype Maurey [2003] qX of a Banach space (X; k � k) is the
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infimum over those q 2 [2; 1] for which1

(4) 8 n 2 N; 8 x1; : : : ; xn 2 X;

nX
i=1

kxi k
2 .X;q

n1� 2
q

2n

X
"2f�1;1gn

 nX
i=1

"i xi

2:

In the special case x1 = : : : = xn = x 2 X X f0g, the left hand side of (4) is equal
to nkxk2 and by expanding the squares one computes that the right hand side of (4)
is equal to n2(1�1/q)kxk2. Hence (4) necessitates that q > 2, which explains why we
imposed this restriction on q at the outset. Note also that (4) holds true in any Banach
space when q = 1. This is a quick consequence of the convexity of the mapping
x 7! kxk2, since for every " 2 f�1; 1gn and i 2 f1; : : : ; ng we have

(5)

kxi k
2 =

 ("1x1 + : : : + "nxn) + (�"1x1 � : : : � "i�1xi�1 + "i xi � "i+1xi+1 : : : � "nxn)

2

2
6

k"1x1 + : : : + "nxnk2 + k � "1x1 � : : : � "i�1xi�1 + "i xi � "i+1xi+1 : : : � "nxnk2

2
:

By averaging (5) over " 2 f�1; 1gn and i 2 f1; : : : ; ng we see that (4) holds if q = 1.
So, one could view (4) for q < 1 as a requirement that the norm k � k : X ! [0; 1)

has a property that is asymptotically stronger than mere convexity. When X = `1, this
requirement does not hold for any q < 1, since if fxi g

n
i=1 are the first n elements of the

coordinate basis, then the left hand side of (4) equals n while its right hand side equals
n1�1/q .

Maurey and Pisier [1973] proved that the above obstruction to having qX < 1 is
actually the only possible such obstruction. Thus, by ruling out the presence of copies
of f`n

1g1
n=1 in X one immediately deduces the “upgraded” (asymptotically stronger as

n ! 1) randomized convexity inequality (4) for some q < 1.

Theorem 4. The following conditions are equivalent for every Banach space (X; k � k).

• There is no α 2 [1; 1) such that `n
1 is α-isomorphic to a subspace of X for every

n 2 N.

• qX < 1.

The (standard) terminology that is used in Theorem 4 is that given α 2 [1; 1), a
Banach space (Y; k � kY ) is said to be α-isomorphic to a subspace of a Banach space
(Z; k�kZ) if there is a linear operator T : Y ! Z satisfying kykY 6 kTykZ 6 αkykY

for every y 2 Y ; this is the same as saying that Y embeds into Z with distortion α via
an embedding that is a linear operator.

1In addition to the standardO” notation, we will use throughout this article the following standard and
convenient asymptotic notation. Given two quantities Q; Q0 > 0, the notations Q . Q0 and Q0 & Q

mean that Q 6 CQ0 for some universal constant C > 0. The notation Q � Q0 stands for (Q . Q0) ^

(Q0 . Q). If we need to allow for dependence on parameters, we indicate this by subscripts. For example,
in the presence of auxiliary objects (e.g. numbers or spaces) ϕ; Z, the notation Q .ϕ;Z Q0 means that
Q 6 C (ϕ; Z)Q0, where C (ϕ; Z) > 0 is allowed to depend only on ϕ; Z; similarly for the notations
Q &ϕ;Z Q0 and Q �ϕ;Z Q0.



764 ASSAF NAOR

Suppose that X and Y are Banach spaces that are uniformly homeomorphic, i.e.,
there is a bijection f : X ! Y such that both f and f �1 are uniformly continuous.
By the aforementioned rigidity theorem of Ribe (which will be formulated below in
full generality), this implies in particular that qX = qY . So, despite the fact that the
requirement (4) involves linear operations (summation and sign changes) that do not
make sense in general metric spaces, it is in fact preserved by purely metric (quanti-
tatively continuous, though potentially very complicated) deformations. Therefore, in
principle (4) could be characterized while only making reference to distances between
points in X . More generally, Ribe’s rigidity theorem makes an analogous assertion for
any isomorphic local linear property of a Banach space; we will define formally those
properties in a moment, but, informally, they are requirements in the spirit of (4) that de-
pend only on the finite dimensional subspaces of the given Banach space and are stable
under linear isomorphisms that could potentially incur a large error.

The purely metric reformulation of (4) about which we speculated above is only
suggested but not guaranteed by Ribe’s theorem. From Ribe’s statement we will only
infer an indication that there might be a “hidden dictionary” for translating certain linear
properties into metric properties, but we will not be certain that any specific “entry” of
this dictionary (e.g. the entry for, say, “qX = π”) does in fact exist, and even if it does
exist, we will not have an indication what it says. A hallmark of the Ribe program is
that at its core it is a search for a family of analogies and definitions, rather than being a
collection of specific conjectures. Once such analogies are made and the corresponding
questions are formulated, their value is of course determined by the usefulness/depth
of the phenomena that they uncover and the theorems that could be proved about them.
Thus far, not all of the steps of this endeavour turned out to have a positive answer, but
the vast majority did. This had major impact on the study of metric spaces that a priori
have nothing to do with Banach spaces, such as graphs, manifolds, groups, and metrics
that arise in algorithms (e.g. as continuous relaxations).

The first written formulation of the plan to uncover a hidden dictionary between
normed spaces and metric spaces is the following quote of Bourgain [1986], a decade
after Ribe’s theorem appeared.

It follows in particular from Ribe’s result [...] that the notions from local theory of
normed spaces are determined by the metric structure of the space and thus have a
purely metrical formulation. The next step consists in studying these metrical con-
cepts in general metric spaces in an attempt to develop an analogue of the linear
theory. A detailed exposition of this program will appear in J. Lindenstrauss’s forth-
coming survey [...] in our “dictionary” linear operators are translated in Lipschitz
maps, the operator norm by the Lipschitz constant of the map [...] The translations
of “Banach–Mazur distance” and “finite-representability” in linear theory are im-
mediate. At the roots of the local theory of normed spaces are properties such as
type, cotype, superreflexivity [...] The analogue of type in the geometry of metric
spaces is [...] A simple metrical invariant replacing the notion of cotype was not
yet discovered.

J. Bourgain, 1986.

Unfortunately, the survey of Lindenstrauss that is mentioned above never appeared.
Nonetheless, Lindenstrauss had massive impact on this area as a leader who helped
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set the course of the Ribe program, as well as due to the important theorems that he
proved in this direction. In fact, the article Johnson and Lindenstrauss [1984] of John-
son and Lindenstrauss, where the aforementioned metric dimension reduction lemma
was proved, appeared a few years before Bourgain [1986] and contained inspirational
(even prophetic) ideas that had major subsequent impact on the Ribe program (including
on Bourgain’s works in this area). In the above quote, we removed the text describing
“the analogue of type in the geometry of metric spaces” so as to not digress; it refers
to the influential work of Bourgain, V. Milman, and Wolfson [1986] (see also the ear-
lier work of Enflo [1978] and the subsequent work of Pisier [1986]). “Superreflexivity”
was the main focus of Bourgain [1986], where the corresponding step of the Ribe pro-
gram was completed (we will later discuss and use a refinement of this solution). An
answer to the above mentioned question on cotype, which we will soon describe, was
subsequently found by Mendel and the author Mendel and Naor [2008]. We will next
explain the terminology “finite-representability” in the above quote, so as to facilitate
the ensuing discussion.

1.2.1 Finite representability. The first decades of work on the geometry of Banach
spaces focused almost entirely on an inherently infinite dimensional theory. This was
governed by Banach’s partial ordering of Banach spaces Banach [1993, Chapter 7],
which declares that a Banach space X has “linear dimension” at most that of a Ba-
nach space Y if there exists α > 1 such that X is α-isomorphic to a subspace of Y . In
a remarkable feat of foresight, the following quote of Grothendieck [1953b] heralded
the local theory of Banach spaces, by shifting attention to the geometry of the finite
dimensional subspaces of a Banach space as a way to understand its global structure.

assouplissons la notion de “dimension linéaire” de Banach, en disant que l’espace
normé E a un type linéaire inférieur à celui d’un espace normé F, si on peut trouver
un M > 0 fixe tel que tout sous-espace de dimension finie E1 de E soit isomor-
phe “à M près” à un sous-espace F1 de F (i.e. il existe une application linéaire
biunivoque de E1 sur F1 , de norme 6 1, dont lápplication inverse a une norme
6 1 + M ).

A. Grothendieck, 1953.

Grothendieck’s work in the 1950s exhibited astounding (technical and conceptual) in-
genuity and insight that go well-beyond merely defining a key concept, as he did above.
In particular, in Grothendieck [ibid.] he conjectured an important phenomenon2 that
was later proved by Dvoretzky [1961] (see the discussion in Schechtman [2017]), and
his contributions in Grothendieck [1953a] were transformative (e.g. Lindenstrauss and
Pełczyński [1968], Diestel, J. H. Fourie, and Swart [2008], Khot and Naor [2012], and

2This phenomenon was situated within the Ribe program by Bourgain, Figiel, and V. Milman [1986], and
as such it eventually had ramifications to a well-studied (algorithmic) form of metric dimension reduction
through its use to “compress” a finite metric space into a data structure called an approximate distance ora-
cle Thorup and Zwick [2005]. To date, the only known way to construct such a data structure with constant
query time (and even, by now, conjecturally sharp approximation factor Chechik [2014]) is via the nonlinear
Dvoretzky theorem of Mendel and Naor [2007a], and thus through the Ribe program. For lack of space, we
will not discuss this direction here; see the survey Naor [2012b].
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Pisier [2012]). The above definition set the stage for decades of (still ongoing) work on
the local theory of Banach spaces which had major impact on a wide range of mathe-
matical areas.

The above “softening” of Banach’s “linear dimension” is called today finite repre-
sentability, following the terminology of James [1972] (and his important contributions
on this topic). Given α 2 [1; 1), a Banach space X is said to be α-finitely repre-
sentable in a Banach space Y if for any β > α, any finite dimensional subspace of X is
β-isomorphic to a subspace of Y (in the notation of the above quote, β = 1+M ); X is
(crudely) finitely representable in Y if there is someα 2 [1; 1) such thatX isα-finitely
representable in Y . This means that the finite dimensional subspaces of X are not very
different from subspaces of Y ; if each of X and Y is finitely representable in the other,
then this should be viewed as saying that X and Y have the same finite dimensional
subspaces (up to a global allowable error that does not depend on the finite dimensional
subspace in question). As an important example of the “taming power” of this defini-
tion, the principle of local reflexivity of Lindenstrauss and Rosenthal [1969] asserts that
even though sometimes X�� ¤ X , it is always true that X�� is 1-finitely representable
in X . Thus, while in infinite dimensions X�� can be much larger than X , passing to the
bidual cannot produce substantially new finite dimensional structures. The aforemen-
tioned Dvoretzky theorem Dvoretzky [1961] asserts that `2 is 1-finitely representable in
any infinite dimensional Banach space. As another example of a landmark theorem on
finite representability, Maurey and Pisier [1976] strengthened Theorem 4 by showing
that `qX

is 1-finitely representable in any infinite dimensional Banach space X .
Isomorphic local linear properties of Banach spaces are defined to be those properties

that are preserved under finite representability. As an example, one should keep in mind
finitary inequalities such as the cotype condition (4). The formal statement of Ribe’s
rigidity theorem Ribe [1976] is

Theorem5. Uniformly homeomorphic Banach spacesX andY are finitely representable
in each other.

The “immediate translation” of finite representability in the above quoted text from
Bourgain [1986] is to define that for α 2 [1; 1) a metric space M is α-finitely repre-
sentable in a metric space N if cN(C) 6 α for every finite subset C � M. By doing so
one does not induce any terminological conflict, because one can show that a Banach
space X is (linearly) α-finitely representable in a Banach space Y if and only if X is
α-finitely representable in Y when X and Y are viewed as metric spaces. This state-
ment follows from “soft” reasoning that is explained in Giladi, Naor, and Schechtman
[2012] (relying on a w�-differentiation argument of Heinrich and Mankiewicz [1982]
as well as properties of ultrapowers of Banach spaces and the aforementioned principle
of local reflexivity), though it also follows from Ribe’s original proof of Theorem 5
in Ribe [1976], and a different (quantitative) approach to this statement was obtained
in Bourgain [1987].

1.2.2 Universality and dichotomies. Say that a metric space M is (finitarily) uni-
versal if there is α > 1 such that cM(F ) 6 α for every finite metric space F . By
Matoušek [1992b] and Mendel and Naor [2008], this requirement holds for some α > 1
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if and only if it holds for α = 1 (almost-isometric embeddings), so the notion of uni-
versality turns out to be insensitive to the underlying distortion bound. Since for every
n 2 N, any n-point metric space (F = fx1; : : : ; xng; dF ) is isometric to a subset of `1

via the embedding (x 2 F ) 7! (dF (x; xi ))
n
i=1 (Fréchet embedding Fréchet [1910]),

a different way to state the notion of universality is to say that M is universal if `1 is
finitely representable in M.

Determining whether a given metric space is universal is a subtle matter. By Theo-
rem 4, for a Banach space X this is the same as asking to determine whether qX = 1.
Such questions include major difficult issues in functional analysis that have been stud-
ied for a long time; as notable examples, see the works Pełczyński [1977] and Bourgain
[1984] on the (non)universality of the dual of the disc algebra, and the characteriza-
tion Bourgain and V. Milman [1985] of Sidon subsets of the dual of a compact Abelian
group G in terms of the universality of their span is the space of continuous functions on
G. Here are three famous concrete situations in which it is unknown if a certain specific
space is universal.

Question 6 (Pisier’s dichotomy problem). For each n 2 N let Xn be an arbitrary linear
subspace of `n

1 satisfying

(6) lim sup
n!1

dim(Xn)

logn
= 1:

Pisier [1981] conjectured that (6) forces the `2 (Pythagorean) direct sum (X1 ˚ X2 ˚

: : :)2 to be universal. By duality, a positive answer to this question is equivalent to the
following appealing statement on the geometry of polytopes. For n 2 N, suppose that
K � Rn is an origin-symmetric polytope with eo(n) faces. Then, for each δ > 0 there
is k = k(n; δ) 2 f1; : : : ; ng with limn!1 k(n; δ) = 1, a subspace F = F (n; δ) of Rn

with dim(F ) = k and a parallelepipedQ � F (thus, Q is an image of [�1; 1]k under an
invertible linear transformation) such that Q � K \ F � (1 + δ)Q. Hence, a positive
answer to Pisier’s dichotomy conjecture implies that every centrally symmetric polytope
with eo(n) faces has a central section of dimension k going to 1 (as a function of the
specific o(n) dependence in the underlying assumption), which is (1+δ)-close to a poly-
tope (a parallelepiped) with only O(k) faces. The use of “dichotomy” in the name of
this conjecture is due to the fact that this conclusion does not hold with o(n) replaced by
O(n), as seen by considering polytopes that approximate the Euclidean ball. More gen-
erally, by the “isomorphic version” of the Dvoretzky theorem due to V. D. Milman and
Schechtman [1995], for every sequence of normed spaces fYng1

n=1 with dim(Yn) = n

(not only Yn = `n
1, which is the case of interest above), and every k(n) 2 f1; : : : ; ng

with k(n) = O(logn), there is a subspace Xn � Yn with dim(Xn) = k(n) such that the
space (X1 ˚X2 ˚ : : :)2 is isomorphic to a Hilbert space, and hence in particular it is not
universal. The best-known bound in Pisier’s dichotomy conjecture appears in the forth-
coming work of Schechtman and Tomczak-Jaegermann [2018], where it is shown that
the desired conclusion does indeed hold true if (6) is replaced by the stronger assumption
lim supn!1 dim(Xn)/((logn)2(log logn)2) = 1; this is achieved Schechtman and
Tomczak-Jaegermann [ibid.] by building on ideas of Bourgain [1985b], who obtained
the same conclusion if lim supn!1 dim(Xn)/(logn)4 > 0. Thus, due to Schechtman
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and Tomczak-Jaegermann [2018] the above statement about almost-parallelepiped cen-
tral sections of centrally symmetric polytopes does hold true if the initial polytope is
assumed to have exp(o(

p
n/ logn)) faces.

Prior to stating the next question on universality (which, apart from its intrinsic in-
terest, plays a role in the ensuing discussion on metric dimension reduction), we need
to very briefly recall some basic notation and terminology from optimal transport (see
e.g. Ambrosio, Gigli, and Savaré [2008] and Villani [2009]). Suppose that (M; dM) is
a separable complete metric space and fix p 2 [1; 1). Denote by P1(M) the set of all
Borel probability measures µ on M of finite p’th moment, i.e., those Borel probability
measure µ on M for which

R
M dM(x; y)p dµ(y) < 1 for all x 2 M. A probability

measure π 2 Pp(M�M) is a called a coupling of µ;ν 2 Pp(M) if µ(A) = π(A�M)

and ν(A) = π(M � A) for every Borel measurable subset A � M. The Wasserstein-
p distance between µ;ν 2 Pp(M), denoted Wp(µ;ν), is defined to be the infimum
of (

’
M�M dM(x; y)p dπ(x; y))1/p over all couplings π of µ;ν. Below, Pp(M) is al-

ways assumed to be endowed with the metric Wp . The following question is from Bour-
gain [1986].

Question 7 (Bourgain’s universality problem). Is P1(R2) universal? This formulation
may seem different from the way it is asked in Bourgain [ibid.], but, as explained An-
doni, Naor, and Neiman [2015, Section 1.5], it is equivalent to it. More generally, is
P1(Rk) universal for some integer k > 2 (it is simple to see that P1(R) is not univer-
sal)? In Bourgain [1986] it was proved that P1(`1) is universal (see also the exposition
in M. I. Ostrovskii [2013]). So, it is important here that the underlying space is finite
dimensional, though to the best of our knowledge it is also unknown whether P1(`2) is
universal, or, for that matter, if P1(`p) is universal for any p 2 (1; 1). See Andoni,
Naor, and Neiman [2015] for a (sharp) universality property of Pp(R3) if p 2 (1; 2].

For the following open question about universality (which will also play a role in the
subsequent discussion on metric dimension reduction), recall the notion Grothendieck
[1952] and Grothendieck [1955] of projective tensor product of Banach spaces. Given
two Banach spaces (X; k�kX ) and (Y; k�kY ), their projective tensor productX b̋Y is the
completion of their algebraic tensor productX ˝Y under the normwhose unit ball is the
convex hull of the simple tensors of vectors of norm at most 1, i.e., the convex hull of the
set fx˝y 2 X˝Y : kxkX ; kykY 6 1g. For example, `1b̋X can be naturally identified
with `1(X), and `2b̋`2 can be naturally identified with Schatten–von Neumann trace
class S1 (recall that for p 2 [1; 1], the Schatten–von Neumann trace class Sp is the
Banach space von Neumann [1937] of those compact linear operators T : `2 ! `2 for
which kT kSp

= (
P1

j=1 sj (T )p)1/p < 1, where fsj (T )gj=1 are the singular values
of T ); see the monograph Ryan [2002] for much more on tensor products of Banach
spaces.

It is a longstanding endeavour in Banach space theory to understand which properties
of Banach spaces are preserved under projective tensor products; see Diestel, J. Fourie,
and Swart [2003] and Briët, Naor, and Regev [2012] and the references therein for more
on this research direction. Deep work of Pisier [1983] shows that there exist two Banach
spaces X; Y that are not universal (even of cotype 2) such that X b̋Y is universal. The
following question was posed by Pisier [1992b].
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Question 8 (universality of projective tensor products). Suppose that p 2 (1; 2). Is
`p b̋`2 universal? We restricted the range of p here because it is simple to check that
`1b̋`2 Š `1(`2) is not universal, Tomczak-Jaegermann [1974] proved that `2˝`2 Š S1
is not universal, and Pisier [1992a] proved that `p b̋`q is not universal when p; q 2

[2; 1). It was also asked in Pisier [1992b] if `2b̋`2b̋`2 is universal. The best currently
available result in this direction (which will be used below) is that, using the local theory
of Banach spaces and recent work on locally decodable codes, it was shown in Briët,
Naor, and Regev [2012] that if a; b; c 2 (1; 1) satisfy 1

a
+ 1

b
+ 1

c
6 1, then `ab̋`b b̋`c

is universal.
The following theorem is a union of several results of Mendel and Naor [2008].

Theorem 9. The following conditions are equivalent for a metric space (M; d ).

• M is not universal.

• There exists q = q(M) 2 (0; 1) with the following property. For every n 2 N
there is m = m(n; M; q) 2 N such that any collection of points fxwgw2Zn

2m
in

M satisfies the inequality

(7)
nX

i=1

X
w2Zn

2m

d (xw+mei
; xw)2

m2
.X;q

n1� 2
q

3n

X
"2f�1;0;1gn

X
w2Zn

2m

d (xw+"; x)2:

Here e1; : : : ; en are the standard basis of Rn and addition (in the indices) is mod-
ulo 2m.

• There is θ(M) 2 (0; 1)with the following property. For arbitrarily large n 2 N
there exists an n-point metric space (Bn; dn) such that

(8) cM(Bn) &M (logn)θ(M):

Moreover, if we assume thatM is a Banach space rather than an arbitrary metric space,
then for any q 2 (0; 1] the validity of (7) (as stated, i.e., for each n 2 N there ism 2 N
for which (7) holds for every configuration fxwgw2Zn

2m
of points in M) is equivalent

to (4), and hence, in particular, the infimum over those q 2 (0; 1] for which (7) holds
true is equal to the infimal cotype qM of M.

The final sentence of Theorem 9 is an example of a successful step in the Ribe
program, because it reformulates the local linear invariant (4) in purely metric terms,
namely as the quadratic geometric inequality (7) that imposes a restriction on the behav-
ior of pairwise distances within any configuration of (2m)n points fxwgw2Zn

2m
(indexed

by the discrete torus Zn
2m) in the given Banach space.

