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MATHEMATICS OF MACHINE LEARNING: AN
INTRODUCTION
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Abstract

Machine learning is the subfield of computer science concerned with creating
machines that can improve from experience and interaction. It relies upon mathe-
matical optimization, statistics, and algorithm design. Rapid empirical success in
this field currently outstrips mathematical understanding. This elementary article
sketches the basic framework of machine learning and hints at the open mathemat-
ical problems in it.

The dictionary defines the act of “learning” as gaining or acquiring knowledge or
skill (in something) by study, experience, or being taught. Machine learning, a field in
computer science, seeks to design machines that learn. This may seem to fly in contra-
diction to the usual view of computers as fixed and logic-based devices whose behavior
is completely fixed by their programmer. But this view is simplistic because it is in fact
straightforward to write programs that learn new capabilities from new experiences and
new data (images, pieces of text, etc.). This learned capability can become part of its
program, and of course, any newly learnt capabilities can also be trivially copied from
one machine to another.

Machine learning is related to artificial intelligence, but somewhat distinct because
it does not seek to recreate only human-like skills in a machine. Some skills —e.g.,
detecting patterns in millions of images from a particle accelerator, or in billions of
Facebook posts— may be easy for a machine, but beyond the cognitive abilities of
humans. (In fact, lately machines can go beyond human capabilities in some image
recognition tasks.) Conversely, many human skills such as composing good music and
proving math theorems seem beyond the reach of current machine learning paradigms.

The quest to imbue machines with learning abilities rests upon an emerging body of
knowledge that spans computer science, mathematical optimization, statistics, applied
math, applied physics etc. It ultimately requires us to mathematically formulate nebu-
lous concepts such as the “ meaning” of a picture, or a newspaper story. This article
provides a brief introduction to machine learning.

The mathematical notion closest to machine learning is curve-fitting, which has long
been a mainstay of science and social science. For example, the supposed inverse re-
lationship between an economy’s inflation and unemployment rates, called the Philips
curve, was discovered by fitting a curve to economic data over a few decades. Machine
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learning algorithms do something similar, except the settings are more complicated and
with many more —sometimes, tens of millions—variables. This raises many issues,
computational as well as statistical. Let’s introduce them with a simple example.

1 Introduction: the linear model

Suppose a movie review consists of a paragraph or two of text, as well as a numerical
score in [0, 1] (0 = worst and 1 = best). The machine is trying to learn how to predict
the numerical score when given only the text part of the review. As training data, it
is given N movie reviews and their scores; that is, (x*, y1), (x2,y?),..., (xN,yM))
where x? is a piece of text and y’ is a score. From this dataset it has to figure out the
rule for predicting the score from the text.

If the English vocabulary has V' words, then each x% can be seen as a vector in WY,
where the j’th coordinate is the number of times the j’th word appears in this piece of
text. Note that V is large, say 100, 000, so this vector representation is very sparse (i.c.,
has very few nonzero entries) when the text review consists of a few dozen words.

The simplest approach for prediction involves a linear model. To simplify the de-
scription, assume each review has the same length, namely, has k& words. The model
assumes that each word has an associated sentiment weight, which is a scalar. The model
says that the review’s score can be predicted by adding up the sentiment weights of all
words in the review. Note that if a word occurs k times then it contributes k times its
weight.

In other words, if 6 is the vector of sentiment weights for all V' dictionary words, then
the machine tries to predict y’ from 6-x'. The learning algorithm consists of finding
the best fit for 6 via the classic least squares method.

N

(1) min Z(é cxl = yh)?

0 :
i=1

After training we expect to find that the weights assigned to words are meaningful.
Positive words like ferrific, enjoyable, loved etc. get high weights and negative words
like terrible, hated, avoid get low or negative weights.

To finish our discussion we need to address two important issues.

1.1 Computational efficiency. The first important issue is: how efficiently can we

find such a vector of weights 6?7 Such questions about computational complexity are
important. Luckily, here the algorithmic task can be solved very efficiently to optimality.
The reason is that the optimization problem in (1) happens to be convex, a notion we
define below. Under fairly general conditions, convex optimization problems can be
solved efficiently.

1.2 Statistical efficiency. The second question is statistical: how do we quantita-
tively measure the success of learning after training with N datapoints? The end result
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of training is the learnt weight vector ] , and it is useful only if the machine is able to use
it to predict the ratings for reviews that it hasn t seen during training. This is called gen-
eralization and it is a nontrivial issue. For instance, suppose V' = 100, 000 and we are
only given 10, 000 reviews. Then by simple linear algebra of underdetermined systems,
there always exists a weight vector such that g.xi = y for all i. Surely such a generic
solution doesn’t do well on unseen reviews? (This is analogous to interpolating a degree
20 curves to only 10 datapoints, and expecting it to fit unseen datapoints.) Surprisingly,
in real-life it can, provided we change the above objective to the following, where A is
a scalar that is discovered by experimenting with the data, as explained below.