With this at hand, one can consider (7) to be a property of a metric space, while
initially (4) made sense only for a normed space. As in the case of (4), if q = 1,
then (7) holds in any metric space (M; dM) (for any m 2 Z, with the implicit constant
in (7) being universal); by its general nature, such a statement must of course be nothing
more than a formal consequence of the triangle inequality, as carried out in Mendel and
Naor [ibid.]. So, the validity of (7) for q < 1 could be viewed as an asymptotic
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(randomized) enhancement of the triangle inequality in (M; dM); by considering the
the canonical realization of Zn

2m in Cn, namely the points

f(exp(πiw1/m); : : : ; exp(πiwn/m))gw2Zn
2m

equipped with the metric inherited from `n
1(C), one checks that not every metric space

satisfies this requirement. The equivalence of the first two bullet points in Theorem 9
shows that once one knows that a metric space is not universal, one deduces the validity
of such an enhancement of the triangle inequality. This is an analogue of Theorem 4 of
Maurey and Pisier for general metric spaces.

The equivalence of the first and third bullet points in Theorem 9 yields the following
dichotomy. If one finds a finite metric space F such that cF (M) > 1, then there
are arbitrary large finite metric spaces whose minimal distortion in M is at least a fixed
positive power (depending onM) of the logarithm their cardinality. Hence, for example,
if every n-point metric space embeds into M with distortion O(log logn), then actually
for any δ > 0, every finitemetric space embeds intoMwith distortion 1+δ. SeeMendel
[2009], Mendel and Naor [2011], Mendel and Naor [2013], and Andoni, Naor, and
Neiman [2015] for more on metric dichotomies of this nature, as well as a quite delicate
counterexample Mendel and Naor [2013] for a natural variant for trees (originally asked
by C. Fefferman). It remains a mystery Mendel and Naor [2008] if the power of the
logarithm θ(M) in Theorem 9 could be bounded from below by a universal positive
constant, as formulated in the following open question.
Question 10 (metric cotype dichotomy problem). Is there a universal constant θ >

0 such that in Theorem 9 one could take θ(M) > θ. All examples that have been
computed thus far leave the possibility that even θ(M) > 1, which would be sharp
(for M = `2) by Bourgain’s embedding theorem Bourgain [1985a]. Note, however,
that in Andoni, Naor, and Neiman [2015] it is asked whether for the Wasserstein space
Pp(R3) we have lim infp!1 θ(Pp(R3)) = 0. If this were true, then it would resolve
the metric cotype dichotomy problem negatively. It would be interesting to understand
the bi-Lipschitz structure of these spaces of measures on R3 regardless of this context,
due to their independent importance.

Theorem 9 is a good illustration of a “vanilla” accomplishment of the Ribe program,
since it obtains a metric reformulation of a key isomorphic linear property of metric
spaces, and also proves statements about general metric spaces which are inspired by
the analogies with the linear theory that the Ribe program is aiming for. However, even
in this particular setting of metric cotype, Theorem 9 is only a part of the full picture, as
it has additional purely metric ramifications. Most of these rely on a delicate issue that
has been suppressed in the above statement of Theorem 9, namely that of understanding
the asymptotic behavior of m = m(n; M; q) in (7). This matter is not yet fully resolved
even when M is a Banach space Mendel and Naor [2008] and Giladi, Mendel, and Naor
[2011], and generally such questions seem to be quite challenging (seeMendel and Naor
[2007b], Giladi and Naor [2010], and Naor [2016] for related issues). Thus far, when-
ever this question was answered for specific (classes of) metric spaces, it led to interest-
ing geometric applications; e.g. its resolution for certain Banach spaces in Mendel and
Naor [2008] was used in Naor [2012a] to answer a longstanding question Väisälä [1999]
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about quasisymmetric embeddings, and its resolution for Alexandrov spaces of (global)
nonpositive curvature Aleksandrov [1951] (see e.g. Burago, Gromov, and Perelman
[1992] and Sturm [2003] for the relevant background) in the forthcoming work Eske-
nazis, Mendel, and Naor [2017b] is used there to answer a longstanding question about
the coarse geometry of such Alexandrov spaces.

1.3 Metric dimension reduction. By its nature, many aspects of the local theory
of Banach spaces involve describing phenomena that rely on dimension-dependent esti-
mates. In the context of the Ribe program, the goal is to formulate/conjecture analogous
phenomena for metric spaces, which is traditionally governed by asking Banach space-
inspired questions about a finite metric space (M; dM) in which log jMj serves as a
replacement for the dimension. This analogy arises naturally also in the context of the
bi-Lipschitz embedding problem into Rk (Problem 2); see Remark 39 below. Early suc-
cessful instances of this analogy can be found in the work of Marcus and Pisier [1984],
as well as the aforementioned work of Johnson and Lindenstrauss [1984]. However, it
should be stated at the outset that over the years it became clear that while making this
analogy is the right way to get “on track” toward the discovery of fundamental metric
phenomena, from the perspective of the Ribe program the reality is much more nuanced
and, at times, even unexpected and surprising.

Johnson and Lindenstrauss [ibid., Problem 3] askedwhether every finite metric space
M embeds with distortion O(1) into some normed space XM (which is allowed to
depend on M) of dimension dim(XM) . log jMj. In addition to arising from the
above background, this question is motivated by Johnson and Lindenstrauss [ibid., Prob-
lem 4], which asks if the Euclidean distortion of every finite metric space M satisfies
c2(M) .

p
log jMj. If so, this would have served as a very satisfactory metric ana-

logue of John’s theorem John [1948], which asserts that any finite dimensional normed
space X is

p
dim(X)-isomorphic to a subspace of `2. Of course, John’s theorem shows

that a positive answer to the former question Johnson and Lindenstrauss [1984, Prob-
lem 3] formally implies a positive answer to the latter question Johnson and Linden-
strauss [ibid., Problem 4].

The aforementioned Johnson–Lindenstrauss lemma Johnson and Lindenstrauss [ibid.]
(JL lemma, in short) shows that, at least for finite subsets of a Hilbert space, the answer
to the above stated Johnson and Lindenstrauss [ibid., Problem 3] is positive.

Theorem 11 (JL lemma). For each n 2 N and α 2 (1; 1), there is k 2 f1; : : : ; ng

with k .α logn such that any n-point subset of `2 embeds into `k
2 with distortion α.

We postpone discussion of this fundamental geometric fact to Section 2 below, where
it is examined in detail and its proof is presented. Beyond Hilbert spaces, there is only
one other example (and variants thereof) of a Banach space for which it is currently
known that Johnson and Lindenstrauss [ibid., Problem 3] has a positive answer for any
of its finite subsets, as shown in the following theorem from Johnson and Naor [2010].

Theorem 12. There is a Banach space T (2) which is not isomorphic to a Hilbert
space yet it has the following property. For every finite subset C � T (2) there is
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k 2 f1; : : : ; ng with k . log jC j and a k-dimensional linear subspace F of T (2) such
that C embeds into F with O(1) distortion.

The space T (2) of Theorem 12 is not very quick to describe, so we refer to John-
son and Naor [2010] for the details. It suffices to say here that this space is the 2-
convexification of the classical Tsirelson space Cirel’son [1974] and Figiel and John-
son [1974], and that the proof that it satisfies the stated dimension reduction result is
obtained in Johnson and Naor [2010] via a concatenation of several (substantial) struc-
tural results in the literature; see Section 4 in Johnson and Naor [ibid.] for a discussion of
variants of this construction, as well as related open questions. The space T (2) of Theo-
rem 12 is not isomorphic to a Hilbert space, but barely so: it is explained in Johnson and
Naor [ibid.] that for every n 2 N there exists an n-dimensional subspaceFn of T (2) with
c2(Fn) > ecAck�1(n), where c > 0 is a universal constant and Ack�1(�) is the inverse
of the Ackermann function from computability theory (see e.g. Alon, Kaplan, Nivasch,
Sharir, and Smorodinsky [2008, Appendix B]). So, indeed limn!1 c2(Fn) = 1, but
at a tremendously slow rate.

Remarkably, despite major scrutiny for over 3 decades, it remains unknown if John-
son and Lindenstrauss [1984, Problem 3] has a positive answer for subsets of any non-
universal classical Banach space. In particular, the following question is open.
Question 13. Suppose that p 2 [1; 1)X f2g. Are there α = α(p);β = β(p) 2 [1; 1)

such that for any n 2 N, every n-point subset of `p embeds with distortion α into some
k-dimensional normed space with k 6 β logn?

It is even open if in Question 13 one could obtain a bound of k = o(n) for any fixed
p 2 [1; 1) X f2g. Using John’s theorem as above, a positive answer to Question 13
would imply that c2(C) .p

p
log jC j for any finite subset C of `p . At present, such an

embedding statement is not known for any p 2 [1; 1) X f2g, though for p 2 [1; 2] it is
known Arora, Lee, and Naor [2008] that any n-point subset of `p embeds into `2 with
distortion (logn)1/2+o(1); it would be interesting to obtain any o(logn) bound here for
any fixed p 2 (2; 1), which would be a “nontrivial” asymptotic behavior in light of
the following general theorem Bourgain [1985a].

Theorem 14 (Bourgain’s embedding theorem). c2(M) . log jMj for every finite met-
ric space M.

The above questions from Johnson and Lindenstrauss [1984] were the motivation for
the influential work Bourgain [1985a], where Theorem 14 was proved. Using a proba-
bilistic construction and the JL lemma, it was shown in Bourgain [ibid.] that Theorem 14
is almost sharp in the sense that there are arbitrarily large n-point metric spaces Mn for
whichc2(Mn) & (logn)/ log logn. By John’s theorem, for everyα > 1, ifX is a finite
dimensional normed space and cX (Mn) 6 α, then c2(Mn) 6 α

p
dim(X). Therefore

the above lower bound on c2(Mn) implies that dim(X) & (logn)2/(α2(log logn)2).
The achievement of Bourgain [ibid.] is thus twofold. Firstly, it discovered Theo-

rem 14 (via the introduction of an influential randomized embedding method), which is
the “correct” metric version of John’s theorem in the Ribe program. The reality turned
out to bemore nuanced in the sense that the answer is not quite as good as theO(

p
logn)

that was predicted in Johnson and Lindenstrauss [1984], but theO(logn) of Theorem 14
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is still a strong and useful phenomenon that was discovered through the analogy that the
Ribe program provided. Secondly, we saw above that Johnson and Lindenstrauss [ibid.,
Problem 3] was disproved in Bourgain [1985a], though the “bad news” that follows
fromBourgain [ibid.] is onlymildly worse than theO(logn) dimension bound that John-
son and Lindenstrauss [1984, Problem 3] predicted, namely a dimension lower bound
that grows quite slowly, not faster than (logn)O(1). Curiously, the very availability of
strong dimension reduction in `2 through the JL lemma is what was harnessed in Bour-
gain [1985a] to deduce that any “host normed space” that contains Mn with O(1) dis-
tortion must have dimension at least of order (logn/ log logn)2 � logn. Naturally, in
light of these developments, the question of understanding what is the correct asymp-
totic behavior of the smallest k(n) 2 N such that any n-point metric space embeds with
distortion O(1) into a k(n)-dimensional normed space was raised in Bourgain [ibid.].

In order to proceed, it would be convenient to introduce some notation and terminol-
ogy.

Definition 15 (metric dimension reduction modulus). Fix n 2 N and α 2 [1; 1).
Suppose that (X; k �kX ) is a normed space. Denote by kαn (X) the minimum k 2 N such
that for any C � X with jC j = n there exists a k-dimensional linear subspace FC of
X into which C embeds with distortion α.

The quantity kαn (`1)was introduced byBourgain [ibid.] under the notationψα(n) =

kαn (`1); see also Arias-de-Reyna and Rodríguez-Piazza [1992] and Matoušek [1996]
where this different notation persists, though for the sake of uniformity of the ensuing
discussion we prefer not to use it here because we will treat X ¤ `1 extensively. Bour-
gain [1985a] focused for concreteness on the arbitrary value α = 2, and asked for the
asymptotic behavior k2n(`1) as n ! 1.

An n-point subset of X = `1 is nothing more than a general n-point metric space,
via the aforementioned isometric Fréchet embedding. In the same vein, a k-dimensional
linear subspace of `1 is nothingmore than a general k-dimensional normed space (F; k�

kF ) via the linear isometric embedding (x 2 F ) 7! (x�
i (x))

1
i=1, where fx�

i g1
i=1 is an

arbitrary sequence of linear functionals on F that are dense in the unit sphere of the
dual space F �. Thus, the quantity kαn (`1) is the smallest k 2 N such that every n-
point metric space (M; dM) can be realized with distortion at most α as a subset of
(Rk ; k � kM) for some norm k � kM : Rk ! Rk on Rk (which, importantly, is allowed
to be adapted to the initial metric space M), i.e., c(Rk ;k�kM)(M; dM) 6 α. This is
precisely the quantity that Johnson and Lindenstrauss [1984, Problem 3] asks about,
and above we have seen that Bourgain [1985a] gives the lower bound

(9) kαn (`1) &
�

logn

α log logn

�2

:

Theorem 16 below is a summary of the main nontrivial3 bounds on the modulus
kαn (X) that are currently known for specific Banach spaces X . Since such a “combined
statement” contains a large amount information and covers a lot of the literature on this

3Trivially kαn(X) 6 n � 1, by considering in Definition 15 the subspace FC = span(C � x0) for any
fixed x0 2 C .
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topic, we suggest reading it in tandem with the subsequent discussion, which includes
further clarifications and explanation of the history of the respective results. A “take
home” message from the statements below is that despite major efforts by many re-
searchers, apart from information on metric dimension reduction for `2, the space T (2)

of Theorem 12, `1, `1 and S1, nothing is known for other spaces (even for `1 and S1
more remains to be done, notably with respect to bounding kαn (`1); kαn (S1) from above).

Theorem 16 (summary of the currently known upper and lower bounds on metric di-
mension reduction). There exist universal constants c; C > 0 such that the following
assertions hold true for every integer n > 20.

1. In the Hilbertian setting, we have the sharp bounds
(10)

8α > 1 +
1
3
p

n
; kαn (`2) �

logn

log(1 + (α � 1)2)
� max

�
logn

(α � 1)2
;
logn

logα

�
:

2. For the space T (2) of Theorem 12, there existsα0 2 [1; 1) for which kα0
n (T (2)) �

logn.

3. For `1, namely in the setting of Johnson and Lindenstrauss [1984, Problem 3],
we have

(11) 8α 2 [1; 2); kαn (`1) � n;

and

(12) 8α > 2; n
c
α +

logn

log
�
logn
α

+ α log logn
logn

� . kαn (`1) .
n

C
α logn

log
�
1 + α

logn

� :

4. For `1, we have

(13) 8α > 1; n
c

α2 +
logn

log(α+ 1)
. kαn (`1) .

n

α
:

Moreover, if α > 2C
p
logn log logn, then we have the better upper bound

(14) kαn (`1) .
logn

log
�

α

C
p
logn log logn

� :

5. For the Schatten–von Neumann trace class S1, we have

(15) 8α > 1; kαn (S1) & n
c

α2 +
logn

log(α+ 1)
:

The bound kαn (`2) . (logn)/ log(1 + (α� 1)2) in (10) restates Theorem 11 (the JL
lemma) with the implicit dependence on α now stated explicitly; it actually holds for
every α > 1, as follows from the original proof in Johnson and Lindenstrauss [ibid.]
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and explained in Section 2 below. The restriction α > 1 + 1/ 3
p

n in (10) pertains only
to the corresponding lower bound on kαn (`2), which exhibits different behaviors in the
low-distortion and high-distortion regimes.

Despite scrutiny of many researchers over the past 3 decades, only very recently the
dependence on α in the JL lemma when α is arbitrarily close to 1 but independent of
n was proved to be sharp by Larsen and Nelson [2017] (see Alon [2003, 2009] and
Larsen and Nelson [2016] for earlier results in this direction, as well as the subsequent
work Alon and Klartag [2017]). This is so even when α is allowed to tend to 1 with
n, and even in a somewhat larger range than the requirement α > 1 + 1/ 3

p
n in (10)

(see Larsen and Nelson [2017] for the details), though there remains a small range of
values of α (n-dependent, very close to 1) for which it isn’t currently known what is
the behavior of kαn (`2). The present article is focused on embeddings that permit large
errors, and in particular in ways to prove impossibility results even if large errors are
allowed. For this reason, we will not describe here the ideas of the proof in Larsen and
Nelson [ibid.] that pertains to the almost-isometric regime.

For, say, α > 2, it is much simpler to see that the kαn (`2) & (logn)/ logα, in
even greater generality that also explains the appearance of the term (logn)/ log(α+1)

in (13) and (15). One could naturally generalize Definition 15 so as to introduce the
following notation for relative metric dimension reduction moduli. Let F be a family of
metric spaces and Y be a family of normed spaces. For n 2 N and α 2 [1; 1), denote
by kαn (F ; Y) the minimum k 2 N such that for every M 2 F with jMj = n there
exists Y 2 Y with dim(Y ) = k such that cY (M) 6 α. When F is the collection of
all the finite subsets of a fixed Banach space X , and Y is the collection of all the finite-
dimensional linear subspaces of a fixed Banach space Y , we use the simpler notation
kαn (F ; Y) = kαn (X; Y ). Thus, the modulus kαn (X) of Definition 15 coincides with
kαn (X; X). Also, under this notation Question (13) asks if for p 2 [1; 1)Xf2g we have
kαn (`p; `1) .p logn for some 1 6 α .p 1. The study of the modulus kαn (F ; Y) is
essentially a completely unexplored area, partially because even our understanding of
the “vanilla” dimension reduction modulus kαn (X) is currently very limited. By a short
volumetric argument that is presented in Section 2 below, every infinite dimensional
Banach space X satisfies

(16) 8(n;α) 2 N � [1; 1); kαn (X; `1) >
logn

log(α+ 1)
:

Hence also kαn (X) > (logn)/ log(α + 1), since (16) rules out embeddings into any
normed space of dimension less than (logn)/ log(α + 1), rather than only into such
spaces that are also subspaces of X .

Using an elegant Fourier-analytic argument, Arias-de-Reyna and Rodríguez–Piazza
proved in Arias-de-Reyna and Rodríguez-Piazza [1992] that for every α 2 [1; 2) we
have kαn (`1) & (2�α)n. This was slightly improved byMatoušek [1996] to kαn (`1) &
n, i.e., he showed that the constant multiple of n actually remains bounded below by
a positive constant as α ! 2� (curiously, the asymptotic behavior of k2n(`1) remains
unknown). These results establish (11). So, for sufficiently small distortions one can-
not hope to embed every n-point metric space into some normed space of dimension



776 ASSAF NAOR

o(n). For larger distortions (our main interest), it was conjectured in Arias-de-Reyna
and Rodríguez-Piazza [1992] that kαn (`1) . (logn)O(1) if α > 2.

The bounds in (12) refute this conjecture of Arias-de-Reyna and Rodríguez-Piazza
[ibid.], since they include the lower bound kαn (`1) & nc/α, which is a landmark
achievement of Matoušek [1996] (obtained a decade after Bourgain asked about the
asymptotics here and over a decade after Johnson and Lindenstrauss posed the question
whether kαn (`1) .α logn). It is, of course, an exponential improvement over Bour-
gain’s bound (9). Actually, in the intervening period Linial, London, and Rabinovich
[1995] removed the iterated logarithm in the lower bound of Bourgain [1985a] by show-
ing that Theorem 14 (Bourgain’s embedding) is sharp up to the value of the implicit
universal constant. By the same reasoning as above (using John’s theorem), this also
removed the iterated logarithm from the denominator in (9), i.e., Linial, London, and
Rabinovich [1995] established that kαn (`1) & (logn)2/α2. This was the best-known
bound prior to Matoušek [1996].

Beyond proving a fundamental geometric theorem, which, as seen in (12), is opti-
mal up to the constant in the exponent, this work of Matoušek is important because it
injected a refreshing approach from real algebraic geometry into this area, which was
previously governed by considerations from analysis, geometry, probability and combi-
natorics. Section 4 covers this outstanding contribution in detail, and obtains the follow-
ing stronger statement that wasn’t previously noticed in the literature but follows from
an adaptation of Matoušek’s ideas.

Theorem 17 (impossibility of coarse dimension reduction). There is a universal con-
stant c 2 (0; 1) with the following property. Suppose that ω;Ω : [0; 1) ! [0; 1)

are increasing functions that satisfy ω(s) 6 Ω(s) for all s 2 [0; 1), as well as
lims!1ω(s) = 1. Define

(17) β(ω;Ω)
def
= sup

s2(0;1)

s

ω�1
�
2Ω(s)

� 2 (0; 1):

For arbitrarily large n 2 N there is a metric space

(M; dM) =
�
M(n;ω;Ω); dM(n;ω;Ω)

�
with jMj = 3n such that for any normed space (X; k � kX ), if there exists f : M ! X

which satisfies

(18) 8 x; y 2 M; ω
�
dM(x; y)

�
6 kf (x) � f (y)kX 6 Ω

�
dM(x; y)

�
;

then necessarily

(19) dim(X) & ncβ(ω;Ω):

Amapping that satisfies (18) is called a coarse embedding (with moduliω;Ω), as in-
troduced in Gromov’s seminal work Gromov [1993] and studied extensively ever since,
with a variety of interesting applications (see the monographs Roe [2003], Nowak and
Yu [2012], and M. I. Ostrovskii [2013] and the references therein). The bi-Lipschitz
requirement (1) corresponds toω(s) = τs and Ω(s) = ατs in (18), in which case (19)
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becomes Matoušek’s aforementioned lower bound on kαn (`1). Theorem 17 asserts that
there exist arbitrarily large finite metric spaces that cannot be embedded even with a
very weak (coarse) guarantee into any low-dimensional normed space, with the dimen-
sion of the host space being forced to be at least a power of their cardinality, which is
exponentially larger than the logarithmic behavior that one would predict from the natu-
ral ball-covering requirement that is induced by low-dimensionality (see the discussion
of the doubling condition in Section 3, as well as the proof of (16) in Section 2).
Remark 18. Consider the following special case of Theorem 17. Fix θ 2 (0; 1] and let
(M; dM) be ametric space. It is straightforward to check that dθ

M : M�M ! [0; 1) is
also a metric on M. The metric space (M; dθ

M) is commonly called the θ-snowflake of
M (in reference to the von Koch snowflake curve; see e.g. David and Semmes [1997])
and it is denoted Mθ. Given α > 1, the statement that Mθ embeds with distortion α
into a normed space (X; k � kX ) is the same as the requirement (18) withω(s) = sθ and
Ω(s) = αsθ. Hence, by Theorem 17 there exist arbitrarily large n-point metric spaces
Mn = Mn(α; θ) such that if Mθ

n embeds with distortion α into some k-dimensional
normed space, then k > nc/(2α)1/θ . Conversely, Remark 21 below shows that for
every n 2 N and α > 1, the θ-snowflake of any n-point metric space embeds with
distortion α into a normed space X with dim(X) .α;θ nC/α1/θ . So, the bound (19)
of Theorem 17 is quite sharp even for embeddings that are not bi-Lipschitz, though we
did not investigate the extent of its sharpness for more general moduliω;Ω : [0; 1) !

[0; 1).
At this juncture, it is natural to complement the (coarse) strengthening in Theorem 17

ofMatoušek’s bound kαn (`1) > nc/α by stating the following different type of strength-
ening, which we recently obtained in Naor [2017].

Theorem 19 (impossibility of average dimension reduction). There is a universal con-
stant c 2 (0; 1) with the following property. For arbitrarily large n 2 N there is
an n-point metric space (M; dM) such that for any normed space (X; k � kX ) and any
α 2 [1; 1), if there exists f : M ! X which satisfies kf (x)�f (y)kX 6 αdM(x; y)

for all x; y 2 X , yet 1
n2

P
x;y2X kf (x) � f (y)kX > 1

n2

P
x;y2X dM(x; y), then nec-

essarily dim(X) > nc/α.

An n-point metric space M as in Theorem 19 is intrinsically high dimensional even
on average, in the sense that if one wishes to assign in an α-Lipschitz manner to each
point inM a vector in some normed spaceX such that the average distance in the image
is the same as the average distance in M, then this forces the ambient dimension to sat-
isfy dim(X) > nc/α. Prior to Theorem 19, the best-known bound here was dim(X) &
(logn)2/α2, namely the aforementioned lower bound kαn (`1) & (logn)2/α2 of Linial,
London, and Rabinovich [1995] actually treated the above “average distortion” require-
ment rather than only the (pairwise) bi-Lipschitz requirement.
Remark 20. The significance of Theorem 19 will be discussed further in Section 5
below; see also Andoni, Nguyen, Nikolov, Razenshteyn, and Waingarten [2017] and
Andoni, Naor, Nikolov, Razenshteyn, and Waingarten [2018a]. In Section 5 we will
present a new proof of Theorem 19 that is different from (though inspired by) its proof
in Naor [2017]. It suffices to say here that the proof of Theorem 19 is conceptually
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different from Matoušek’s approach Matoušek [1996]. Namely, in contrast to the alge-
braic/topological argument of Matoušek [ibid.], the proof of Theorem 19 relies on the
theory of nonlinear spectral gaps, which is also an outgrowth of the Ribe program; do-
ing justice to this theory and its ramifications is beyond the scope of the present article
(see Mendel and Naor [2014] and the references therein), but the basics are recalled
in Section 5. Importantly, the proof of Theorem 19 obtains a criterion for determining
if a given metric space M satisfies its conclusion, namely M can be taken to be the
shortest-path metric of any bounded degree graph with a spectral gap. This informa-
tion is harnessed in the forthcoming work Andoni, Naor, Nikolov, Razenshteyn, and
Waingarten [2018a] to imply that finite-dimensional normed spaces have a structural
property (a new type of hierarchical partitioning scheme) which has implications to the
design of efficient data structures for approximate nearest neighbor search, demonstrat-
ing that the omnipresent “curse of dimensionality” is to some extent absent from this
fundamental algorithmic task.

In the intervening period betweenBourgain’sworkBourgain [1985a] andMatousek’s
solution Matoušek [1996], the question of determining the asymptotic behavior of
kαn (`1) was pursued by Johnson, Lindenstrauss and Schechtman, who proved in John-
son, Lindenstrauss, and Schechtman [1987] that kαn (`1) .α nC/α for some universal
constant C > 0. They demonstrated this by constructing for every n-point metric space
M a normed spaceXM, which they (probabilistically) tailored to the given metric space
M, with dim(XM) .α nC/α and such that M embeds into XM with distortion α. Sub-
sequently, Matoušek showed Matoušek [1992a] via a different argument that one could
actually work here with XM = `k

1 for k 2 N satisfying k .α nC/α, i.e., in order
to obtain this type of upper bound on the asymptotic behavior of kαn (`1) one does not
need to adapt the target normed space to the metric space M that is being embedded.
The implicit dependence on α here, as well as the constant C in the exponent, were
further improved in Matoušek [1996]. For α = O((logn)/ log logn), the upper bound
on kαn (`1) that appears in (12) is that of Matoušek [ibid.], and for the remaining values
of α it is due to a more recent improvement over Matoušek [ibid.] by Abraham, Bartal,
and Neiman [2011] (specifically, the upper bound in (12) is a combination of Theorem 5
and Theorem 6 of Abraham, Bartal, and Neiman [ibid.]).

Remark 21. An advantage of the fact Matoušek [1992a] that one could take XM = `k
1

rather than the more general normed space of Johnson, Lindenstrauss, and Schechtman
[1987] is that it quickly implies the optimality of the lower bound from Remark 18
on dimension reduction of snowflakes. Fix n 2 N, α > 1 and θ 2 (0; 1]. Denote
δ = minf

p
α � 1; 1g, so that α � α/(1 + δ) > 1. By Matoušek [1992a], given an

n-point metric space (M; dM) there is an integer k . nc/α1/θ and f = (f1; : : : ; fk) :

M ! Rk such that

8 x; y 2 M; dM(x; y) 6 kf (x) � f (y)k`k
1

6
�

α

1 + δ

� 1
θ

dM(x; y):
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Hence (here it becomes useful that we are dealing with the `k
1 norm, as it commutes

with powering),

8 x; y 2 M; dM(x; y)θ 6 max
i2f1;:::;kg

jfi (x) � fi (y)j
θ 6

α

1 + δ
dM(x; y)θ:

By works of Kahane [1981] and Talagrand [1992], there is m = m(δ; θ) and a mapping
(a quasi-helix) h : R ! Rm such that js � t jθ 6 kh(s) � h(t)k`m

1
6 (1 + δ)js � t jθ

for all s; t 2 R. The mapping

(x 2 M) 7!

kM
i=1

h ı fi (x) 2

kM
i=1

`m
1

is a distortion-α embedding of the θ-snowflake (M; dθ
M) into a normed space of di-

mension mk .α;θ nc/α1/θ . The implicit dependence on α; θ that Kahane [1981] and
Talagrand [1992] imply here is quite good, but likely not sharp as α ! 1+ when θ ¤

1
2
.

Since the expressions in (12) are somewhat involved, it is beneficial to restate them
on a case-by-case basis as follows. For sufficiently large α, we have a bound4 that is
sharp up to universal constant factors.

(20) α > (logn) log logn H) kαn (`1) �
logn

log
�

α
logn

� :

For a range of smaller values of α, including those α that do not tend to 1 with n, we
have

(21) 1 6 α 6
logn

log logn
H) n

c
α . kαn (`1) . n

C
α :

(21) satisfactorily shows that the asymptotic behavior of kαn (`1) is of power-type, but
it is not as sharp as (20). We suspect that determining the correct exponent of n in the
power-type dependence of kαn (`1) would be challenging (there is indication Matoušek
[1996, 2002], partially assuming a positive answer to a difficult conjecture of Erdős
[1964] and Bollobás [1978], that this exponent has infinitely many jump discontinuities
as a function of α). In an intermediate range (logn)/ log logn . α . (logn) log logn

the bounds (12) are less satisfactory. The caseα � logn, corresponding to the distortion
in Bourgain’s embedding theorem, is especially intriguing, with (12) becoming

(22)
logn

log log logn
. kΘ(logn)

n (`1) . logn:

4One can alternatively justify the upper bound in (20) (for sufficiently large n) by first using Theorem 14
(Bourgain’s embedding theorem) to embed an n-point metric space M into `2 with distortion A logn for
some universal constant A > 1, and then using Theorem 11 (the JL lemma) with the dependence on the
distortion as stated in (10) to reduce the dimension of the image of M under Bourgain’s embedding to
O((logn)/ log(α/(A logn))) while incurring a further distortion of α/(A logn), thus making the over-
all distortion be at most α. The right hand side of (20) is therefore in fact an upper bound on kαn(`1; `2);
see also Corollary 50.
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The first inequality in (22) has not been stated in the literature, and we justify it in
Section 5 below. A more natural lower bound here would be a constant multiple of
(logn)/ log logn, as this corresponds to the volumetric restriction (16), andmoreover by
the upper bound (10) in the JL lemmawe know that any n-point subset of a Hilbert space
does in fact embed with distortion logn into `k

2 with k . (logn)/ log logn. The triple
logarithm in (22) is therefore quite intriguing/surprising, thus leading to the following
open question.

Question 22. Given an integer n > 2, what is the asymptotic behavior of the smallest
k = kn 2 N for which any n-point metric space M embeds with distortion O(logn)

into some k-dimensional normed space XM.

There is a dearth of available upper bounds on kαn (�), i.e., positive results establish-
ing that metric dimension reduction is possible. This is especially striking in the case
of kαn (`1), due to the importance of `1 from the perspective of pure mathematics and
algorithms. The upper bound on kαn (`1) in the large distortion regime (14) follows from
combining the Euclidean embedding of Arora, Lee, and Naor [2008] with the JL lemma.
The only general dimension reduction result in `1 that lowers the dimension below the
trivial bound kαn (`1) 6 n � 1 is the forthcoming work Austin and Naor [2017], where
the estimate kαn (`1) . n/α in (13) is obtained; even this modest statement requires
effort (among other things, it relies on the sparsification method of Batson, Spielman,
and Srivastava [2012]).

The bound kαn (`1) > nc/α2 in (13) is a remarkable theorem of Brinkman and M.
Charikar [2005] which answered a question that was at the time open for many years.
To avoid any possible confusion, it is important to note that Brinkman and M. Charikar
[ibid.] actually exhibits an n-point subset CBC of `1 for which it is shown in Brinkman
and M. Charikar [ibid.] that if CBC embeds with distortion α into `k

1 , then necessarily
k > nc/α2 . On the face of it, this seems weaker than (13), because the lower bound on
kαn (`1) in (13) requires showing that if CBC embeds into an arbitrary finite-dimensional
linear subspace F of `1, then necessarily dim(F ) > nc/α2 . However, Talagrand [1990]
proved that in this setting for every β > 1 the subspace F embeds with distortion β
into `k

1 , where k .β dim(F ) log dim(F ). From this, an application of the above stated
result of Brinkman andM. Charikar [2005] gives that dim(F ) log dim(F ) & nc/α2 , and
so the lower bound in (13) follows from the formulation in Brinkman and M. Charikar
[ibid.]. Satisfactory analogues of the above theorem of Talagrand are known Schecht-
man [1987], Bourgain, Lindenstrauss, and V.Milman [1989], and Talagrand [1995] (see
also the survey Johnson and Schechtman [2001] for more on this subtle issue) when `1
is replaced by `p for some p 2 (1; 1), but such reductions to “canonical” linear sub-
spaces are not available elsewhere, so the above reasoning is a rare “luxury” and in
general one must treat arbitrary low-dimensional linear subspaces of the Banach space
in question.

The above difficulty was overcome for S1 in Naor, Pisier, and Schechtman [2018],
where (15) was proven. The similarity of the lower bounds in (13) and (15) is not coin-
cidental. One can view the Brinkman–Charikar example CBC � `1 also as a collection
of diagonal matrices in S1, and Naor, Pisier, and Schechtman [ibid.] treats this very
same subset by strengthening the assertion of Brinkman and M. Charikar [2005] that



METRIC DIMENSION REDUCTION: THE RIBE PROGRAM 781

CBC does not well-embed into low-dimensional subspaces of S1 which consist entirely
of diagonal matrices, to the same assertion for low-dimensional subspaces of S1 which
are now allowed to consist of any matrices whatsoever. Using our notation for relative
dimension reduction moduli, this gives the stronger assertion kαn (`1; S1) > nc/α2 .

A geometric challenge of the above discussion is that, even after one isolates a can-
didate n-point subset C of `1 that is suspected not to be realizable with O(1) distortion
in low-dimensions (finding such a suspected intrinsically high-dimensional set is of
course a major challenge in itself), one needs to devise a way to somehow argue that
if one could find a configuration of n points in a low-dimensional subspace F of `1
(or S1) whose pairwise distances are within a fixed, but potentially very large, factor
α > 1 of the corresponding pairwise distances within C itself, then this would force
the ambient dimension dim(F ) to be very large. In Brinkman and M. Charikar [ibid.]
this was achieved via a clever proof that relies on linear programming; see also Andoni,
M. S. Charikar, Neiman, and Nguyen [2011] for a variant of this linear programming
approach in the almost isometric regime α ! 1+. In Regev [2013] a different proof of
the Brinkman–Charikar theorem was found, based on information-theoretic reasoning.
Another entirely different geometric method to prove that theorem was devised in Lee
and Naor [2004]; see also Lee, Mendel, and Naor [2005] and Johnson and Schechtman
[2009] for more applications of the approach of Lee and Naor [2004].

Very recently, a further geometric approachwas obtained inNaor, Pisier, and Schecht-
man [2018], where it was used to derive a stronger statement that, as shown in Naor,
Pisier, and Schechtman [ibid.], cannot follow from the method of Lee and Naor [2004]
(the statement is that the n-point subset CBC � `1 is not even an α-Lipschitz quotient
of any subset of a low dimensional subspace of S1; see Naor, Pisier, and Schechtman
[2018] for the relevant definition an a complete discussion). The approach of Naor,
Pisier, and Schechtman [ibid.] relies on an invariant that arose in the Ribe program and
is calledMarkov convexity. Fix q > 0. Let fχt gt2Z be aMarkov chain on a state spaceΩ.
Given an integer k > 0, denote by feχt (k)gt2Z the process that equals χt for time t 6 k,
and evolves independently of χt (with respect to the same transition probabilities) for
time t > k. Following Lee, Naor, and Peres [2009], the Markov q-convexity constant
of a metric space (M; dM), denoted Πq(M), is the infimum over those Π 2 [0; 1]
such that for every Markov chain fχt gt2Z on a state space Ω and every f : Ω ! M we
have� 1X

k=1

X
t2Z

1

2qk
E
h
dM

�
f
�eχt (t � 2k)

�
; f (χt )

�qi� 1
q

6 Π

�X
t2Z

E
h
dM

�
f (χt ); f (χt�1)

�qi� 1
q

By Lee, Naor, and Peres [2009] and Mendel and Naor [2013], a Banach space X satis-
fies Πq(X) < 1 if and only if it has an equivalent norm jjj � jjj : X ! [0; 1) whose
modulus of uniform convexity has power type q, i.e., jjjx +yjjj 6 2�ΩX (jjjx � yjjjq)

for every x; y 2 X with jjjxjjj = jjjyjjj = 1. This completes the step in the Ribe
program which corresponds to the local linear property “X admits an equivalent norm
whose modulus of uniform convexity has power type q,” and it is a refinement of the
aforementioned characterization of superreflexivity in Bourgain [1986] (which by deep
results of Enflo [1972] and Pisier [1975] corresponds to the cruder local linear property
“there is a finite q > 2 for which X admits an equivalent norm whose modulus of uni-
form convexity has power type q”). ByMendel andNaor [2013] and Eskenazis, Mendel,
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andNaor [2017a], the Brinkman–Charikar subsetCBC � `1 (as well as a variant of it due
to Laakso [2000] which has Lee, Mendel, and Naor [2005] the same non-embeddability
property into low-dimensional subspaces of `1) satisfies Πq(CBC) & (logn)1/q for ev-
ery q > 2 (recall that in our notation jCBCj = n). At the same time, it is proved in Naor,
Pisier, and Schechtman [2018] thatΠ2(F ) .

p
log dim(F ) for every finite dimensional

subset of S1. It remains to contrast these asymptotic behaviors (for q = 2) to deduce
that if cF (CBC) 6 α, then necessarily dim(F ) > nc/α2 .

Prior to the forthcoming work Naor and Young [2017a], the set CBC (and variants
thereof of a similar nature) was the only known example that demonstrates that there
is no `1 analogue of the JL-lemma. The following theorem is from Naor and Young
[ibid.].

Theorem 23. There is a universal constant c 2 (0; 1) with the following property.
For arbitrarily large n 2 N there exists an n-point O(1)-doubling subset Hn of `1
satisfying c4(Hn) . 1, such that for every α 2 [1; 1) and every finite-dimensional
linear subspace F of S1, if Hn embeds into F with distortion α, then necessarily

(23) dim(F ) > exp
� c

α2

p
logn

�
:

See Section 3 for the (standard) terminology “doubling” that is used in Theorem 23.
While (23) is weaker than the lower bound of Brinkman–Charikar in terms of the depen-
dence on n, it nevertheless rules out metric dimension reduction in `1 (or S1) in which
the target dimension is, say, a power of logn. The example Hn of Theorem 23 embeds
with distortion O(1) into `4, and hence in particular supn2N Π4(Hn) . Π4(`4) < 1,
by Lee, Naor, and Peres [2009]. This makes Hn be qualitatively different from all
the previously known examples which exhibit the impossibility of metric dimension
reduction in `1, and as such its existence has further ramifications that answer long-
standing questions; see Naor and Young [2017a] for a detailed discussion. The proof
of Theorem 23 is markedly different from (and more involved than) previous proofs of
impossibility of dimension reduction in `1, as it relies on new geometric input (a sub-
tle property of the 3-dimensional Heisenberg group which fails for the 5-dimensional
Heisenberg group) that is obtained in Naor and Young [ibid.], in combination with re-
sults from Austin, Naor, and Tessera [2013], Lafforgue and Naor [2014b,a], and Hytö-
nen and Naor [2016]; full details appear in Naor and Young [2017a].

1.4 Spaces admitting bi-Lipschitz and average metric dimension reduction. Say
that an infinite dimensional Banach space (X; k�kX ) admits metric dimension reduction
if there is α = αX 2 [1; 1) such that

lim
n!1

log kαn (X)

logn
= 0:

In other words, the requirement here is that for some α = αX 2 [1; 1) and every
n 2 N, any n-point subset C � X embeds with (bi-Lipschitz) distortion α into some
linear subspace F of X with dim(F ) = noX (1).

Analogously, we say that (X; k � kX ) admits average metric dimension reduction
if there is α = αX 2 [1; 1) such that for any n 2 N there is kn = noX (1), i.e.,
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limn!1(log kn)/ logn = 0, such that for any n-point subset C of X there is a linear
subspace F of X with dim(F ) = kn and a mapping f : C ! F which is α-Lipschitz,
i.e., kf (x) � f (y)kX 6 αkx � ykX for all all x; y 2 C , yet

(24)
1

n2

X
x2C

X
y2C

kf (x) � f (y)kX >
1

n2

X
x2C

X
y2C

kx � ykX :

Our choice here of the behavior noX (1) for the target dimension is partially motivated
by the available results, based on which this type of asymptotic behavior appears to be
a benchmark. We stress, however, that since the repertoire of spaces that are known
to admit metric dimension reduction is currently very limited, finding any new setting
in which one could prove that reducing dimension to oX (n) is possible would be a
highly sought after achievement. In the same vein, finding new spaces for which one
could prove a metric dimension reduction lower bound that tends to 1 faster than logn

(impossibility of a JL-style guarantee) would be very interesting.
Remark 24. In the above definition of spaces admitting averagemetric dimension reduc-
tion we imposed the requirement (24) following the terminology that was introduced by
Rabinovich [2008], and due to the algorithmic usefulness of this notion of embedding.
However, one could also consider natural variants such as ( 1

n2

P
x2C

P
y2C kf (x) �

f (y)kp
X )1/p > ( 1

n2

P
x2C

P
y2C kx � yk

q
X )1/q for any p; q 2 (0; 1], and much of

the ensuing discussion holds mutatis mutandis in this setting as well.
The only Banach spaces that are currently known to admit metric dimension reduc-

tion are Hilbert spaces and the space T (2) of Theorem 12 (and variants thereof). These
examples allow for the possibility that if (X; k � kX ) admits metric dimension reduction,
i.e., kOX (1)

n (X) = noX (1), then actually kOX (1)
n (X) = OX (logn). Such a dichotomy

would of course be remarkable, but there is insufficient evidence to conjecture that this
is so.

The available repertoire of spaces that admit average metric dimension reduction is
larger, since if p 2 [2; 1), then `p and even Sp satisfy the assumption of the following
theorem, by Mazur [1929] and Ricard [2015], respectively.

Theorem 25. Let (X; k � kX ) be an infinite dimensional Banach space with unit ball
BX = fx 2 X : kxkX 6 1g. Suppose that there is a Hilbert space (H; k � kH ) and a
one-to-one mapping f : BX ! H such that f is Lipschitz and f �1 : f (BX ) ! X

is uniformly continuous. Then X admits average metric dimension reduction. In fact,
this holds for embeddings into a subspace of logarithmic dimension, i.e., there is α =

αX 2 [1; 1) such that for any n 2 N and any n-point subset C of X there is a linear
subspace F of X with dim(F ) . logn and a mapping f : C ! F which satisfies
both (24) and kf (x) � f (y)kX 6 αkx � ykX for all x; y 2 C .

Proof. This statement is implicit in Naor [2014]. By combining Naor [ibid., Proposi-
tion 7.5] and Naor [ibid., Lemma 7.6] there is a OX (1)-Lipschitz mapping f : C ! `2
which satisfies 1

n2

P
x2C

P
y2C kf (x) � f (y)k2 > 1

n2

P
x2C

P
y2C kx � ykX . By

the JL lemma we may assume that f actually takes values in `k
2 for some k . logn.