©) min Y (6 -x" —y")* + 216113

1

To obtain guarantees on generalization, we make a key assumption: reviews used
for training are independent samples from a fixed distribution on all possible reviews.
This raises inconvenient philosophical questions about whether there even exists such
an invariant distribution across all reviews —e.g., surely last year’s movie reviews come
from a different distribution than this year’s? We brush away such questions, while not-
ing in passing that it is an active area of research to formulate learning in more realistic
settings —such as when the learner and teacher are allowed to interact, or when teacher
is allowed to tailor the examples to speed up learning.

Having made that assumption, we are trying to prove that

1 .
3) I Q0% X)) — Ex[0” -« <.

where the expectation in the second term is over the entire distribution of reviews. At
first glance this appears to be a trivial matter of bounding the difference between the
population average and the sample average, in other words, to use measure concentra-
tion bounds. But actually there is a complication: the solution 8* was computed using
the sample, and thus depends intimately upon it. We handle this complication by taking
a union bound over all possible 6*.

First, we can discretize 8* by rounding off entries in 8* to the nearest integer multiple
of €, since this can affect the predicted score by at most €/2. Now all entries in 8*
are at least €, which means there are at most m = ||0*||? /€2 of them. The number of
possible choices for such vectors is at most 7 = (;) (1/€)™ where recall that IV denotes
the number of words in the dictionary. Now (3) follows from standard concentration
bounds provided the number of training samples exceed ¢ log T' /€2 for some suitable
(and explicit) constant ¢o. This number grows roughly as [|0*||? log V' /€2, which is
usually much smaller than V.

By now it should be clearer what role the tunable A multiplier plays in (2). For best
generalization we wish to find a solution 6* that minimizes the £5 norm. Increasing A
penalizes solutions 6 with higher £5 norm, so it serves to balance the £ norm against
the total £, error on training data. So the algorithm can start with a high value of A
(which rules out all 8 except those with very low norm) and then perform binary search
to home in on a value that balances the error in (3) and the £5 norm just exactly so that
the we end up with the minimum norm solution.
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The above simple argument can be strengthened in various ways and ultimately con-
nects with broader questions in statistics Hastie, Tibshirani, and Friedman [2009] as
well as beautiful parts of discrete mathematics such as VC dimension and Rademacher
complexity Ben-David and Shalev-Schwartz [2014].

2 Supervised learning

The above simple example illustrates a more general paradigm: supervised learning,
which concerns learning to classify data-points after seeing many labeled examples.
This is the most well-known and successful paradigm of machine learning. To illustrate
it we use a famous and empirically successful example, image recognition. Imagine
we have divided everyday objects into k classes: chair, building, dog, drink etc. and
want to train the machine to assign the correct label when given an image. Here each
image is in pixel format, so assume it is a point in %t¢ The training data contains N
images of each class, where N is some modest number (such as 1000). Let the labels
be {1,2,...,k}. In formalizing the learning problem, it helps to think of the label y’
of x as a vector in ¥ it has an entry 1 in coordinate y’ and zero in other coordinates.
Ideally, the learning algorithm would learn to produce labels with only one nonzero
coordinate as well, which we encourage by appropriately setting up the optimization
problem.

The machine has to learn a function fy: %4 — 9K that classifies the images cor-
rectly, where 6 are the parameters in the description of fy. The training objective —
variously called loss function and empirical risk—is

N
4) ming Y (fo(x') —y")% (L2 loss).
i=1

Variations of this formulation are used as well, for example the following where y;
denotes j th coordinate of y:

N k
%) ming Z Z y;- log( fo(x");) (cross entropy loss).
i=1j=1

This framework for supervised learning goes by the name Empirical Risk Minimiza-
tion (ERM) N. Vapnik [1998]. The learning generalizes if the expected loss of the
optimum solution 6* on the entire distribution is close to that on the samples. The flip
side of this issue is statistical efficiency —determining the minimum number of samples
that lead to good generalization—as was discussed earlier.

Regularization. Often the performance of gradient descent on an objective g(6)—
both with regards to optimization speed and generalization—is greatly aided by adding
a regularization term h to the objective, turning it into g(6) + Ah(6). This h(6) term
shapes the optimization landscape, and its effect can be tuned by varying the multiplier
A. The term A||0]|3 in (2) is in fact a form of regularization, and aids generalization as
we saw.