Since X is infinite dimensional, Dvoretzky’s theorem Dvoretzky [1961] ensures that `k
2

is 2-isomorphic to a k-dimensional subspace F of X .
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Remark 26. By Mazur [1929], for p 2 [2; 1) the assumption of Theorem 25 holds for
X = `p . An inspection of the proofs in Naor [2014] reveals that the dependence of the
Lipschitz constant α = αp on p that Theorem 25 provides for X = `p grows to 1

exponentially with p. As argued in Naor [ibid., Section 5.1] (using metric cotype), this
exponential behavior is unavoidable using the above proof. However, in this special case
a more sophisticated argument of Naor [ibid.] yields αp . p5/2; see equation (7.40)
in Naor [ibid.]. Motivated by Naor [ibid., Corollary 1.6], we conjecture that this could
be improved to αp . p, and there is some indication (see Naor [ibid., Lemma 1.11])
that this would be sharp.

Prior to Naor [2017], it was not known if there exists a Banach space which fails to
admit average metric dimension reduction. Now we know (Theorem 19) that `1 fails
to admit average metric dimension reduction, and therefore also any universal Banach
space fails to admit average metric dimension reduction. A fortiori, the same is true also
for (non-average) metric dimension reduction, but this statement follows from the older
work Matoušek [1996]. Failure of average metric dimension reduction is not known
for any non-universal (finite cotype) Banach space, and it would be very interesting to
provide such an example. By Brinkman and M. Charikar [2005] and Naor, Pisier, and
Schechtman [2018] we know that `1 and S1 fail to admit metric dimension reduction,
but this is not known for average distortion, thus leading to the following question.

Question 27. Does `1 admit average metric dimension reduction? Does `p have this
property for any p 2 [1; 2)?

All of the available examples of n-point subsets of `1 for which the `1 analogue
of the JL lemma fails (namely if k = O(logn), then they do not embed with O(1)

distortion into `k
1 ) actually embed into the real line R with O(1) average distortion;

this follows from Rabinovich [2008]. Specifically, the examples in Brinkman and M.
Charikar [2005] and Lee,Mendel, andNaor [2005] are the shortest-pathmetric on planar
graphs, and the example in Theorem 23 is O(1)-doubling, and both of these classes of
metric spaces are covered by Rabinovich [2008]; see also Naor [2014, Section 7] for
generalizations. Thus, the various known proofs which demonstrate that the available
examples cannot be embedded into a low dimensional subspace of `1 argue that any
such low-dimensional embedding must highly distort some distance, but this is not so
for a typical distance. A negative answer to Question 27 would therefore require a
substantially new type of construction which exhibits a much more “diffuse” intrinsic
high-dimensionality despite it being a subset of `1. In the reverse direction, a positive
answer to Question 27, beyond its intrinsic geometric/structural interest, could have
algorithmic applications.

1.4.1 Lack of stability under projective tensor products. Prior to the recent work
Naor, Pisier, and Schechtman [2018], it was unknown whether the property of admitting
metric dimension reduction is preserved under projective tensor products.

Corollary 28. There exist Banach spaces X; Y that admit metric dimension reduction
yet X b̋Y does not.
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Since S1 is isometric to `2b̋`2 and Naor, Pisier, and Schechtman [ibid.] establishes
that S1 fails to admit metric dimension reduction, together with the JL lemma this im-
plies Corollary 28 (we can thus even have X = Y and kαn (n) .α logn for all α > 1).

Since we do not know whether S1 admits average metric dimension reduction (the
above comments pertaining to Question 27 are valid also for S1), the analogue of Corol-
lary 28 for average metric dimension reduction was previously unknown. Here we note
the following statement, whose proof is a somewhat curious argument.

Theorem 29. There exist Banach spaces X; Y that admit average metric dimension
reduction yetX b̋Y does not. Moreover, for every p 2 (2; 1)we can take hereX = `p .

Proof. By Briët, Naor, and Regev [2012] (which relies on major input from the the-
ory of locally decodable codes Efremenko [2009] and an important inequality of Pisier
[1980]), the 3-fold product `3b̋`3b̋`3 is universal. So, by the recent work Naor [2017]
(Theorem 19), `3b̋`3b̋`3 does not admit average metric dimension reduction. At the
same time, by Theorem 25 we know that `3 admits average metric dimension reduc-
tion. So, if `3b̋`3 fails to admit average metric dimension reduction, then we can take
X = Y = `3 in Theorem 29. Otherwise, `3b̋`3 does admit average metric dimension
reduction, in which case we can take X = `3 and Y = `3b̋`3. Thus, in either of the
above two cases, the first assertion of Theorem 29 holds true. The second assertion of
Theorem 29 follows by repeating this argument using the fact Briët, Naor, and Regev
[2012] that `p b̋`p b̋`q is universal if 2/p + 1/q 6 1, or equivalently q > p/(p � 2).
If we choose, say, q = maxf2; p/(p � 2)g, then by Theorem 25 we know that both `p

and `q admit average metric dimension reduction, while `p b̋`p b̋`q does not. So, the
second assertion of Theorem 29 holds for either Y = `p or Y = `p b̋`q .

The proof of Theorem 29 establishes that at least one of the pairs (X = `3; Y = `3)

or (X = `3; Y = `3b̋`3) satisfies its conclusion, but it gives no indication which of
these two options occurs. This naturally leads to

Question 30. Does `3b̋`3 admit average metric dimension reduction?

A positive answer to Question 30 would yield a new space that admits average met-
ric dimension reduction. In order to claim that `3b̋`3 is indeed new in this context,
one must show that it does not satisfy the assumption of Theorem 25. This is so be-
cause S1 (hence also `1) is finitely representable in `3b̋`3; see e.g. Diestel, J. Fourie,
and Swart [2003, page 61]. The fact that no Banach space in which `1 is finitely rep-
resentably satisfies the assumption of Theorem 25 follows by combining Naor [2014,
Lemma 1.12], Naor [ibid., Proposition 7.5], and Naor [ibid., Lemma 7.6]. This also
shows that a positive answer to Question 30 would imply that any n-point subset of `1
(or S1) embeds with O(1) average distortion into some normed space (a subspace of
`3b̋`3) of dimension no(1), which is a statement in the spirit of Question 27. If the
answer to Question 30 were negative, then `3b̋`3 would be the first example of a non-
universal space which fails to admit average metric dimension reduction, because Pisier
proved Pisier [1992a,b] that `3b̋`3 is not universal.

Another question that arises naturally from Theorem 29 is whether its conclusion
holds true also for p = 2.
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Question 31. Is there a Banach space Y that admits average metric dimension reduction
yet `2b̋Y does not?

1.4.2 Wasserstein spaces. Let (M; dM) be a metric space and p 2 [1; 1). The
Wasserstein space Pp(M) is not a Banach space, but there is a natural version of the
metric dimension reduction question in this context.

Question 32. Fix α > 1, n 2 N and µ1; : : : ;µn 2 Pp(M). What is the asymptotic
behavior of the smallest k 2 N for which there is S � M with jSj 6 k such that
(fµ1; : : : ;µng; Wp) embeds with distortion α into Pp(S)?

Spaces of measures with the Wasserstein metric Wp are of major importance in pure
and applied mathematics, as well as in computer science (mainly for p = 1, where
they are used in graphics and vision, but also for other values of p; see e.g. the dis-
cussion in Andoni, Naor, and Neiman [2016]). However, their bi-Lipschitz structure is
poorly understood, especially so in the above context of metric dimension reduction. If
k were small in Question 32, then this would give a way to “compress” collections of
measures using measures with small support while approximately preserving Wasser-
stein distances. In the context of, say, image retrieval (mainly M = f1; : : : ; ng2 � R2

and p = 1), this could be viewed as obtaining representations of images using a small
number of “pixels.”

M. S. Charikar [2002] and Indyk and Thaper [2003] proved that if M is a finite
metric space, then P1(M) embeds into `1 with distortion O(log jMj). Hence, if the
answer to Question 32 were k = no(1) for some α = O(1), then it would follow that
any n-point subset of P1(M) embeds into `1 with distortion o(logn), i.e., better distor-
tion than the general bound that is provided by Bourgain’s embedding theorem (actually
the `1-variant of that theorem, which is also known to be sharp in general Linial, Lon-
don, and Rabinovich [1995]). This shows that one cannot hope to answer Question 32
with k = no(1) and α = O(1) without imposing geometric restrictions on the under-
lying metric space M, since if (M = fx1; : : : ; xng; dM) is a metric space for which
c1(M) � logn, then we can take µ1; : : : ;µn to be the point masses δx1

; : : : ; δxn
, so

that (fµ1; : : : ;µng; W1) is isometric to (M; dM). The pertinent issue is therefore to
study Question 32 when the M is “nice.” For example, sufficiently good bounds here
for M = R2 would be relevant to Question 7, but at this juncture such a potential
approach to Question 7 is quite speculative.

The above “problematic” example relied inherently on the fact that the underlying
metric space M is itself far from being embeddable in `1, but the difficulty persists
even when M = `1. Indeed, we recalled in Question 7 that Bourgain proved Bourgain
[1986] that P1(`1) is universal, and hence the spaces of either Theorem 17 or Theo-
rem 19 embed into P1(`1) with O(1) distortion. So, for arbitrarily large n 2 N we can
find probability measures µ1; : : : ;µn on `1 (actually on a sufficiently high dimensional
Hamming cube f0; 1gN ) such that (fµ1; : : : ;µng; W1) does not admit a good embed-
ding into any normed space of dimension no(1). This rules out an answer of k = no(1)

to Question 32 (even for average distortion) for (µ1; : : : ;µn; W1), because in the set-
ting of Question 32, while P1(S) is not a normed space, it embeds isometrically into a
normed space of dimension jSj � 1 (the dual of the mean-zero Lipschitz functions on
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(S; dM); see e.g. Naor and Schechtman [2007] and Villani [2009] for an explanation of
this standard fact). In the case of average distortion, one could see this using a different
approach of Khot and the author Khot and Naor [2006] which constructs a collection
of n = eO(d) probability measures on the Hamming cube f0; 1gd that satisfy the con-
clusion of Theorem 19, as explained in Naor [2017, Remark 5]. This shows that even
though these n probability measures reside on a Hamming cube of dimension O(logn),
one cannot realize their Wasserstein-1 geometry with O(1) distortion (even on average)
in any normed space of dimension no(1), let alone in P1(S) with jSj = no(1).

It is therefore natural to investigate Question 32 when M is low-dimensional. When
p = 1, this remains an (important) uncharted terrain. When p > 1 and M = R3,
partial information on Question 32 follows from Andoni, Naor, and Neiman [2015]. To
see this, focus for concreteness on the case p = 2. Fix α > 1 and n 2 N. Suppose
that (N; dN) is an n-point metric space for which the conclusion of Theorem 17 holds
true with ω(t) =

p
t and Ω(t) = 2α

p
t . By Andoni, Naor, and Neiman [ibid.], the

metric space (N;
p

dN) embeds with distortion 2 into P2(R3), where R3 is equipped
with the standard Euclidean metric. Hence, if the image under this embedding of N
in P2(R3) embedded into some k-dimensional normed space with distortion α, then
by Theorem 17 necessarily k > nc/α2 for some universal constant c. This does not ad-
dress Question 32 as stated, because to the best of our knowledge it is not knownwhether
P2(S) embeds with O(1) distortion into some “low-dimensional” normed space for ev-
ery “small” S � R3 (the relation between “small” and “low-dimensional” remains to
be studied). In the case of average distortion, repeat this argument with N now be-
ing the metric space of Theorem 19. By Remark 48 below, if the image in P2(R3) of
(N;

p
dN) embedded with average distortion α into some k-dimensional normed space,

then necessarily k > exp( c
α

p
logn).

2 Finite subsets of Hilbert space

The article Johnson and Lindenstrauss [1984] is devoted to proving a theorem on the
extension of Lipschitz functions from finite subsets of metric spaces.5 Over the ensuing
decades, the classic Johnson and Lindenstrauss [ibid.] attained widespread prominence
outside the rich literature on the Lipschitz extension problem, due to two components
of Johnson and Lindenstrauss [ibid.] that had major conceptual significance and influ-
ence, but are technically simpler than the proof of its main theorem.

The first of these components is the JL lemma, which we already stated in the In-
troduction. Despite its wide acclaim and applicability, this result is commonly called
a “lemma” rather than a “theorem” because within the context of Johnson and Linden-
strauss [ibid.] it was just that, i.e., a relatively simple step toward the proof of the main
theorem of Johnson and Lindenstrauss [ibid.].

The second of these components is a section of Johnson and Lindenstrauss [ibid.]
that is devoted to formulating open problems in the context of the Ribe program; we

5Stating this theorem here would be an unnecessary digression, but we highly recommend examining the
accessible geometric result of Johnson and Lindenstrauss [1984]; see Naor and Rabani [2017] for a review of
the current state of the art on Lipschitz extension from finite subsets.
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already described a couple of the questions that were raised there, but it contains more
questions that proved to be remarkably insightful and had major impact on subsequent
research (see e.g. Ball [1992] and Naor, Peres, Schramm, and Sheffield [2006]). Despite
its importance, the impact of Johnson and Lindenstrauss [1984] on the Ribe program
will not be pursued further in the present article, but we will next proceed to study the
JL lemma in detail (including some new observations).

Recalling Theorem 11, the JL lemma Johnson and Lindenstrauss [ibid.] asserts that
for every integer n > 2 and (distortion/error tolerance) α 2 (1; 1), if x1; : : : ; xn are
distinct vectors in a Hilbert space (H; k � kH ), then there exists (a target dimension)
k 2 f1; : : : ; ng and a new n-tuple of k-dimensional vectors y1; : : : ; yn 2 Rk such that

(25) k .α logn;

and the assignment xi 7! yi , viewed as a mapping into `k
2 , has distortion at most α, i.e.,

(26) 8 i; j 2 f1; : : : ; ng; kxi � xj kH 6 kyi � yj k`k
2

6 αkxi � xj kH :

It is instructive to take note of the “compression” that this statement entails. By
tracking the numerical value of the target dimension k that the proof in Section 2.1
below yields (see Remark 38), one concludes that given an arbitrary collection of, say,
a billion vectors of length a billion (i.e., 1 000 000 000 elements of R1000000000), one
can find a billion vectors of length 329 (i.e., elements of R329), all of whose pairwise
distances are within a factor 2 of the corresponding pairwise distances among the initial
configuration of billion-dimensional vectors. Furthermore, if one wishes to maintain
the pairwise distances of those billion vectors within a somewhat larger constant factor,
say, a factor of 10 or 450, then one could do so in dimension 37 or 9, respectively.

The logarithmic dependence on n in (25) is optimal, up to the value of the implicit
(α-dependent) constant factor. This is so even when one considers the special case when
x1; : : : ; xn 2 H are the vertices of the standard (n � 1)-simplex, i.e., kxi � xj kH = 1
for all distinct i; j 2 f1; : : : ; ng, and even when one allows the Euclidean norm in (26)
to be replaced by any norm k � k : Rk ! [0; 1), namely if instead of (26) we have
1 6 kyi � yj k 6 α for all distinct i; j 2 f1; : : : ; ng. Indeed, denote the unit ball of
k � k by B = fz 2 Rk : kzk 6 1g and let volk(�) be the Lebesgue measure on Rk . If
i; j 2 f1; : : : ; ng are distinct, then by the triangle inequality the assumed lower bound
kyi � yj k > 1 implies that the interiors of yi +

1
2
B and yj +

1
2
B are disjoint. Hence, if

we denote A =
Sn

i=1(yi +
1
2
B), then volk(A) =

Pn
i=1 volk(yi +

1
2
B) = n

2k volk(B).
At the same time, for every u; v 2 A there are i; j 2 f1; : : : ; ng for which u 2 yi +

1
2
B

and v 2 yj +
1
2
B , so by another application of the triangle inequality we have ku�vk 6

kyi � yj k + 1 6 α+ 1. This implies that A � A � (α+ 1)B . Hence,

(α+ 1) k

q
volk(B) = k

q
volk((α+ 1)B) > k

q
volk(A � A) > 2 k

q
volk(A) = k

q
nvolk(B);

where the penultimate step uses the Brunn–Minkowski inequality Schneider [2014].
This simplifies to give

(27) k >
logn

log(α+ 1)
:
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By Braß [1999] and Dekster [2000], the vertices of (n�1)-simplex embed isometrically
into any infinite dimensional Banach space, so we have thus justified the bound (16),
and hence in particular the first lower bound on kαn (`2) in (10). As we already explained,
the second lower bound (for the almost-isometric regime) on kαn (`2) in (10) is due to
the very recent work Larsen and Nelson [2017]. The upper bound on kαn (`2) in (10),
namely that in (25) we can take

(28) k .
logn

log
�
1 + (α � 1)2

� � max
�

logn

(α � 1)2
;
logn

logα

�
;

follows from the original proof of the JL lemma in Johnson and Lindenstrauss [1984].
A justification of (28) appears in Section 2.1 below.
Question 33 (dimension reduction for the vertices of the simplex). Fix δ 2 (0; 1

2
). What

is the order ofmagnitude (up to universal constant factors) of the smallestS(δ) 2 (0; 1)

such that for every n 2 N there is k 2 N with k 6 S(δ) logn and y1; : : : ; yn 2 Rk

that satisfy 1 6 kyi � yj k2 6 1 + δ for all distinct i; j 2 f1; : : : ; ng? By (28) we have
S(δ) . 1/δ2. The best-known lower bound here is S(δ) & 1/(δ2 log(1/δ)), due to
Alon [2003].
Remark 34. The upper bound (28) treats the target dimension in the JL lemma for
an arbitrary subset of a Hilbert space. The lower bound (27) was derived in the spe-
cial case of the vertices of the regular simplex, but it is also more general as it is
valid for embeddings of these vertices into an arbitrary k-dimensional norm. In this
(both special, and more general) setting, the bound (27) is quite sharp for large α.
Indeed, by Arias-de-Reyna, Ball, and Villa [1998] (see also M. Ostrovskii and Ran-
drianantoanina [2016, Corollary 2.4]), for each n 2 N and α >

p
2, if we write

k = d(log(4n))/ log(α2/(2
p
α2 � 1))e; then for every norm k � k on Rk there exist

y1; : : : ; yn 2 Rk satisfying 1 6 kyi �yj k 6 α for distinct i; j 2 f1; : : : ; ng. See Füredi
and Loeb [1994, Theorem 4.3] for an earlier result in this direction. See also Arias-de-
Reyna, Ball, and Villa [1998] and the references therein (as well as M. Ostrovskii and
Randrianantoanina [2016, Problem 2.5]) for partial results towards understanding the
analogous issue (which is a longstanding open question) in the small distortion regime
α 2 (1;

p
2].

2.1 Optimality of re-scaled random projections. To set the stage for the proof of
the JL lemma, note that by translation-invariance we may assume without loss of gen-
erality that one of the vectors fxi g

n
i=1 vanishes, and then by replacing the Hilbert space

H with the span of fxi g
n
i=1, we may further assume that H = Rn�1.

Let ProjRk 2 Mk�(n�1)(R) be the k by n � 1 matrix of the orthogonal projection
from Rn�1 onto Rk , i.e., ProjRk z = (z1; : : : ; zk) 2 Rk is the first k coordinates
of z = (z1; : : : ; zn�1) 2 Rn�1. One could attempt to simply truncate the vectors
vectors x1; : : : ; xn so as to obtain k-dimensional vectors, namely to consider the vec-
tors fyi = ProjRk xi g

n
i=1 in (26). This naïve (and heavy-handed) way of forcing low-

dimensionality can obviously fail miserably, e.g. we could have Projkxi = 0 for all
i 2 f1; : : : ; ng. Such a simplistic idea performs poorly because it makes two arbitrary
and unnatural choices, namely it does not take advantage of rotation-invariance and
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scale-invariance. To remedy this, let On�1 � Mn�1(R) denote the group of n � 1 by
n � 1 orthogonal matrices, and fix (a scaling factor) σ 2 (0; 1). Let O 2 On�1 be
a random orthogonal matrix distributed according to the Haar probability measure on
On�1. In Johnson and Lindenstrauss [1984] it was shown that if k is sufficiently large
(yet satisfying (25)), then for an appropriate σ > 0 with positive probability (26) holds
for the following random vectors.

(29) fyi = σProjRk Oxi g
n
i=1 � Rk :

We will do more than merely explain why the randomly projected vectors in (29)
satisfy the desired conclusion (26) of the JL lemma with positive probability. We shall
next demonstrate that such a procedure is the best possible (in a certain sense that will
be made precise) among all the possible choices of random assignments of x1; : : : ; xn

to y1; : : : ; yn via multiplication by a random matrix in Mk�(n�1)(R), provided that we
optimize so as to use the best scaling factor σ 2 (0; 1) in (29).

Let µ be any Borel probability measure on Mk�(n�1)(R), i.e., µ represents an ar-
bitrary (reasonably measurable) distribution over k � (n � 1) random matrices A 2

Mk�(n�1)(R). For α 2 (1; 1) define

(30) pα
µ

def
= inf

z2Sn�2
µ
h˚

A 2 Mk�(n�1)(R) : 1 6 kAzk`k
2

6 α
	i

;

where Sn�2 = fz 2 Rn�1 : kzk`n�1
2

= 1g denotes the unit Euclidean sphere in Rn�1.
Then

µ

� \
i;j 2f1;:::;ng

n
A 2 Mk�(n�1)(R) : kxi � xj k`n�1

2
6 kAxi � Axj k

`k
2

6 αkxi � xj k`n�1
2

o�

= 1 � µ

� n[
i=1

n[
j=i+1

�
Mk�(n�1)(R) X

n
A 2 Mk�(n�1)(R) : 1 6

A
xi � xj

kxi � xj k`n�1
2


`k
2

6 α
o��

> 1 �

nX
i=1

nX
j=i+1

�
1 � µ

�n
A 2 Mk�(n�1)(R) : 1 6

A
xi � xj

kxi � xj k`n�1
2


`k
2

6 α
o��

> 1 �

 
n

2

!�
1 � pα

µ

�
:

(31)

Hence, the random vectors fyi = Axi g
n
i=1 will satisfy (26) with positive probability if

pα
µ > 1 �

2
n(n�1)

.
In order to succeed to embed the largest possible number of vectors into Rk via the

above randomized procedure while using the estimate (31), it is in our best interest to
work with a probability measure µ on Mk�(n�1)(R) for which pα

µ is as large as possible.
To this end, define

(32) pα
n;k

def
= sup

n
pα
µ : µ is a Borel probability measure on Mk�(n�1)(R)

o
:

Then, the conclusion (26) of the JL lemmawill be valid provided k 2 f1; : : : ; ng satisfies

(33) pα
n;k > 1 �

2

n(n � 1)
:
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The following proposition asserts that the supremum in the definition (32) of pα
n;k

is at-
tained at a distribution over random matrices that has the aforementioned structure (29).

Proposition 35 (multiples of random orthogonal projections are JL-optimal). Fix α 2

(1; 1), an integer n > 4 and k 2 f1; : : : ; n � 3g. Let µ = µα
n;k

be the probability
distribution on Mk�(n�1)(R) of the random matrix

(34)

s
α

2n�6
n�k�3 � 1

α
2k

n�k�3 � 1
� ProjRk O;

that is obtained by choosing O 2 On�1 according to the normalized Haar measure on
On�1. Then pα

µ = pα
n;k

.

Obviously (34) is not a multiple of a uniformly random rank k orthogonal projection
Proj : Rn�1 ! Rn�1 (chosen according to the normalized Haar measure on the ap-
propriate Grassmannian). To obtain such a distribution, one should multiply the matrix
in (34) on the left by O�. That additional rotation does not influence the Euclidean
length of the image, and hence it does not affect the quantity (30). For this reason and
for simplicity of notation, we prefer to work with (34) rather than random projections
as was done in Johnson and Lindenstrauss [ibid.].

Proof of Proposition 35. Given A 2 Mk�(n�1)(R), denote its singular values by
s1(A) > : : : > sk(A), i.e., they are the eigenvalues (with multiplicity) of the symmetric
matrix

p
AA� 2 Mk(R). Then,

(35)

HOn�1

h˚
O 2 On�1 : 1 6 kAOzk

`k
2

6 α
	i

=

Z
Sk�1

ψα
n;k

�� kX
i=1

si (A)2ω2
i

� 1
2

�
dHSk�1

(ω)

where HOn�1 and HSk�1 are the Haar probability measures on the orthogonal group
On�1 and the unit Euclidean sphere Sk�1, respectively, and the function
ψα

n;k
: [0; 1) ! R is defined by

(36) 8σ 2 [0; 1); ψα
n;k(σ)

def
=

2π
k
2

Γ
�

k
2

� Z maxf1;σg

maxf1; σαg

(s2 � 1)
n�k�3

2

sn�2
ds:

To verify the identity (35), consider the singular value decomposition

(37) A = U

0BBBBBBB@

s1(A) 0 : : : : : : 0

0 s2(A)
: : :

: : :
:::

:::
: : :

: : :
: : :

:::
:::

: : :
: : :

: : : 0

0 : : : : : : 0 sk(A)

1CCCCCCCAProjRk V;

where U 2 Ok and V 2 On�1. If O 2 On�1 is distributed according to HOn�1 , then
by the left-invariance of HOn�1 we know that VO is distributed according to HOn�1 .
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By rotation-invariance and uniqueness of Haar measure on Sn�2 (e.g. V. D. Milman
and Schechtman [1986]), it follows that for every z 2 Sn�1 the random vector VOz

is distributed according to the normalized Haar measure on Sn�2. So, ProjRk VOz is
distributed on the Euclidean unit ball of Rk , with density

(38)
�
u 2 Rk

�
7!

Γ
�

n�1
2

�
π

k
2 Γ
�

n�1�k
2

� �1 � kuk
2

`k
2

�n�k�3
2 1˚

kuk
`k
2

61
	:

See Stam [1982] for a proof of this distributional identity (or Barthe, Guédon, Mendel-
son, and Naor [2005, Corollary 4] for a more general derivation); in codimension 2,
namely k = n�3, this is a higher-dimensional analogue ofArchimedes’ theorem that the
projection to R of the uniform surface area measure on the unit Euclidean sphere in R3

is the Lebesgue measure on [�1; 1]. Recalling (37), it follows from this discussion that
the Euclidean norm of AOz has the same distribution as (

Pk
i=1 si (A)2u2

i )
1/2, where

u = (u1; : : : ; uk) 2 Rk is distributed according to the density (38). The identity (35)
now follows by integration in polar coordinates (ω; r) 2 Sk�1 � [0; 1), followed by
the change of variable s = 1/r .

Next, ψα
n;k

vanishes on [0; 1], increases on [1;α], and is smooth on [α; 1). The
integrand in (36) is at most s�k�1, so limσ!1ψα

n;k
(σ) = 0. By directly differenti-

ating (36) and simplifying the resulting expression, one sees that if σ 2 [α; 1), then
(ψα

n;k
)0(σ) = 0 if and only if σ = σmax(n; k;α), where

(39) σmax(n; k;α)
def
=

s
α

2n�6
n�k�3 � 1

α
2k

n�k�3 � 1
:

Therefore, the global maximum ofψα
n;k

is attained at σmax(n; k;α), and by (35) we have
8 A 2 Mk�(n�1)(R)

(40) HOn�1

h˚
O 2 On�1 : 1 6 kAOzk`k

2
6 α

	i
6 ψα

n;k

�
σmax(n; k;α)

�
= pα

µ :

The final step of (40) is another application (35), this time in the special case
A = σmax(n; k;α)ProjRk , while recalling (30) and (39), and that µ is the distribution
of the random matrix appearing in (34).

To conclude the proof of Proposition (35), take any Borel probability measure ν on
Mk�(n�1)(R) and integrate (40) while using Fubini’s theorem to obtain the estimate

pα
µ >

Z
Mk�(n�1)(R)

HOn�1

h˚
O 2 On�1 : 1 6 kAOz0k`k

2
6 α

	i
dν(A)

=

Z
On�1

ν
h˚

A 2 Mk�(n�1)(R) : 1 6 kAOz0k`k
2

6 α
	i

dHOn�1(O)

(30)
>
Z

On�1

pα
ν dHOn�1(O) = pα

ν :

So, the maximum of pα
ν over the Borel probability measures ν on Mk�(n�1)(R) is at-

tained at µ.
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Remark 36. Recalling (33), due to (40) the conclusion (26) of the JL lemma holds if k

satisfies

(41)
2π

k
2

Γ
�

k
2

� Z σmax(n;k;α)

1
ασmax(n;k;α)

(s2 � 1)
n�k�3

2

sn�2
ds > 1 �

2

n(n � 1)
;

where σmax(n; k;α) is given in (39). This is the best-known bound on k in the JL lemma,
which, due to Proposition 35, is the best-possible bound that is obtainable through the
reasoning (31). In particular, the asymptotic estimate (28) follows from (41) via straight-
forward elementary calculus.
Remark 37. The JL lemma was reproved many times; see Frankl and Maehara [1988],
Gordon [1988], Indyk and Motwani [1999], Arriaga and Vempala [1999], Dasgupta
and Gupta [2003], Achlioptas [2003], Klartag and Mendelson [2005], Indyk and Naor
[2007], Matoušek [2008], Ailon and Chazelle [2009], Dmitriyuk and Gordon [2009],
Krahmer and Ward [2011], Ailon and Liberty [2013], Dmitriyuk and Gordon [2014],
Kane and Nelson [2014], Bourgain, Dirksen, and Nelson [2015], and Dirksen [2016],
though we make no claim that this is a comprehensive list of references. There were
several motivations for these further investigations, ranging from the desire to obtain
an overall better understanding of the JL phenomenon, to obtain better bounds, and to
obtain distributions on random matrices A as in (31) with certain additional properties
that are favorable from the computational perspective, such as ease of simulation, use of
fewer random bits, sparsity, and the ability to evaluate the mapping (z 2 Rn�1) 7! Az

quickly (akin to the fast Fourier transform). This body of work represents ongoing
efforts by computer scientists and applied mathematicians to further develop improved
“JL transforms,” driven by their usefulness as a tool for data-compression. We will not
survey these ideas here, partially because we established that using random projections
yields the best-possible bound on the target dimension k (moreover, this procedure is
natural and simple). We speculate that working with the Haar measure on the orthogonal
group On�1 as in (29) could have benefits that address the above computational issues,
but leave this as an interesting open-ended direction for further research. A specific
conjecture towards this goal appears in Ailon and Chazelle [2009, page 320], and we
suspect that the more recent work Bourgain and Gamburd [2012] on the spectral gap of
Hecke operators of orthogonal Cayley graphs should be relevant in this context as well
(e.g. for derandomization and fast implementation of (29); see Brandão, Harrow, and
Horodecki [2016] and Kothari and Meka [2015] for steps in this direction).
Remark 38. In the literature there is often a preference to use random matrices with
independent entries in the context of the JL lemma, partially because they are simple to
generate, though see the works Stewart [1980], Genz [2000], and Mezzadri [2007] on
generating elements of the orthogonal group On�1 that are distributed according to its
Haar measure. In particular, the best bound on k in (25) that was previously available in
the literatureDasgupta andGupta [2003] arose from applying (31)whenA is replaced by
the randommatrix σG, where σ = 1/

p
k and the entries of G = (gij ) 2 Mk�(n�1)(R)

are independent standard Gaussian random variables. We can, however, optimize over
the scaling factor σ in this setting as well, in analogy to the above optimization over
the scaling factor in (29), despite the fact that we know that working with the Gaussian
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matrix G is inferior to using a random rotation. A short calculation reveals that the
optimal scaling factor is now

p
(α2 � 1)/(2k logα), i.e., the best possible re-scaled

Gaussianmatrix for the purpose of reasoning as in (31) is not 1p
k

G but rather the random
matrix

(42) Gα
k

def
=

s
α2 � 1

2k logα
� G:

For this optimal multiple of a Gaussian matrix, one computes that for every z 2 Sn�2

we have

(43) 1 � P
h
1 6 kGα

k zk`k
2

6 α
i
=

2k
k
2

Γ
�

k
2

� Z 1

logα

�
β

e2β � 1

� k
2

exp
�

�
kβ

e2β � 1

�
dβ

<
4k

k
2 �1

Γ
�

k
2

� �α2 � 1

logα
α

2
α2�1

�� k
2 (α2 � 1)2 logα
2α4 logα+ 2α2 � α4 � 4α2(logα)2 � 2 logα � 1

:

The first step in (43) follows from a straightforward computation using the fact that
the squared Euclidean length of Gα

k
z is distributed according to a multiple of the χ2

distribution with k degrees of freedom (see e.g. Durrett [2010]), i.e., one can write
the leftmost term of (43) explicitly as a definite integral, and then check that it indeed
equals the middle term of (43), e.g., by verifying the the derivatives with respect to α of
both expressions coincide. The final estimate in (43) can be justified via a modicum of
straightforward calculus. We deduce from this that the conclusion (26) of the JL lemma
is holds with positive probability if for each i 2 f1; : : : ; ng we take yi to be the image
of xi under the re-scaled Gaussian matrix in (42), provided that k is sufficiently large
so as to ensure that
(44)

Γ
�

k
2

�
k

k
2 �1

�
α2 � 1

logα
α

2
α2�1

� k
2

>
2n2(α2 � 1)2 logα

2α4 logα+ 2α2 � α4 � 4α2(logα)2 � 2 logα � 1
:

The values that we stated for the target dimension k in the JL lemma with a billion vec-
tors were obtained by using (44), though even better bounds arise from an evaluation of
the integral in (43) numerically, which is what we recommend to do for particular set-
tings of the parameters. As α ! 1, the above bounds improve over those of Dasgupta
and Gupta [2003] only in the second-order terms. For larger α these bounds yield sub-
stantial improvements that might matter in practice, e.g. for embedding a billion vectors
with distortion 2, the target dimension that is required using the best-available estimate
in the literature Dasgupta and Gupta [ibid.] is k = 768, while (44) shows that k = 329

suffices.

3 Infinite subsets of Hilbert space

The JL lemma provides a quite complete understanding of the metric dimension reduc-
tion problem for finite subsets of Hilbert space. For infinite subsets of Hilbert space,
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the research splits into two strands. The first is to understand those subsets C � Rn for
which certain randommatrices inMk�n(R) (e.g. random projections, or matrices whose
entries are i.i.d. independent sub-Gaussian random variables) yield with positive proba-
bility an embedding of C into Rk of a certain pre-specified distortion; this was pursued
in Gordon [1988], Klartag and Mendelson [2005], Indyk and Naor [2007], Mendelson,
Pajor, and Tomczak-Jaegermann [2007], Mendelson and Tomczak-Jaegermann [2008],
Bourgain, Dirksen, and Nelson [2015], Dirksen [2016], and Puy, Davies, and Gribonval
[2017], yielding a satisfactory answer which relies on multi-scale chaining criteria Ta-
lagrand [2014] and Nelson [2016] .

The second (and older) research strand focuses on themere existence of a low-dimensional
embedding rather than on the success of the specific embedding approach of (all the
known proofs of) the JL lemma. Specifically, given a subset C of a Hilbert space and
α 2 [1; 1), could one understand when does C admit an embedding with distortion α
into `k

2 for some k 2 N? If one ignores the dependence on the distortion α, then this
qualitative question coincides with Problem 2 (the bi-Lipschitz embedding problem into
Rk), since if a metric space (M; dM) satisfies infk2N cRk (M) < 1, then in particular
it admits a bi-Lipschitz embedding into a Hilbert space.

We shall next describe an obvious necessary condition for bi-Lipschitz embeddability
into Rk for some k 2 N. In what follows, all balls in a metric space (M; dM) will
be closed balls, i.e., for x 2 M and r 2 [0; 1) we write BM(x; r) = fy 2 M :

dM(x; y) 6 rg. Given K 2 [2; 1), a metric space (M; dM) is said to be K-doubling
(e.g. Bouligand [1928] and Coifman and Weiss [1971]) if every ball in M (centered
anywhere in M and of any radius) can be covered by at most K balls of half its radius,
i.e., for every x 2 M and r 2 [0; 1) there is m 2 N with m 6 K and y1; : : : ; ym 2 M
such that BM(x; r) � BM(y1; 1

2
r)[ : : : [ BM(ym; 1

2
r). A metric space is doubling if

it is K-doubling for some K 2 [2; 1).
Fix k 2 N and α > 1. If a metric space (M; dM) embeds with distortion α into

a normed space (Rk ; k � k), then M is (4α + 1)k-doubling. Indeed, fix x 2 M and
r > 0. Let fz1; : : : ; zng � BM(x; r) be a maximal subset (with respect to inclusion)
of BM(x; r) satisfying dM(zi ; zj ) > 1

2
r for distinct i; j 2 f1; : : : ; ng. The max-

imality of fz1; : : : ; zng ensures that for any w 2 BM(x; r) X fz1; : : : ; zng we have
mini2f1;:::;ng dM(w; zi ) 6 1

2
r , i.e., BM(x; r) � BM(z1; 1

2
r) [ : : : [ BM(zn; 1

2
r). We

are assuming that there is an embedding f : M ! Rk that satisfies dM(u; v) 6
kf (u) � f (v)k 6 αdM(u; v) for all u; v 2 M. So, for distinct i; j 2 f1; : : : ; ng

we have r
2

< dM(zi ; zj ) 6 kf (zi ) � f (zj )k 6 αdM(zi ; zj ) 6 α(dM(zi ; x) +

dM(x; zj )) 6 2αr . The reasoning that led to (27) with y1 = 2
r
f (z1); : : : ; yn =

2
r
f (zn) and α replaced by 4α gives k > (logn)/ log(4α+ 1), i.e., n 6 (4α+ 1)k .

Remark 39. In Section 1.3 we recalled that in the context of the Ribe program log jMj

was the initial (in hindsight somewhat naïve, though still very useful) replacement for
the “dimension” of a finite metric space M. This arises naturally also from the above
discussion. Indeed, M is trivially jMj-doubling (simply cover each ball in M by sin-
gletons), and this is the best bound that one could give on the doubling constant of M in
terms of jMj. So, from the perspective of the doubling property, the natural restriction
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on k 2 N for which there exists an embedding of M into some k-dimensional normed
space with O(1) distortion is that k & log jMj.

Using terminology that was recalled in Remark 18, the definition of the doubling
property directly implies that for every θ 2 (0; 1) a metric space M is doubling if and
only if its θ-snowflake Mθ is doubling. With this in mind, Theorem 40 below is a very
important classical achievement of Assouad [1983].

Theorem 40. The following assertions are equivalent for every metric space (M; dM).

• M is doubling.

• For every θ 2 (0; 1) there is k 2 N such that Mθ admits a bi-Lipschitz embed-
ding into Rk .

• Some snowflake of M admits a bi-Lipschitz embedding into Rk for some k 2 N.

Theorem 40 is a qualitative statement, but its proof in Assouad [ibid.] shows that for
every K 2 [2; 1) and θ 2 (0; 1), there are α(K; θ) 2 [1; 1) and k(K; θ) 2 N such
that if M is K-doubling, then Mθ embeds into Rk(K;θ) with distortion α(K; θ); the
argument of Assouad [ibid.] inherently gives that as θ ! 1, i.e., as the θ-snowflakeMθ

approaches the initial metric space M, we have α(K; θ) ! 1 and k(K; θ) ! 1. A
meaningful study of the best-possible asymptotic behavior of the distortionα(K; θ) here
would require specifying which norm on Rk is being considered. Characterizing the
quantitative dependence in terms of geometric properties of the target norm on Rk has
not been carried out yet (it isn’t even clear what should the pertinent geometric properties
be), though see Har-Peled and Mendel [2006] for an almost isometric version when one
considers the `1 norm on Rk (with the dimension k tending to 1 as the distortion
approaches 1); see also Gottlieb and Krauthgamer [2015] for a further partial step in
this direction. In Naor and Neiman [2012] it was shown that for θ 2 [ 1

2
; 1) one could

take k(K; θ) 6 k(K) to be bounded by a constant that depends only on K; the proof of
this fact in Naor and Neiman [ibid.] relies on a probabilistic construction, but in David
and Snipes [2013] a clever and instructive deterministic proof of this phenomenon was
found (though, yielding asymptotically worse estimates on α(K; θ); k(K) than those
of Naor and Neiman [2012]).

Assouad’s theorem is a satisfactory characterization of the doubling property in terms
of embeddability into finite-dimensional Euclidean space. However, it is a “near miss”
as an answer to Problem 2: the same statement with θ = 1would have been a wonderful
resolution of the bi-Lipschitz embedding problem into Rk , showing that a simple intrin-
sic ball covering property is equivalent to bi-Lipschitz embeddability into someRk . It is
important to note that while the snowflaking procedure does in some sense “tend to” the
initial metric space as θ ! 1, for θ < 1 it deforms the initial metric space substantially
(e.g. such a θ-snowflake does not contain any non-constant rectifiable curve). So, while
Assouad’s theorem with the stated snowflaking is useful (examples of nice applications
appear in Bonk and Schramm [2000] and Har-Peled and Mendel [2006]), its failure to
address the bi-Lipschitz category is a major drawback.
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Alas, more than a decade after the publication of Assouad’s theorem, it was shown
in Semmes [1996] (relying a on a rigidity theorem of Pansu [1989]) that Assouad’s the-
orem does not hold with θ = 1, namely there exists a doubling metric space that does
not admit a bi-Lipschitz embedding into Rk for any k 2 N. From the qualitative per-
spective, we now know that the case θ = 1 of Assouad’s theorem fails badly in the
sense that there exists a doubling metric space (the continuous 3-dimensional Heisen-
berg group, equipped with the Carnot–Carathéodory metric) that does not admit a bi-
Lipschitz embedding into any Banach space with the Radon–Nikodým property Lee
and Naor [2006] and Cheeger and Kleiner [2006] (in particular, it does not admit a
bi-Lipschitz embedding into any reflexive or separable dual Banach space, let alone a
finite dimensional Banach space), into any L1(µ) space Cheeger and Kleiner [2010], or
into any Alexandrov space of curvature bounded above or below Pauls [2001] (a further
strengthening appears in the forthcomingwork Austin and Naor [2017]). From the quan-
titative perspective, by nowwe know that balls in the discrete 5-dimensional Heisenberg
group equipped with the word metric (which is doubling) have the asymptotically worst-
possible bi-Lipschitz distortion (as a function of their cardinality) in uniformly convex
Banach spaces Lafforgue and Naor [2014b] (see also Austin, Naor, and Tessera [2013])
and L1(µ) spaces Naor and Young [2017c] and Naor and Young [2017b]; interestingly,
the latter assertion is not true for the 3-dimensional Heisenberg group Naor and Young
[2017a], while the former assertion does hold true for the 3-dimensional Heisenberg
group Lafforgue and Naor [2014b].

All of the known “bad examples” (including, in addition to the Heisenberg group,
those that were subsequently found in Laakso [2000], Laakso [2002], Bourdon and Pajot
[1999], and Cheeger [1999]) which show that the doubling property is not the sought-
after answer to Problem 2 do not even embed into an infinite-dimensional Hilbert space.
This leads to the following natural and intriguing question that was stated by Lang and
Plaut in Lang and Plaut [2001].

Question 41. Does every doubling subset of a Hilbert admit a bi-Lipschitz embedding
into Rk for some k 2 N?