MATHEMATICS OF MACHINE LEARNING: AN INTRODUCTION 381

Figure 1: Gradient descent on a nonconvex function is not guaranteed to reach
the global minimum.

2.1 Mathematical optimization in machine learning. The problems in (2) (4) (5)
are instances of the following general problem where g: R” — N and K is a compact
subset of N”.

min g(6)
ek

The minimum exists, but can we find it efficiently? One could imagine using a vari-
ety of algorithms to solve such an optimization problem —optimization theory is quite
well-developed! Usually design of such algorithms needs to assume that the objects in
question are efficiently computable. Specifically, given a 6 we need to be able to (a)
efficiently compute f(0) and (b) check if § € K. Both assumptions are easily true in
machine learning setting.

In practice, machine learning algorithms often use some variant of gradient descent,
which seems to give the best balance between performance and scalability. Basically the
same algorithm that is covered in freshman calculus, this algorithm iteratively improves

the solution, starting at initial point #° and then finding 0, 62, ..., such that at step ¢
(6) s'T 0" —Vg(6"))
(7) 6" < Proj(s"tt, K)

where n > 0 is called learning rate and Proj(s'*1, K) is the point in K closest to
s'+1, also called projection of s'*! on K. Pythagoras theorem implies monotonicity:
2(0'+1) < g(6"). In general, gradient descent started with arbitrary 6° is not guaranteed
to reach the minimum, as is clear from the figure. It converges to a stationary point
where V( f) = 0, and at best we can hope this is a local optimum.

A well-behaved special case is when g is a convex function and K is a convex body,
as is the case in (2). Then gradient descent does reach the global optimum if run long
enough. Under modest conditions —e.g., a bound on the Lipschitz constant—it ap-
proaches the global optimum quite quickly. A comprehensive survey of such convex
optimization procedures appears in Boyd and Vandenberghe [2008].

But in general, problems (4), (5) are not convex and gradient descent can converge,
at best, to a local optimum. A nonconvex problem may have multiple local optima, with
some having lower objective values than others. So it is unclear which ones gradient
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descent ends up at. Nevertheless, in practice gradient descent works quite well: the
solutions found are generally of good quality. Explaining why this happens is an im-
portant open problem. It is known that regularization can help, and a cottage industry
of tricks has sprung up for regularizing the problem. Another important trick that helps
is stochastic gradient descent, whereby one estimates the gradient of ERM objective 4
via a small sample of training samples: this improves the running time, and also seems
to act as a regularizer.

2.2 Nonconvex models and deep learning. Clearly, the linear model studied above
is simplistic. It associates a sentiment score with each word, and sums up the sentiment
scores of the words in a review to get an idea of the numerical score. Thus the score only
depends upon the multi-set of words in it and completely ignores linguistic structure:
Good, is it not?” gets the same score as “ It is not good.” Clearly, a fuller understanding
of the text must involve more nuanced consideration of larger units such as phrases and
sentences. One could try to hand-design features that the machine should pay attention
to, e.g., those involving antonyms, synonyms etc. While these can help to some extent,
empirically the best results are obtained by just letting the machine automatically figure
out the features that it finds most useful. The most powerful current technique for doing
this is to train a deep net. A thorough treatment of deep learning appears in the text I.
Goodfellow, Bengio, and Courville [2016].

Deep net is a modern name for neural net, a notion from the 1940s. It is loosely
inspired by the neurons of human brain, specifically the way they are interconnected
via wiring that transmits electric signals and their mode of producing an output depend-
ing upon the sum of the incoming signals. A deep net with d hidden layers consists
of d matrices A1, Ao, ..., Ag, and a specific function o: RN — N called the nonlin-
earity. The most popular nonlinearity o these days is the rectilinear linear function
RELUp(x) = max{0, x — b}. Here b is called the bias, and it is also a parameter of the
network together with the 4;’s. Defining y° = x© this net computes y!, y2, ..., y¢
where yi*! = o0(A4;y"). Here o(z) denotes the vector obtained by applying o to each
coordinate of z. Also we are assuming that the dimensions of y’’s and 4;’s match so
that the matrix-vector products are well-defined. Each coordinate of a computed vector
y' is referred to as a node of the net, and each entry of one of the A;’s is refered to as an
edge. The output of the net is y¢. The size of the net is the number of nodes in it. The
number of parameters is the number of edges plus the number of nodes.