As stated, Question 41 is qualitative, but by a compactness argument (see Naor and
Neiman [2012, Section 4]) if its answer were positive, then for every K 2 [2; 1) there
would exist dK 2 N and αK 2 [1; 1) such that any K-doubling subset of a Hilbert
space would embed into `

dK

2 with distortion αK . If Question 41 had a positive answer,
then it would be very interesting to determine the asymptotic behavior of dK and αK as
K ! 1. A positive answer toQuestion 41would be a solution of Problem 2, though the
intrinsic criterion that it would provide would be quite complicated, namely it would say
that a metric space (M; dM) admits a bi-Lipschitz embedding into Rk for some k 2 N
if and only if it is doubling and satisfies the family of quadratic distance inequalities (2).
More importantly, it seems that any positive answer to Question 41 would devise a
procedure that starts with a subset in a very high-dimensional Euclidean space and, if
that subset is O(1)-doubling, produce a bi-Lipschitz embedding into RO(1); such a
procedure, if possible, would be a quintessential metric dimension reduction result that
is bound to be of major importance. It should be noted that, as proved in Indyk and
Naor [2007, Remark 4.1], any such general procedure cannot be an embedding into
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low-dimensions via a linear mapping as in the JL lemma, i.e., Question 41 calls for a
genuinely nonlinear dimension reduction technique.6

Despite the above reasons why a positive answer to Question 41would be very worth-
while, we suspect that Question 41 has a negative answer. A specific doubling subset
of a Hilbert space which is a potential counterexample to Question 41 was constructed
in Naor and Neiman [2012, Question 3], but to date it remains unknown whether or not
this subset admits a bi-Lipschitz embedding into RO(1). If the answer to Question 41 is
indeed negative, then the next challenge would be to formulate a candidate conjectural
characterization for resolving the bi-Lipschitz embedding problem into Rk .

The analogue of Question 41 is known to fail in some non-Hilbertian settings. Specif-
ically, it follows from Lafforgue and Naor [2014a], Naor and Young [2017c], and Naor
and Young [2017b] that for every p 2 (2; 1) there exists a doubling subset Dp of
Lp(R) that does not admit a bi-Lipschitz embedding into any Lq(µ) space for any
q 2 [1; p). So, in particular there is no bi-Lipschitz embedding of Dp into any finite-
dimensional normed space, and a fortiori there is no such embedding into any finite-
dimensional subspace of Lp(R). Note that in Lafforgue and Naor [2014a] this state-
ment is made for embeddings of Dp into Lq(µ) in the reflexive range q 2 (1; p), and
the case q = 1 is treated in Lafforgue and Naor [ibid.] only when p > p0 for some
universal constant p0 > 2. The fact that Dp does not admit a bi-Lipschitz embed-
ding into any L1(µ) space follows by combining the argument of Lafforgue and Naor
[ibid.] with the more recent result7 of Naor and Young [2017c] and Naor and Young
[2017b] when the underlying group in the construction of Lafforgue and Naor [2014a]
is the 5-dimensional Heisenberg group; interestingly we now know Naor and Young
[2017a] that if one carries out the construction of Lafforgue and Naor [2014a] for the 3-
dimensional Heisenberg group, then the reasoning of Lafforgue and Naor [ibid.] would
yield the above conclusion only when p > 4. A different example of a doubling subset
of Lp(R) that fails to embed bi-Lipschitzly into `k

p for any k 2 N was found in Bartal,
Gottlieb, and Neiman [2015]. In L1(R), there is an even stronger counterexample Laf-
forgue and Naor [2014a, Remark 1.4]: By Gupta, Newman, Rabinovich, and Sinclair
[2004], the spaces considered in Laakso [2000] and Laakso [2002] yields a doubling sub-
set of L1(R) that by Cheeger and Kleiner [2009] (see also M. I. Ostrovskii [2011]) does
not admit a bi-Lipschitz embedding into any Banach space with the Radon–Nikodým
property Lee and Naor [2006] and Cheeger and Kleiner [2006], hence it does not admit

6On its own, the established necessity of obtaining a genuinely nonlinear embedding method into low di-
mensions should not discourage attempts to answer Question 41, because some rigorous nonlinear dimension
reduction methods have been devised in the literature; see e.g. Assouad [1983], Semmes [1999], M. Charikar
and Sahai [2002], Gupta, Krauthgamer, and Lee [2003], Bartal, Linial, Mendel, and Naor [2004], Bartal and
Mendel [2004], Krauthgamer, Lee, Mendel, and Naor [2005], Lang and Schlichenmaier [2005], Brinkman,
Karagiozova, and Lee [2007], Lee, Naor, and Peres [2009], Chan, Gupta, and Talwar [2010], Abraham, Bartal,
and Neiman [2011], Bartal, Recht, and Schulman [2011], Gupta and Talwar [2011], Naor and Neiman [2012],
David and Snipes [2013], Lee, deMesmay, andMoharrami [2013], Newman and Rabinovich [2013], Gottlieb
and Krauthgamer [2015], Bartal and Gottlieb [2016], Neiman [2016], M. Ostrovskii and Randrianantoanina
[2016], and Andoni, Naor, and Neiman [2017]. However, all of these approaches seem far from addressing
Question 41.

7When Lafforgue and Naor [2014a] was written, only a weaker bound of Cheeger, Kleiner, and Naor
[2011] was known.
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a bi-Lipschitz embedding into any reflexive or separable dual Banach space. The poten-
tial validity of the above statement for p 2 (1; 2) remains an intriguing open problem,
and the case p = 2 is of course Question 41.

4 Matoušek’s random metrics, Milnor–Thom, and coarse
dimension reduction

Fix twomoduliω;Ω : [0; 1) ! [0; 1) as in Theorem 17, i.e., they are increasing func-
tions andω 6 Ω point-wise. For a metric space (M; dM) define dim(ω;Ω)(M; dM) to
be the smallest dimension k 2 N for which there exists a k-dimensional normed space
(X; k � kX ) = (X(M); k � kX(M)) and a mapping f : M ! X that satisfies (18). If no
such k 2 N exists, then write dim(ω;Ω)(M; dM) = 1. For α 2 [1; 1), this naturally
generalizes the notation dimα(M; dM) of Linial, London, and Rabinovich [1995] in
the bi-Lipschitz setting, which coincides with dim(t;αt)(M; dM).

Recalling (17), the goal of this section is to show that dim(ω;Ω)(M; dM) > ncβ(ω;Ω)

for arbitrarily large n 2 N, some universal constant c 2 (0; 1) and some metric space
(M; dM) with jMj = 3n, thus proving Theorem 17. We will do so by following Ma-
toušek’s beautiful ideas in Matoušek [1996], yielding a probabilistic argument for the
existence of such an intrinsically (coarsely) high-dimensional metric space (M; dM).

The collections of subsets of a set S of size ` 2 N will be denoted below
�

S
`

�
= fe �

S : jej = `g. Fix n 2 N and a bipartite graphG = (L; R; E)with jLj = jRj = n. Thus, L
and R are disjoint n-point sets (the “left side” and “right side” of G) and E is a subset of�L[R

2

�
consisting only of e � L [ R such that jL \ ej = jR \ ej = 1. Following Matoušek

Matoušek [ibid.], any such graph G can used as follows as a “template” for obtaining a
family 2jEj graphs, each of which having 3n vertices. For each λ 2 L introduce two new
elements λ+; λ�. Denote L+ = fλ+ : λ 2 Lg and L� = fλ� : λ 2 Lg. Assume that the
sets L+; L�; R are disjoint. For every σ : E ! f�;+g define

(45) Eσ
def
=
n˚
λσ(fλ;ρg); ρ

	
: (λ; ρ) 2 L � R ^ fλ; ρg 2 E

o
�

 
L+ [ L� [ R

2

!
:

We thus obtain a bipartite graph Gσ = (L+ [ L�; R; Eσ). By choosing σ : E ! f�;+g

uniformly at random, we think of Gσ as a random graph; let P denote the uniform
probability measure on the set of all such σ. In other words, consider σ : E ! f�;+g

to be independent tosses of a fair coin, one for each edge of G. Given an outcome of
the coin tosses σ, each edge e 2 E of G induces an element of Eσ as follows. If λ
is the endpoint of e in L and ρ is the endpoint of e in R, then Eσ contains exactly one
of the unordered pairs fλ+; ρg; fλ�; ρg depending on whether σ(e) = + or σ(e) = �,
respectively; see Figure 1 below for a schematic depiction of this construction.

Let dGσ
: (L+ [ L� [ R) � (L+ [ L� [ R) ! [0; 1] be the shortest-path metric

corresponding to Gσ, with the convention that dGσ
(x; y) = 1 if x; y 2 L+ [ L� [ R

belong to different connected components of Gσ. We record for convenience of later
use the following very simple observation.
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Figure 1 – The random bipartite graph Gσ = (L+ [ L�; R; Eσ) that is associated
to the bipartite graph G = (L; R; E) and coin flips σ : E ! f�;+g. Suppose that
(λ; ρ) 2 L � R and e = fλ; ρg 2 E. If the outcome of the coin that was flipped
for the edge e is+, then include in Eσ the red edge between λ+ and ρ and do not
include an edge between λ� and ρ. If the outcome of the coin that was flipped for
the edge e is �, then include in Eσ the blue edge between λ� and ρ and do not
include an edge between λ+ and ρ.

Claim 42. Fix λ 2 L and σ : E ! f�;+g. Suppose that k
def
= dGσ

(λ+; λ�) < 1. Then
the original “template graph” G contains a cycle of length at most k.

Proof. Denote by π : L+ [ L� [ R ! L [ R the canonical “projection,” i.e., π is the
identity mapping on R and π(λ+) = π(λ�) = λ for every λ 2 L. The natural induced
mapping π : Eσ ! E (given by π(fx; yg) = fπ(x);π(y)g for each fx; yg 2 Eσ) is one-
to-one, because by construction Eσ contains one and only one of the unordered pairs
fµ+; ρg; fµ�; ρg for each (µ; ρ) 2 L � R with fµ; ρg 2 E.

Let γ : f0; : : : ; kg ! L+ [ L� [ R be a geodesic in Gσ that joins λ+ and λ�. Thus
γ(0) = λ+, γ(k) = λ� and ffγ(i � 1);γ(i)ggk

i=1 are distinct edges in Eσ (they are
distinct because γ is a shortest path joining λ+ and λ� in Gσ). By the injectivity of π
on Eσ, the unordered pairs ffπ(γ(i � 1));π(γ(i))ggk

i=1 are distinct edges in E. So, the
subgraph H of G that is induced on the vertices fπ(γ(i))gk

i=0 has at least k edges. But,
H has at most k vertices, because π(γ(0)) = π(γ(k)) = λ. Hence H is not a tree, i.e.,
it contains a cycle of length at most k.

Even though dGσ
is not necessarily a metric due to its possible infinite values, for

every s; T 2 (0; 1) we can re-scale and truncate it so as to obtain a (random) metric
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d s;T
σ : (L+ [ L� [ R) � (L+ [ L� [ R) ! [0; 1] by defining

(46) 8 x; y 2 L+ [ L�
[ R; d s;T

σ (x; y)
def
= min

˚
sdGσ

(x; y); T
	
:

The following lemma shows that if in the above construction G has many edges and
no short cycles, then with overwhelmingly high probability the random metric in (46)
has large coarse metric dimension.

Lemma 43. There is a universal constant η > 0 with the following property. For every
ω;Ω : [0; 1) ! [0; 1) as above, every n 2 N and every template graph G = (L; R; E)
as above, suppose that g 2 N and s; T > 0 satisfy

(47)
ω�1(2Ω(s))

s
< g 6

T

s
;

and that the shortest cycle in G has length at least g. Then for every δ 2 (0; 1
3
] we have

(48) P

�
σ : E ! f�;+g : dimω;Ω

�
L+ [ L�

[ R; d s;T
σ

�
6 δη

jEj

n

�
<
�
2δδ

��jEj
:

In particular, by choosing δ = 1
3
in (48) we deduce that

(49) P

�
σ : E ! f�;+g : dimω;Ω

�
L+ [ L�

[ R; d s;T
σ

�
>
ηjEj

3n

�
> 1 � e� 1

5 jEj:

Prior to proving Lemma 43, we shall now explain how it implies Theorem 17.

Proof of Theorem 17 assuming Lemma 43. Recalling (17), we can fix s 2 (0; 1) such
that

(50) g
def
=

�
ω�1(2Ω(s))

s

�
+ 1 6

2

β(ω;Ω)
:

There is a universal constant κ 2 (0; 1) such that for arbitrarily large n 2 N there exists
a bipartite graph G = (L; R; E) with jLj = jRj = n, girth at least g (i.e., G does not
contain any cycle of length smaller than g) and jEj > n1+κ/g . Determining the largest
possible value of κ here is a well-studied and longstanding open problem in graph theory
(see e.g. the discussions in Bollobás [2001], Matoušek [2002], and M. I. Ostrovskii
[2013]), but for the present purposes any value of κ suffices. For the latter (much more
modest) requirement, one can obtainG via a simple probabilistic construction (choosing
each of the edges independently at random and deleting an arbitrary edge from each
cycle of length at most g � 1). See Lazebnik, Ustimenko, and Woldar [1995] for the
best known lower bound on κ here (arising from an algebraic construction).

We shall use the above graph G as the template graph for the random graphs
fGσgσ:E!f�;+g. Our choice of g in (50) ensures that if we write T = sg, then (47)
holds true and we obtain a distribution over metric spaces (L+ [L� [R; d s;T

σ ) for which
the conclusion (49) of Lemma 43 holds true. Hence, by choosing c = κ/2 and substi-
tuting the bound jEj > n1+κ/g into (49) while using (50) we have

P
h
σ : E ! f�;+g : dimω;Ω

�
L+ [ L� [ R; d s;T

σ

�
& ncβ(ω;Ω)

i
> 1�exp

�
�
1

5
n1+cβ(ω;Ω)

�
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Consequently, by the definition of dimω;Ω(�), with probability exponentially close to 1
the random metric space (L+ [ L� [ R; d s;T

σ ) satisfies the assertion of Theorem 17.

The proof of Lemma 43 relies on the following lemma that was obtained implicitly
by Matoušek [1996]. Its proof takes as input a clever argument of Alon [1986] which
uses the classical bound of Milnor [1964] and Thom [1965] on the number of connected
components of a real algebraic variety.

Lemma 44. Fix m; n 2 N and E � f1; : : : ; ng2. Suppose that A1 = (a1
ij ); : : : ; Am =

(am
ij ) 2 Mn(R) are matrices that satisfy ak

ij ¤ 0 for all (i; j ) 2 E and k 2 f1; : : : ; mg,
and that the sign vectors

(51)
�
sign(a1

ij )
�
(i;j )2E;

�
sign(a2

ij )
�
(i;j )2E : : : ;

�
sign(am

ij )
�
(i;j )2E � f�1; 1g

E

are distinct. Then there exists k 2 f1; : : : ; mg such that

(52) rank(Ak) &
logm

n log
�

jEj

logm

� :

Proof. Let α 2 N be an auxiliary parameter that will be specified later so as to opti-
mize the ensuing argument. Write h = djEj/αe and fix any partition of E into subsets
J1; : : : ; Jh ¤ ¿ (i.e., J1; : : : ; Jh � E are pairwise disjoint and E = J1 [ : : : [ Jh) that
satisfy jJuj 6 α for all u 2 f1; : : : ; hg.

Denote

(53) µ
def
= min

(i;j )2E
k2f1;:::;mg

ˇ̌
ak

ij

ˇ̌
and r

def
= max

k2f1;:::;mg
rank(Ak):

Lemma 44 assumes that µ > 0, and its goal is to show that r is at least a universal
constant multiple of the quantity that appears in the right hand side on (52). The defi-
nition of r means that for every k 2 f1; : : : ; mg there exist n-by-r and r-by-n matrices
Bk 2 Mn�r(R) and Ck 2 Mr�n(R), respectively, such that Ak = BkCk . Define
vectors fζk = (ζk

1 ; : : : ; ζk
h
) 2 Rhgm

k=1
by setting

(54) 8 (k; u) 2 f1; : : : ; mg � f1; : : : ; hg; ζk
u

def
=

vuut Y
(i;j )2Ju

(ak
ij )

2 �
1

2
µ2jJuj:

Observe that the definition of µ in (53) ensures that the quantity under the square root
in (54) is positive, so ζu 2 (0; 1). Define polynomials fpu : Mn�r(R) � Mr�n(R) �

Rh ! Rgh
u=1 by setting

(55)

pu(X; Y; z)
def
=

Y
(i;j )2Ju

(XY )2ij �z2
u �

1

2
µ2jJuj =

Y
(i;j )2Ju

� nX
k=1

xikykj

�2

�z2
u �

1

2
µ2jJuj;

for all u 2 f1; : : : ; hg, X = (xis) 2 Mn�r(R), Y = (ysj ) 2 Mr�n(R) and z =

(zi ) 2 Rh. The above notation ensures that pu(Bk ; Ck ; ζk) = 0 for all k 2 f1; : : : ; mg
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and u 2 f1; : : : ; hg. In other words, f(Bk ; Ck ; ζk)g
m
k=1

� V , where V � Mn�r(R) �

Mr�n(R) � Rh is the variety

(56) V
def
=

h\
u=1

n
(X; Y; z) 2 Mn�r(R) � Mr�n(R) � Rh; pu(X; Y; z) = 0

o
:

We claim that V has at least m connected components. In fact, if k; ` 2 f1; : : : ; mg

are distinct, then (Bk ; Ck ; ζk) and (B`; C`; ζ`) belong to different connected compo-
nent of V . Indeed, suppose for the sake of obtaining a contradiction that C � V is a
connected subset of V and (Bk ; Ck ; ζk); (B`; C`; ζ`) 2 C. Since k ¤ `, by switching
the roles of k and ` if necessary, the assumption of Lemma 44 ensures that there ex-
ists (i; j ) 2 E such that (BkCk)ij = ak

ij < 0 < a`
ij = (B`C`)ij . So, if we denote

ψ : C ! R by ψ(X; Y; z) = (XY )ij , then ψ(Bk ; Ck ; ζk) < 0 < ψ(B`; C`; ζ`).
Since C is connected and ψ is continuous, it follows that ψ(X; Y; z) = 0 for some
(X; Y; z) 2 C. Let u 2 f1; : : : ; hg be the index for which (i; j ) 2 Ju. By the defi-
nition (55) of pu, the fact that ψ(X; Y; z) = (XY )ij = 0 implies that pu(X; Y; z) =

�z2
u �

1
2
µjJuj 6 �

1
2
µjJuj < 0, since µ > 0. Hence (X; Y; z) … V , in contradiction to

our choice of (X; Y; z) as an element of C � V .
Recalling (55), for all u 2 f1; : : : ; hg the degree of pu is 4jJuj 6 4α. So, the variety

V in (56) is defined using h polynomials of degree at most 4α in 2nr + h variables.
By (a special case of) a theorem of Milnor [1964] and Thom [1965], the number of
connected components of V is at most 4α(8α�1)2nr+h�1 = 4α(8α�1)2nr+djEj/αe�1.
Since we already established that this number of connected components is at least m, it
follows that

(57) m 6 4α(8α � 1)
2nr+

l
jEj
α

m
�1

() r >
1

2n

 
log

�
m
4α

�
log(8α � 1)

�

�
jEj

α

�
+ 1

!
:

The value of α 2 N that maximizes the rightmost quantity in (57) satisfies

α �
jEj

log(2m)

�
log

�
jEj

log(2m)

��2

:

For this α the estimate (57) simplifies to imply the desired bound

r & logm/(n log(jEj/ logm)):

Proof of Lemma 43. For notational convenience, write L = fλ1; : : : ; λng andR = fρ1; : : : ; ρng,
and think of E as a subset of f1; : : : ; ng2 (i.e., (i; j ) 2 E if and only if fλi ; ρj g is an edge
of G).

For every ∆ 2 N denote

(58) B∆
def
=
n
σ : E ! f�;+g : dimω;Ω

�
L+ [ L�

[ R; d s;T
σ

�
6 ∆

o
:
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Then, by the definition of dimω;Ω(�), if σ 2 B∆, we can fix a normed space (Xσ; k�kXσ
)

with dim(Xσ) = ∆ and a mapping fσ : L+ [ L� [ R ! Xσ that satisfies
(59)
8 x; y 2 L+ [ L�

[ R; ω
�
d s;T
σ (x; y)

�
6 kfσ(x) � fσ(y)kXσ

6 Ω
�
d s;T
σ (x; y)

�
:

Using the Hahn–Banach theorem, for each i 2 f1; : : : ; ng and σ 2 B∆ we can fix a
linear functional z�

σ;i 2 X�
σ of unit norm that normalizes the vector fσ(λ

+
i )� fσ(λ

�
i ) 2

Xσ, i.e.,

z�
σ;i

�
fσ(λ

+
i ) � fσ(λ

�
i )
�
=
fσ(λ

+
i ) � fσ(λ

+
i )


Xσ
and(60)

kz�
σ;i kX�

σ
= sup

w2XσXf0g

ˇ̌
z�
σ;i (w)

ˇ̌
kwkXσ

= 1:(61)

Using these linear functionals, define an n � n matrix Aσ = (aσ
ij ) 2 Mn(R) by setting

(62) 8(i; j ) 2 f1; : : : ; ng
2; aσ

ij

def
= z�

σ;i

�
fσ(ρj )

�
�

1

2
z�
σ;i

�
fσ(λ

+
i ) + fσ(λ

�
i )
�
:

Observe in passing that the following identity holds true for every i; j 2 f1; : : : ; ng and
σ 2 B∆.

(63) σ(i; j )aσ
ij =

1

2
z�
σ;i

�
fσ(λ

+
i ) � fσ(λ

�
i )
�
+ σ(i; j )z�

σ;i

�
fσ(ρj ) � fσ

�
λ
σ(i;j )
i

��
:

(Simply verify (63) for the cases σ(i; j ) = + and σ(i; j ) = � separately, using the
linearity of z�

σ;i .)
Since we are assuming in Lemma 43 that the shortest cycle in the template graph

G has length at least g, it follows from Claim 42 that dGσ
(λ+i ; λ�i ) > g for all i 2

f1; : : : ; ng and σ : E ! f�;+g. So,

(64) d s;T
σ (λ+i ; λ�i )

(46)
= min

˚
sdGσ

(λ+i ; λ�i ); T
	

> minfsg; T g
(47)
= sg:

Recalling (45), we have fλ
σ(i;j )
i ; ρj g 2 Eσ for all (i; j ) 2 E. Hence dGσ

(λ
σ(i;j )
i ; ρj ) =

1 and therefore

(65) d s;T
σ

�
λ
σ(i;j )
i ; ρj

� (46)
6 sdGσ

�
λ
σ(i;j )
i ; ρj

�
= s:

Consequently, for every (i; j ) 2 E and σ 2 B∆ we have

σ(i; j )aσ
ij

(63)
>

1

2
z�
σ;i

�
fσ(λ

+
i ) � fσ(λ

�
i )
�

�
z�

σ;i


X�

σ
�

fσ(ρj ) � fσ

�
λ
σ(i;j )
i

�
Xσ

(60)
=

1

2

fσ(λ
+
i ) � fσ(λ

�
i )


Xσ
�

fσ(ρj ) � fσ

�
λ
σ(i;j )
i

�
Xσ

(59)
>

1

2
ω
�
d s;T
σ (λ+i ; λ�i )

�
� Ω

�
d s;T
σ

�
λ
σ(i;j )
i ; ρj

��
(64)^(65)

>
1

2
ω(sg) � Ω(s)

(47)
> 0:
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Hence, aσ
ij ¤ 0 and sign(aσ

ij ) = σ(i; j ) for all (i; j ) 2 E and σ 2 B∆. This is precisely
the setting of Lemma 44 (with m = jB∆j), from which we conclude that there exists
τ 2 B∆ such that

(66) rank(Aτ) >
c log jB∆j

n log
�

jEj

log jB∆j

� ;

where c 2 (0; 1) is a universal constant. Henceforth, we shall fix a specific τ 2 B∆ as
in (66).

Since τ 2 B∆ we have dim(Xτ) = ∆, so we can fix a basis e1τ; : : : ; e∆τ of Xτ and
for every j 2 f1; : : : ; ng write fτ(ρj ) = γ1τ;j e1τ + : : : + γ∆τ;j e∆τ for some scalars
γ1τ;j ; : : : ;γ∆τ;j 2 R. Hence,

(aτ
ij )

n
i=1

(62)
= γ1τ;j

�
z�
τ;i (e

1
τ)
�n

i=1
+: : :+γ∆τ;j

�
z�
τ;i (e

∆
τ )
�n

i=1
�
1

2

�
z�
σ;i

�
fτ(λ

+
i )+fτ(λ

�
i )
��n

i=1

We have thus expressed the columns of the matrix Aτ as elements of the span of the
∆+ 1 vectors�

z�
τ;i (e

1
τ)
�n

i=1
;
�
z�
τ;i (e

2
τ)
�n

i=1
; : : : ;

�
z�
τ;i (e

∆
τ )
�n

i=1
;
�
z�
σ;i

�
fτ(λ

+
i ) + fτ(λ

�
i )
��n

i=1
2 Rn:

Consequently, the rank of Aτ is at most∆+1 6 2∆. By contrasting this with (66), we
see that

(67)
jEj

log jB∆j
log

�
jEj

log jB∆j

�
>

cjEj

2∆n
:

We shall now conclude by showing that Lemma 43 holds true with η = c/2. Indeed,
fix δ 2 (0; 1

3
] and observe that we may assume also that δηjEj/n > 1, since otherwise

the left hand side of (48) vanishes. Then, by choosing ∆ = bδηjEj/nc 2 N in the
above reasoning it follows from (67) that

jEj

log jB∆j
log

�
jEj

log jB∆j

�
>

c

2δη
=

1

δ
> 3 > e:

This implies that jB∆j 6 δ�δjEj. Equivalently, P [B∆] 6 (2δ)�δjEj, which is the desired
bound (48).

5 Nonlinear spectral gaps and impossibility of average dimension
reduction

Fix n 2 N and an irreducible reversible row-stochastic matrix A = (aij ) 2 Mn(R).
This implies that there is a unique8 A-stationary probabilitymeasureπ = (π1; : : : ;πn) 2

8We are assuming irreducibility only for notational convenience, namely so that π will be unique and
could therefore be suppressed in the ensuing notation. Our arguments work for any stochastic matrix and any
probability measure π on f1; : : : ; ng with respect to which A is reversible. We suggest focusing initially on
the case when A is symmetric and π is the uniform measure on f1; : : : ; ng, though the general case is useful
for treating graphs that are not regular, e.g. those of Section 4. See Levin, Peres, and Wilmer [2017] for the
relevant background.
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[0; 1]n on f1; : : : ; ng, namely πA = π, and we have the reversibility condition πi aij =

πj aj i for all i; j 2 f1; : : : ; ng. Then A is a self-adjoint contraction on L2(π), and we
denote by 1 = λ1(A) > λ2(A) > : : : > λn(A) > �1 the decreasing rearrangement of
its eigenvalues.

Given a metric space (M; dM) and p > 0, define γ(A; d
p

M) to be the infimum over
those γ > 0 such that
(68)

8 x1; : : : ; xn 2 M;

nX
i=1

nX
j=1

πiπj dM(xi ; xj )
p 6 γ

nX
i=1

nX
j=1

πi aij dM(xi ; xj )
p:

This definition is implicit in Gromov [2003], and appeared explicitly in Naor and Silber-
man [2011]; see Mendel and Naor [2014], Naor [2014], and Mendel and Naor [2015]
for a detailed treatment. It suffices to note here that if (H; k � kH ) is a Hilbert space and
p = 2, then by expanding the squares one directly sees thatγ(A; k�k2H ) = 1/(1�λ2(A))

is the reciprocal of the spectral gap of A. In general, we think of γ(A; d
p

M) as mea-
suring the magnitude of the nonlinear spectral gap of A with respect to the kernel
d

p

M : M � M ! [0; 1).
Using the notation that was recalled in Section 1.1, the definition (68) immediately

implies that nonlinear spectral gaps are bi-Lipschitz invariants in the sense thatγ(A; d
p

M) 6
cN(M)pγ(A; d

p

N) for every two metric spaces (M; dM) and (N; dN), every matrix A
as above and every p > 0. In particular, if (H; k � kH ) is a Hilbert space into which
(M; dM) admits a bi-Lipschitz embedding, then we have the following general (trivial)
bound.

(69)
q
γ(A; d 2

M) 6 c2(M)
q
γ(A; k � k2H ):

In the recent work Naor [2017] we proved the following theorem, which improves
over (69) when M is a Banach space.

Theorem 45. Suppose that (X; k � kX ) is a Banach space and that (H; k � kH ) is a
Hilbert space. Then for every M 2 (0; 1) and every matrix A as above for which
λ2(A) 6 1 � M 2/c2(X)2 we have

(70)
q
γ
�
A; k � k2X

�
.

log(M + 1)

M
c2(X)

q
γ(A; k � k2H ):

In the setting of Theorem 45, since γ(A; k � k2H ) = 1/(1 � λ2(A)), the bound (70)
can be rewritten as

γ
�
A; k � k

2
X

�
.
�
log(c2(X)

p
1 � λ2(A) + 1)

1 � λ2(A)

�2

;

which is how Theorem 45 was stated in Naor [ibid.]. Note that (70) coincides (up to
the implicit constant factor) with the trivial bound (69) if M = O(1), but (70) is an
asymptotic improvement over (69) as M ! 1.

The proof of Theorem 45 in Naor [ibid.] is a short interpolation argument that takes
as input a theorem fromNaor [2014]. While we do not know of a different proof of (70),
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below we will present a new and self-contained derivation of the following weaker esti-
mate (using the same notation as in Theorem 45) that suffices for deducing Theorem 19.

(71)
q
γ
�
A; k � k2X

�
.

log(c2(X) + 1)

M
c2(X)

q
γ(A; k � k2H ):

The proof of (71) appears in Section 5.1 below. We will next show how (71) implies
Theorem 19 as well as the leftmost inequality in (12), which includes as a special case
the triple logarithmic estimate in (22).

Given n 2 N and an n-vertex connected graph G = (f1; : : : ; ng; EG), let AG be its
randomwalk matrix, i.e., if degG(i) is the degree in G of the vertex i 2 f1; : : : ; ng, then
(AG)ij = 1fi;j g2EG/ degG(i) for all i; j 2 f1; : : : ; ng. For i 2 f1; : : : ; ngwe also denote
πG

i = degG(i)/(2jEGj). Thus, πG 2 Rn is the probability measure on f1; : : : ; ng with
respect to which AG is reversible. We will use the simpler notation λi (AG) = λi (G)

for every i 2 f1; : : : ; ng. For p 2 (0; 1)and a metric space (M; dM), we will write
γ(G; d 2

M) = γ(AG; d 2
M). The shortest-path metric that is induced by G on f1; : : : ; ng

will be denoted dG : f1; : : : ; ng � f1; : : : ; ng ! N [ f0g.

Theorem 46. There is a universal constant K > 1 with the following property. Fix
n 2 N and α > 1. Let A 2 Mn(R) and π 2 [0; 1]n be as above. For every normed
space (X; k � kX ), if f : f1; : : : ; ng ! X satisfies

(72)
� nX

i=1

nX
j=1

πi aij kf (i) � f (j )k2X

� 1
2

6 α;

then necessarily

(73) dim(X) & K
1�λ2(A)

α

pPn
i=1

Pn
j=1 πiπj kf (i)�f (j )k2

X :

In particular, in the special case when G = (f1; : : : ; ng; EG) is a connected graph we
have�

1

jEGj

X
fi;j g2EG

kf (i)�f (j )k2X

� 1
2

6 α H) dim(X) & K
1�λ2(G)

α

qPn
i=1

Pn
j=1 πG

i
πG

j
kf (i)�f (j )k2

X

In the case of regular graphs with a spectral gap, Theorem 46 has the following
corollary.

Corollary 47. Fix two integers n; r > 3 and let G = (f1; : : : ; ng; EG) be a connected
r-regular graph. If (X; k � kX ) is a normed space into which there is a mapping f :

f1; : : : ; ng ! X that satisfies�
1

jEGj

X
fi;j g2EG

kf (i) � f (j )k2X

� 1
2

6 α and(74)

�
1

n2

nX
i=1

nX
j=1

kf (i) � f (j )k2X

� 1
2

>
1

n2

nX
i=1

nX
j=1

dG(i; j );(75)

then necessarily
dim(X) & n

c(1�λ2(G))
α log r ;

where c 2 (0; 1) is a universal constant.
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Proof. This is nothing more than a special case of Theorem 46 once we note that by a
straightforward and standard counting argument (see e.g. Matoušek [1997]) we have
1
n

Pn
i=1

Pn
j=1 dG(i; j ) & logr n.

For every integer r > 3 there exist arbitrarily large r-regular graphsGwith λ2(G) =

1�Ω(1); see Hoory, Linial, andWigderson [2006] for this and much more on such spec-
tral expanders. Corollary 47 shows that the shortest-path metric on any such graph with
r = O(1) satisfies the conclusion of Theorem 19, because the α-Lipschitz assumption
of Theorem 19 implies the first inequality in (74) and the assumption

1

n2

nX
i=1

nX
j=1

kf (i) � f (j )kX >
1

n2

nX
i=1

nX
j=1

dG(i; j )

of Theorem 19 implies the second inequality in (74) (using Jensen’s inequality).
Note that we actually proved above that any expander is “metrically high dimen-

sional” in a stronger sense. Specifically, if G = (f1; : : : ; ng; EG) is a O(1)-spectral ex-
pander, i.e., it is O(1)-regular and λ2(G) 6 1�Ω(1), and one finds vectors x1; : : : ; xn

in a normed space (X; k � kX ) for which the averages 1
jEGj

P
fi;j g2EG

kxi � xj k2X and
1

n2

Pn
i;j=1 kxi � xj k2X are within a O(1) factor of the averages

1

jEGj

X
fi;j g2EG

dG(i; j )2 = 1

and 1
n2

Pn
i;j=1 dG(i; j )2, respectively, then this “finitary average distance information”

(up to a fixed but potentially very large multiplicative error) forces the ambient space
X to be very high (worst-possible) dimensional, namely dim(X) > nΩ(1).
Remark 48. If one replaces (74) by the requirement that for an increasing modulus
ω : [0; 1) ! [0; 1) we have,�

1

jEGj

X
fi;j g2EG

kf (i) � f (j )k2X

� 1
2

6 1 and(76)

�
1

n2

nX
i=1

nX
j=1

kf (i) � f (j )k2X

� 1
2

>
1

n2

nX
i=1

nX
j=1

ω
�
dG(i; j )

�
;(77)

then the above argument applies mutatis mutandis to yield the conclusion

(78) dim(X) & ec(1�λ2(G))ω(c logr n):

Indeed, the aforementioned counting argument shows that least 50%of the pairs (i; j ) 2

f1; : : : ; ng2 satisfy dG(i; j ) & logr n. Compare (78) to Theorem 17 which provides
a stronger bound if the average requirement (76) is replaced by its pairwise counter-
part (18). Nevertheless, the bound (78) is quite sharp (at least when r = O(1) and
λ2(G) = 1�Ω(1)), in the sense that there is a normed space (X; k � kX ) for which (76)
holds and

(79) dim(X) . e
C (log r)ω

�
C logn

p
1�λ2(G)

�
logn;
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where C > 0 is a universal constant. Indeed, by Chung, Faber, and Manteuffel [1994]
the diameter of the metric space (f1; : : : ; ng; dG) satisfies

diam(G) . (logn)/
q
1 � λ2(G):

By an application of (12) with α � (logr n)/ω(diam(G)) there exists a normed
space (X; k � kX ) with dim(X) . nO(1/α) logn, thus (79) holds, and a mapping f :

f1; : : : ; ng ! X that satisfies dG(i; j )/α 6 kf (i) � f (j )kX 6 dG(i; j ) for all
i; j 2 f1; : : : ; ng. Hence, the first inequality in (76) holds, and�

1

n2

nX
i=1

nX
j=1

kf (i) � f (j )k2X

� 1
2

>
1

α

�
1

n2

nX
i=1

nX
j=1

dG(i; j )2
� 1

2

(80)

&
logr n

α
(81)

� ω
�
diam(G)

�
(82)

>
1

n2

nX
i=1

nX
j=1

ω
�
dG(i; j )

�
:(83)

Proof of Theorem 46 assuming (71). Let C 2 (0; 1) be the implicit universal constant
in (71). Then

(84)� nX
i=1

nX
j=1

πiπj kf (i)�f (j )k2X

� 1
2 (68)

6
q
γ(A; k � k2X )

� nX
i=1

nX
j=1

πi aij kf (i)�f (j )k2X

� 1
2

(72)
6 α

q
γ(A; k � k2X )

(71)
6

Cα log(c2(X) + 1)

1 � λ2(A)
;

where the last step of (84) is an application of (71) with M = c2(X)
p
1 � λ2(A),

while using that for a Hilbert space H we have γ(A; k � k2H ) = 1/(1 � λ2(A)). It
follows that
(85)

2
q
dim(X) > 2c2(X) > c2(X) + 1

(84)
> e

1�λ2(A)
Cα

pPn
i=1

Pn
j=1 πiπj kf (i)�f (j )k2

X ;

where the first step of (85) uses John’s theorem John [1948]. This establishes (73) with
K = e2/C > 1.

For non-contracting embeddings (in particular, for bi-Lipschitz embedding), the proof
of the following lemma is an adaptation of the proof of Abraham, Bartal, and Neiman
[2011, Theorem 13].
Lemma 49. Fix two integers n; r > 3 and let G = (f1; : : : ; ng; EG) be a connected r-
regular graph. If (X; k � kX ) is a normed space into which there is a mapping
f : f1; : : : ; ng ! X that satisfies
(86)

min
i;j 2f1;:::;ng

i¤j

kf (i) � f (j )kX

dG(i; j )
> 1; and

�
1

jEGj

X
fi;j g2EG

kf (i)�f (j )k2X

� 1
2

6 α:
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Then necessarily

(87)
logn

log r
n

1
2 dim(X) . α

q
γ(G; k � k2X ):

Prior to proving Lemma 49, we will derive some of its corollaries. For the terminol-
ogy of Corollary 50 below, recall that a Banach space Y is said to be B-convex Beck
[1962] if `1 is not finitely representable in Y ; see the survey Maurey [2003] for more
on this important notion, including useful analytic, geometric and probabilistic charac-
terizations.

Corollary 50. There is a universal constant C 2 (0; 1) for which the following asser-
tion holds true. Let Y be an infinite dimensional B-convex Banach space. For arbitrar-
ily large n 2 N, if α > C logn, then we have

(88) kαn (`1; Y ) �Y

logn

log
�

α
logn

� :

Thus, we have in particular kC logn
n (`1; Y ) �Y logn.

Proof. The upper bound kαn (`1; Y ) . (logn)/ log(α/ logn) actually holds for any
infinite dimensional Banach space Y . Indeed, by Bourgain’s embedding theorem Bour-
gain [1985a] any n-point metric spaceM admits an embedding f into `2 with distortion
A logn, where A 2 (0; 1) is a universal constant. If α > 4A logn, then by applying
the JL-Lemma Johnson and Lindenstrauss [1984] we know that f (M) embeds with
distortion α/(2A logn) into `k

2 , where k . (logn)/ log(α/ logn). By Dvoretzky’s the-
orem Dvoretzky [1961], we know that `k

2 embeds with distortion 2 into Y , so overall
we obtain an embedding of M into a k-dimensional subspace of Y with distortion at
most 2(A logn)(α/(2A logn)) = α.

Conversely, suppose that α > 2 logn and that Y is a B-convex Banach space. By
a theorem of V. Lafforgue [2009] (see also Mendel and Naor [2014] for a different ap-
proach), for arbitrarily large n 2 N there is a O(1)-regular graph G = (f1; : : : ; ng; EG)
such that γ(G; k � k2Y ) .Y 1. If (f1; : : : ; ng; dG) embeds with distortion α into a k-
dimensional subspace of Y , then by Lemma 49 we have n1/(2k) .Y α/ logn. Thus
k &Y (logn)/ log(α/ logn), as required.

Question 51. Is the assumption of B-convexity needed for the conclusion (88) of Corol-
lary 50? Perhaps finite cotype suffices for this purpose? This matter is of course closely
related to Question 22.

Corollary 52. Under the assumptions and notation of Lemma 49, we have

logn

log r
n

1
2 dim(X) .

α log(c2(X) + 1)

1 � λ2(G)
:

Proof. This is nothing more than a substitution of (71) with M = c2(X)
p
1 � λ2(G)

into (87).
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Since by John’s theorem John [1948] we have c2(X) 6
p
dim(X) and for every

n 2 N there exists a graph G as in Lemma 49 with r = O(1) and λ2(G) = 1 � Ω(1),
it follows from Corollary 52 that

α log(kαn (`1) + 1) & n
1

2kαn (`1) logn:

This implies the lower bound on kαn (`1) in (12). In particular, for α � logn it gives
the first inequality in (22).

Proof of Lemma 49. Denote γ = γ(G; k � k2X ). For i 2 f1; : : : ; ng write
(89)

Ui = f �1
�
BX

�
f (i);α

p
2γ
��

=
n
j 2 f1; : : : ; ng : kf (i) � f (j )kX 6 α

p
2γ
o
:

Let m 2 f1; : : : ; ng satisfy jUmj = maxi2f1;:::;ng jUi j. Then

(90) n2γα2
(68)^(86)

>
nX

i=1

nX
j=1

kf (i) � f (j )k2X >
nX

i=1

X
j 2f1;:::;ngXUi

kf (i) � f (j )k2X

(89)
>

nX
i=1

�
α
p
2γ
�2
(n � jUi j) > 2nγα2(n � jUmj):

This simplifies to jUmj > 1
2
n. Also, since

1

n2

nX
i=1

nX
j=1

kf (i) � f (j )k2X >
1

n2

nX
i=1

nX
j=1

dG(i; j )2 & (logr n)2

the first inequality in (90) implies the a priori lower bound αp
γ & logr n.

Next, fix ρ 2 (0; 1) and let N2ρ � Um be a maximal (with respect to inclu-
sion) 2ρ-separated subset of Um. Then Um � [i2N∆

BG(i; 2ρ), where BG(i; 2ρ)
denotes the ball centered at i of radius 2ρ in the shortest-path metric dG. Since G
is r-regular, for each i 2 f1; : : : ; ng we have the (crude) bound jBG(i; 2ρ)j 6 2r2ρ.
Hence, 1

2
n 6 jUmj 6 2r2ρjN2ρj. So, if we choose ρ = 1

4
logr n, then jN2ρj &

p
n.

Since by (86) distinct i; j 2 N2ρ satisfy kf (i)�f (j )kX > dG(i; j ) > 2ρ, theX -balls
fBX (f (i); ρ) : i 2 N2ρg have pairwise disjoint interiors. At the same time, since each
i 2 N2ρ belongs to Um, we have kf (i)�f (m)kX 6 α

p
2γ (by the definition of Um),

and hence BX (f (i); ρ) � BX (f (m);α
p
2γ+ ρ). So, writing dim(X) = k, we have

the following volume comparison.

(α
p
2γ+ ρ)kvolk

�
BX (0; 1)

�
= volk

�
BX (f (m);α

p
2γ+ ρ)

�
> volk

� [
i2N2ρ

BX (f (i); ρ)

�
=

X
i2N2ρ

volk
�
BX (f (i); ρ)

�
= ρkvolk

�
BX (0; 1)

�
jN2ρj & ρkvolk

�
BX (0; 1)

�p
n:

This simplifies to give n
1
2k . α

p
2γ

ρ
+ 1 �

α
p
γ

logr n
; where we used the definition of ρ,

and that αp
γ & logr n.
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5.1 Nonlinear Rayleigh quotient inequalities. Our goal in this section is to present
a proof of (71). As we stated earlier, the proof that appears below is different from the
proof of Theorem 45 in Naor [2017]. However, the reason that underlies its validity
is the same as that of the original argument in Naor [ibid.]. Specifically, we arrived at
the ensuing proof because we were driven by an algorithmic need that arose in Andoni,
Naor, Nikolov, Razenshteyn, and Waingarten [2018a]. This need required proving a
point-wise strengthening of an upper bound on nonlinear spectral gaps, which is called
in Andoni, Naor, Nikolov, Razenshteyn, and Waingarten [ibid.] a “nonlinear Rayleigh
quotient inequality.” We will clarify what we mean by this later; a detailed discussion
appears in Andoni, Naor, Nikolov, Razenshteyn, and Waingarten [ibid.].

The need to make the interpolation-based proof in Naor [2017] constructive / algo-
rithmic led us to merge the argument in Naor [ibid.] with the proof of a theorem from
Naor [2014], rather than quoting and using the latter as a “black box” as we did in
Naor [2017]. In doing so, we realized that for the purpose of obtaining only the weaker
bound (71) one could more efficiently combine Naor [2014] and Naor [2017] so as to
skip the use of complex interpolation and to obtain the estimate (71) as well as its nonlin-
ear Rayleigh quotient counterpart. Thus, despite superficial differences, the argument
below amounts to unravelling the proofs in Naor [2014, 2017] and removing steps that
are needed elsewhere but not for (71). At present, we do not have a proof of the stronger
inequality (70) that differs from its proof in Naor [2017], and the interpolation-based
approach of Naor [ibid.] is used for more refined algorithmic results in the forthcoming
work Andoni, Naor, Nikolov, Razenshteyn, and Waingarten [2018b].

We will continue using the notation/conventions that were set at the beginning of
Section 5. Fix p > 1 and a metric space (M; dM). Let Lp(π;M) be the metric space
(Mn; dLp(π;M)), where dLp(π;M) : Mn � Mn ! [0; 1) is 8 x = (x1; : : : ; xn) and
y = (y1; : : : ; yn) 2 Mn

dLp(π;M)(x; y)
def
=

� nX
i=1

πi dM(xi ; yi )
p

� 1
p

:

Throughout what follows, it will be notationally convenient to slightly abuse notation
by considering M as a subset of Lp(π;M) through its identification with the diagonal
subset of Mn, which is an isometric copy of M in Lp(π;M). Namely, we identify
each x 2 M with the n-tuple (x; x : : : ; x) 2 Mn.

If x = (x1; : : : ; xn) 2 Lp(π;M) X M, then the corresponding nonlinear Rayleigh
quotient is defined to be

(91) R(x;A; d
p

M)
def
=

Pn
i=1

Pn
j=1 πi aij dM(xi ; xj )

pPn
i=1

Pn
j=1 πiπj dM(xi ; xj )p

:

The restriction x … M was made here only to ensure that the denominator in (91) does
not vanish. By definition,

(92) γ(A; d
p

M) = sup
x2Lp(π;M)XM

1

R(x;A; d
p

M)
:
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Note thatLp(π;X) is a Banach space for every Banach space (X; k�kX ). In this case,
the matrix A 2 Mn(R) induces a linear operator A ˝ IdX : Lp(π;X) ! Lp(π;X)

that is given by (A ˝ IdX )(x1; : : : xn) = (
Pn

j=1 aij xj )
n
i=1.

The following lemma records some simple and elementary general properties of non-
linear Rayleigh quotients.

Lemma 53. Suppose that (M; dM) is a metric space, n 2 N, p 2 [1; 1) and δ 2 [0; 1].
Letπ = (π1; : : : ;πn) be a probability measure on f1; : : : ; ng andA; B 2 Mn(R) be row-
stochastic matrices that are reversible with respect to π. For any x 2 Ln

p(π;M) X M
we have

1. R
�
x; δA + (1 � δ)B; d

p

M

�
= δR

�
x;A; d

p

M

�
+ (1 � δ)R

�
x;B; d

p

M

�
.

2. R
�
x; (1�δ)Idn+δA; d

p

M

�
= δR

�
x;A; d

p

M

�
, where Idn 2 Mn(R) is the identity

matrix.

3. R(x;A; d
p

M) 6 2p .

4. R(x;AB; d
p

M)
1
p 6 R(x;A; d

p

M)
1
p + R(x;B; d

p

M)
1
p .

5. R
�
x;At; d

p

M

�
6 tpR

�
x;A; d

p

M

�
for every t 2 N.

Proof. The first assertion is an immediate consequence of the definition of nonlinear
Rayleigh quotients. The second assertion is a special case of the first assertion, since
by definition R(x; Idn; d

p

M) = 0. The third assertion is justified by noting that by the
triangle inequality, for every i; j; k 2 f1; : : : ; ng we have
(93)
dM(xi ; xj )

p 6
�
dM(xi ; xk)+dM(xk ; xj )

�p 6 2p�1dM(xi ; xk)
p+2p�1dM(xk ; xj )

p

where the last step of (93) uses the convexity of the function (t 2 [0; 1)) 7! tp . By
multiplying (93) by πi aij /n2, summing over i; j; k 2 f1; : : : ; ng and using the fact that
A is reversible with respect to π, we get

nX
i=1

nX
j=1

πi aij dM(xi ; xj )
p 6 2p

nX
i=1

nX
j=1

πiπj dM(xi ; xj )
p:

Recalling the notation (91), this is precisely the third assertion of Lemma 53.
It remains to justify the fourth assertion of Lemma 53, because its fifth assertion

follows from iterating its fourth assertion t�1 times (with B a power of A). To this end,
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writing A = (aij ) and B = (bij ), we have� nX
i=1

nX
j=1

πi (AB)ij dM(xi ; xj )
p

� 1
p

6

6
� nX

i=1

nX
j=1

πi

� nX
k=1

aikbkj

��
dM(xi ; xk) + dM(xk ; xj )

�p� 1
p

6
� nX

i=1

nX
j=1

nX
k=1

πi aikbkj dM(xi ; xk)
p

� 1
p

+

� nX
i=1

nX
j=1

nX
k=1

πi aikbkj dM(xk ; xj )
p

� 1
p

=

� nX
i=1

nX
k=1

πi aikdM(xi ; xk)
p

� 1
p

+

� nX
j=1

nX
k=1

πkbkj dM(xk ; xj )
p

� 1
p

;

(94)

where the first step of (94) uses the triangle inequality in M, the second step of (94)
uses the triangle inequality in Lp(µ) with µ being the measure on f1; : : : ; ng3 given by
µ(i; j; k) = πi aikbkj for all i; j; k 2 f1; : : : ; ng, and the final step of (94) uses the fact
that A and B are both row-stochastic and reversible with respect to π.

The identity in the following claim is a consequence of a very simple and standard
Hilbertian computation that we record here for ease of later references.

Claim 54. For every Hilbert space (H; k � kH ) and every x 2 L2(π;H ) X H we have
R(x;A2; k � k2H ) 6 1. Moreover, if

Pn
i=1 πi xi = 0, then

k(A ˝ IdH )xkL2(π;H)

kxkL2(π;H)
=
q
1 � R(x;A2; k � k2H ):

Proof. Let h�; �i : H � H ! R be the scalar product that induces the Hilbertian
norm k � kH . Then, the scalar product that induces the norm k � kL2(π;H) is given by
hy; ziL2(π;H) =

Pn
i=1 πi hyi ; zi i. By expanding the squares while using the fact that

A is row-stochastic, reversible relative to π, and
Pn

i=1 πi xi = 0, we get that

nX
i=1

nX
j=1

πi (A2)ij kxi � xj k
2
H = 2kxk

2
L2(π;H) � 2

nX
i=1

πi

�
xi ;

nX
j=1

(A2)ij xj

�
= 2kxk

2
L2(π;H)�2

˝
x; (A2

˝IdH )x
˛
L2(π;H)

= 2kxk
2
L2(π;H)�2

(A˝IdH )x
2

L2(π;H)
;

and
nX

i=1

nX
j=1

πiπj kxi � xj k
2
H = 2

nX
i=1

πi kxi k
2
H � 2

 nX
i=1

πi xi

2
H

= 2kxk
2
L2(π;H):

Therefore, recalling the definition (91), we have

R(x;A2; k � k
2
H ) = 1 �

(A ˝ IdH )x
2

L2(π;H)

kxk2
L2(π;H)

6 1:
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Lemma 55 (point-wise Rayleigh quotient estimate for Hilbert isomorphs). Let (X; k �

kX ) be a normed space and fix d 2 [1; 1). Suppose that k � kH : X ! [0; 1) is a
Hilbertian norm on X that satisfies

(95) 8 y 2 X; kykH 6 kykX 6 dkykH :

For every x 2 L2(π;X) X X define a quantity t(x; A) = t(x;A; k � kH ; d) to be the
minimum t 2 N such that

(96) R

�
x;
�1
2

Idn +
1

2
A
�2t

; k � k
2
H

�
> 1 �

1

4d2
;

with the convention that t(x;A) = 1 if no such t exists. Then,

(97)
1

R(x;A; k � k2X )
. t(x;A)2:

Proof. Wemay assumewithout loss of generality that
Pn

i=1 πi xi = 0 and t(x;A) < 1.
Define a matrix

(98) Bx
def
=
�1
2

Idn +
1

2
A
�t(x;A)

2 Mn(R):

Then Bx is also a row-stochastic matrix which is reversible with respect to π, and, by
the definition of t(x;A),

R(x;B2
x ; k � k

2
H ) > 1 �

1

4d2
:

By Claim 54, since
Pn

i=1 πi xi = 0, this implies that

(99)
k(Bx ˝ IdH )xkL2(π;H)

kxkL2(π;H)
6

s
1 �

�
1 �

1

4d2

�
=

1

2d :

At the same time, due to (95) we have

(100)
k(Bx ˝ IdX )xkL2(π;X)

kxkL2(π;X)
6 d

k(Bx ˝ IdH )xkL2(π;H)

kxkL2(π;H)
:

By combining (99) and (100) we see that k(Bx ˝ IdH )xkL2(π;X) 6 1
2
kxkL2(π;X). Con-

sequently,
(101)
kx � (Bx ˝ IdX ) xkL2(π;X) > kxkL2(π;X)�k(Bx ˝ IdX ) xkL2(π;X) >

1

2
kxkL2(π;X):

Observe that
(102)� nX

i=1

nX
j=1

πiπj kxi �xj k
2
X

� 1
2

6
� nX

i=1

nX
j=1

πiπj

�
kxi kX+kxj kX

�2� 1
2

6 2kxkL2(π;X)
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where in the first step of (102) we used the triangle inequality in X and the second step
of (102) is an application of the triangle inequality in L2(π ˝ π). Also, since Bx is
row-stochastic,

kx � (Bx ˝ IdX ) xkL2(π;X) =

� nX
i=1

πi

 nX
j=1

(Bx)ij (xi � xj )

2
X

� 1
2

(103)

6
� nX

i=1

nX
j=1

πi (Bx)ij kxi � xj k
2
X

� 1
2

;

where in the final step of (103) we used the convexity of the function k � k2X : X ! R.
Recalling the definition (91), by substituting (102) and (103) into (101) we see that

(104) R

�
x;
�1
2

Idn +
1

2
A
�t(x;A)

; k � k
2
X

�
(98)
= R

�
x;Bx ; k � k

2
X

�
>

1

16
:

We now conclude the proof of the desired estimate (97) as follows.

1
(104)
. R

�
x;
�1
2

Idn +
1

2
A
�t(x;A)

; k � k
2
X

�
6 t(x;A)2R

�
x;

1

2
Idn +

1

2
A; k � k

2
X

�(105)

=
1

2
t(x;A)2R

�
x;A; k � k

2
X

�
;

where the second step of (105) uses the fifth assertion of Lemma 53, and the final step
uses its second assertion.

The quantity t(x;A) of Lemma 55 can be bounded as follows in terms of the spectral
gap of A.

Lemma 56. Continuing with the notation of Lemma 55, the following estimate holds
true.

(106) t(x;A) 6

2666 log(2d)
log

�
2

1+λ2(A)

�3777 .
log(2d)
1 � λ2(A)

:

Proof. Since A is row-stochastic, λn(A) > �1. Therefore 1
2
Idn + 1

2
A is a positive

semidefinite self-adjoint operator onL2(π) that preserves the hyperplaneL0
2(π) = fu 2

Rn;
Pn

i=1 πi ui = 0g. The largest eigenvalue of 1
2
Idn + 1

2
A on L0

2(π) is
1
2
+ 1

2
λ2(A),

and therefore k( 1
2
Idn + 1

2
A)tukL2(π) 6 ( 1

2
+ 1

2
λ2(A))tkukL2(π) for u 2 L0

2(π) and
t 2 N.

If x 2 L2(π;X) X X satisfies
Pn

i=1 πi xi = 0, then we may apply the above ob-
servation to the coordinates of x with respect to some orthonormal basis of H , each of



METRIC DIMENSION REDUCTION: THE RIBE PROGRAM 817

which is an element of L0
2(π), and deduce that

�1
2
+

1

2
λ2(A)

�t
>

�� 12 Idn + 1
2
A
�t

˝ IdH

�
x


L2(π;H)

kxkL2(π;H)
(107)

=

s
1 � R

�
x;
�1
2

Idn +
1

2
A
�2t

; k � k2H

�
;

where in the second step of (107) we applied Lemma 54 with A replaced by
( 1
2
Idn + 1

2
A)t. Hence

R

�
x;
�1
2

Idn +
1

2
A
�2t

; k � k
2
H

�
> 1 �

�1
2
+

1

2
λ2(A)

�2t
:

Consequently, if t > (log(2d))/ log(2/(λ2(A) + 1)), then R(x; ( 1
2
Idn + 1

2
A)2t; k �

k2H ) > 1 �
1

4d2 . By the definition of t(x;A), this implies the first inequality in (106).
The second inequality in (106) follows by elementary calculus.

Proof of (71). By a classical linearization argument Enflo [1970] (see Benyamini and
Lindenstrauss [2000, Chapter 7] for a modern treatment), for every d > c2(X) there is
a Hilbertian norm k � kH on X that satisfies (95). We therefore see that for every A as
above

(108)
q
γ(A; k � k2X )

(92)
= sup

x2L2(π;X)XX

1q
R(x;A; k � k2X )

(97)
6 sup

x2L2(π;X)XX

t(x;A)

(106)
.

log(c2(X) + 1)

1 � λ2(A)
=

log(c2(X) + 1)p
1 � λ2(A)

q
γ(A; k � k2H )

6
log(c2(X) + 1)

M
c2(X)

q
γ(A; k � k2H );

where, for the final step of (108) recall that in the context of (71) we assume that
λ2(A) 6 1 � M 2/c2(X)2.

5.1.1 Structural implications of nonlinear Rayleigh quotient inequalities. Fix in-
tegers n; k; r > 3 (think of n as much larger than k). Let (X; k � kX ) be a k-dimensional
normed space. Suppose that G = (f1; : : : ; ng; EG) is a connected r-regular graph. Al-
thoughwe phrased (and used) Corollary 47 as an impossibility result that provides an ob-
struction (spectral gap) for faithfully realizing (on average) the metric space
(f1; : : : ; ng; dG) in X , a key insight of the recent work Andoni, Naor, Nikolov, Razen-
shteyn, and Waingarten [2018a] by Andoni, Nikolov, Razenshteyn, Waingarten and the
author is that one could “flip” this point of view to deduce from Corollary 47 useful in-
formation on those graphs that do happen to admit such a faithful geometric realization
in X , namely they satisfy (74). Clearly there are plenty of graphs with this property,
including those graphs that arise from discrete approximations of subsets of X (as a
“vanilla” example to keep in mind, fix a small parameter δ > 0, consider a δ-net in the
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unit ball of X as the vertices, and join two net points by an edge if their distance in X

is O(δ)). The conclusion of Corollary 47 for any such graph is that it cannot have a
large spectral gap, and by Cheeger’s inequality Cheeger [1970], Tanner [1984], Alon
and V. D. Milman [1985], and Sinclair and Jerrum [1989] it follows that this graph can
be partitioned into two pieces with a small (relative) “discrete boundary.” On the other
hand, if we are given a mapping f : f1; : : : ; ng ! X that satisfies the first condition
in (74) but not the second condition in (74), then there must be a ball in X of relatively
small radius that contains a substantial fraction of the vectors ff (i)gn

i=1. The partition
of f1; : : : ; ng that corresponds to this dense ball and its complement encodes useful ge-
ometric “clustering” information. We have thus observed a dichotomic behavior that
allows one to partition geometrically-induced graphs using either a “spectral partition”
or a “dense ball partition.”

In Andoni, Naor, Nikolov, Razenshteyn, and Waingarten [2018a], the above idea is
used iteratively to construct a hierarchical partition of X . Our overview suppresses im-
portant technical steps, which include both randomization and a re-weighting procedure
of the graphs that arise at later stages of the construction (the start of the construction
is indeed the above “net graph”); see Andoni, Naor, Nikolov, Razenshteyn, and Wain-
garten [ibid.] for the full details. In particular, one needs to use general row-stochastic
matrices due to the re-weighting procedure, i.e., one uses the full strength of Theorem 46
rather than only the case of graphs as in Corollary 47.

In summary, one can use the bound (71) on nonlinear spectral gaps to provide a “cut-
ting rule” that governs an iterative partitioning procedure in which each inductive step
is either geometric (a ball and its complement) or a less explicit existential step that
follows from spectral information which is deduced from a contrapositive assumption
of (rough, average) embeddability. This structural information is used in Andoni, Naor,
Nikolov, Razenshteyn, and Waingarten [ibid.] to design a new data structure for ap-
proximate nearest neighbor search in arbitrary norms (see the article of Andoni, Indyk
and Razenshteyn in the present volume for an extensive account of approximate nearest
neighbor search). Although this yields important (and arguably unexpected) progress on
an algorithmic question of central importance, the non-explicitness and potential high
complexity of the spectral partitioning step raises issues of efficiency that are not yet
fully resolved. Specifically, the most general data structure that is designed in Andoni,
Naor, Nikolov, Razenshteyn, and Waingarten [ibid.] is efficient only in the so-called
“cell probe model,” but not in the full polynomial-time sense; we refer to Andoni, Naor,
Nikolov, Razenshteyn, and Waingarten [ibid.] for an explanation of these complexity-
theoretic issues and their significance, because they are beyond the scope of the present
article.

While the above issue of efficiency does not occur in our initial investigation within
pure mathematics, it is very important from the algorithmic perspective. This is what
initially led to the desire to obtain a nonlinear Rayleigh quotient inequality rather than
to merely bound the nonlinear spectral gap, though (in hindsight) such inequalities are
interesting from the mathematical perspective as well. We did not formally define what
we mean by a “nonlinear Rayleigh quotient inequality” because there is some flexibility
here, but the basic desire is, given x1; : : : ; xn 2 X , to bound their Rayleigh quotient in
X by a Rayleigh quotient of points in a Euclidean space.
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The inequality (97) of Lemma 55 is of the above form, because the parameter t(x;A)

defined by (96) involves only examining a certain Rayleigh quotient in a Hilbert space.
It should be noted, however, that to date we have not succeeded to use the specific non-
linear Rayleigh quotient inequality of Lemma 55 for algorithmic purposes (though with
more work this may be possible), despite the fact that it was found with this motivation
in mind.

Other nonlinear Rayleigh quotient inequalities were obtained inAndoni, Naor, Nikolov,
Razenshteyn, and Waingarten [2018a,b] and used to address issues of algorithmic effi-
ciency. Very roughly, the drawback of (97) is that the matrix A is changed in the Hilber-
tian Rayleigh quotient of (96) (the main problem is the potentially high power 2t). A
more directly algorithmically-useful nonlinear Rayleigh quotient inequality would be
to change the point x 2 L2(π;X) but not change the matrix A. Namely, suppose that
we could control R(x;A; k � k2X ) from below by a function of R(ϕA(x);A; k � k2H ),
for some mapping ϕA : L2(π;X) ! L2(π;H ). Nonlinear Rayleigh quotient inequal-
ities of this type are proved in Andoni, Naor, Nikolov, Razenshteyn, and Waingarten
[2018a,b], though the associated mappings ϕA turn out to be highly nonlinear and quite
complicated.9

The upshot of the latter type of nonlinear Rayleigh quotient inequality is that if (due
to existence of a faithful embedding into X ) we know that R(x;A; k �k2X ) is small, then
it follows that also R(ϕA(x);A; k �k2H ) is small. The proof of Cheeger’s inequality (via
examination of level sets of the second eigenvector) would now provide a sparse “spec-
tral partition” of f1; : : : ; ng that has the following auxiliary structure: The partition is
determined by thresholding one of the coordinates of H (in some fixed orthonormal ba-
sis), namely the part to which each i 2 f1; : : : ; ng belongs depends only on whether the
coordinate in question of the transformed vectorϕA(x)i 2 H is above or below a certain
value. If in addition (A; x) 7! ϕA(x) has favorable computational properties (see An-
doni, Naor, Nikolov, Razenshteyn, and Waingarten [2018a] for a formulation; roughly,
what is important here is that after a “preprocessing step” one can decide quickly to
which piece of the partition each i 2 f1; : : : ; ng belongs), then this would lead to fast
“query time.”

The above description of the algorithmic role of nonlinear Rayleigh quotient inequal-
ities is impressionistic, but it conveys the core ideas while not delving into (substantial)
details. Such inequalities are interesting in their own right, partially because they ne-
cessitate making mathematical arguments constructive, thus leading to new proofs, as
we did for (71), and also leading to intrinsically meaningful studies, such as obtaining
Andoni, Naor, Nikolov, Razenshteyn, and Waingarten [2018b] algorithmic versions of
existential statements that arise from the use of the maximum principle in complex in-
terpolation.

9Specifically, in Andoni, Naor, Nikolov, Razenshteyn, and Waingarten [2018a] such a mapping ϕA is
constructed for Schatten-von Neumann trace classes using the Brouwer fixed-point theorem and estimates
from Ricard [2015]. In Andoni, Naor, Nikolov, Razenshteyn, and Waingarten [2018b], ϕA is constructed
for general normed spaces using, in addition to Brouwer’s theorem, convex programming and (algorithmic
variants of) complex interpolation. These lead to data structures that are efficient in all respects other than the
“preprocessing stage,” which at present remains potentially time-consuming due to the complexity of ϕA.
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