A deep net thus defines an input-output behavior, mapping the input vector x° to the
output vector y? = fAl,Az,A..,Ad,E (x©) where A;’s are the layer matrices and b is the
vector of all bias values at the nodes. Thus this model can be used to do supervised
learning, where the trainable parameters are the matrices and the biases. (An important
subcase of a deep net is a convolutional deep net where the matrices A;’s have a specific
compact representation whereby the same weight is reused in a fixed pattern across the
input. These are easier to train in practice especially on data such as images which
have patterns that are well-represented by such nets. We will ignore convolution in this
survey.)
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How does depth help in deep nets? While a net with a single hidden layer (i.e., depth
2) can in principle express any function computed by a net with more layers, doing
s0 may come at a cost of requiring vastly more nodes Eldan and Shamir [2016] and
Telgarsky [2016]. Training such a vast net would be computationally infeasible. Thus
increasing depth allows a more succinct net to do interesting classification tasks.

To train d -layer deep nets for supervised learning using the above-mentioned Empir-
ical Risk Minimization paradigm, we need to solve an optimization problem that solves
for the matrices A1, Ao, ..., Az and the bias vector b. Writing out the expression for
Empirical Risk we find it to be nonconvex in the variables. Nevertheless, we can plough
ahead and try to solve it using some variant of gradient descent.

Backpropagation: To do gradient descent millions of times we need a quick way to
compute the gradient of the objective. Since the final output is obtained by applying a
composition of single layers, computing the gradient is a simple matter of applying the
chain rule. Anybody who’s taken freshman calculus can write this gradient. The tricky
issue is to do so efficiently, meaning given the matrix entries and the bias values, to
compute the gradient using as few basic operations —additions and multiplications—
as possible. (An elementary operation like addition and multiplication is, simplistically
speaking, a unit of effort for the computer’s CPU.) Applying chain rule naively would
require a number of operations that grows quadratically in the number of parameters.
Since modern deep nets are often trained with tens of millions of parameters, quadratic in
that number would be rather large even for today’s computers. A clever algorithm called
backpropagation can compute the gradient with number of operations that is l/inear in
the number of parameters. This is a crucial saving that enables deep learning to get off
the ground, so to speak. An elementary exposition of backpropagation and its variants
appears at Arora and Ma [2016].

Computational and statistical complexity. It can be shown that finding the opti-
mum deep net is in general computationally intractable. However, this refers to com-
putational complexity for unnatural, worst-case instances. Real-life instances are better
behaved, and clearly good training is possible. Furthermore, there is evidence that over-
parametrizing the network with many more parameters than necessary can simplify the
training. Consequently, today’s deep nets are often trained with many more parameters
than the number of training examples. A priori this raises fears that overparametrization
would lead to lack of generalization but in practice generalization does not appear to suf-
fer. Explaining why generalization happens is an open problem, unlike in the linear case
described earlier.

What fueled deep learning’s rise? While the basic ingredients of deep learning were
known for several decades, a confluence of factors around 2011 led to its rapid progress
and adoption. The first was availability of large labeled datasets. Datasets for training
image recognition software used to be created in academia, and it was just not feasible
for a small academic team to hand-label a very large number of images. Starting a
decade ago, researchers could use crowd-sourcing to create datasets containing millions
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of humanly-labeled images, such as ImageNet Deng, Dong, Socher, L.-J. Li, K. Li,
and Fei-Fei [2009]. The second factor was availability of extremely fast Graphical
Processing Units (GPUs) that brought the power of supercomputers to grad student
desktops and fed a wave of experimentation that led to deep learning’s resurgence. The
third factor is developments in the theory of optimization for machine learning. The new
generation of researchers understand notions such as regularization and acceleration
and were able to employ them effectively —as well as design new ideas such as batch
normalization, dropout, AdaGrad, Adam, etc.—to improve optimization —specifically,
what things to try when training a large net fails initially.

Finally. enormous corporate interest in uses of deep learning leads to enormous re-
search effort in industry as well.

3 Unsupervised learning

The techniques discussed thus far can train machines to do classification tasks where the
output is a scalar (or small number of scalars) and there is plentiful training data that has
been labeled by humans. But this captures only a small part of what we humans consider
as learning. One suspects that a big part of our learning is unsupervised, whereby we
passively observe the world around us and notice patterns in it. When we see a new
animal or bird while visiting a new continent, we do not need to be told its name to
already be able to describe it, and relate it to animals we’ve seen in the past. Efforts to
endow machines with such capabilities have not been as successful.

Viewed from a distance, all methods for unsupervised learning try to formalize a
notion of “ high level” descriptor of data. If the training datapoints are x*, x2,...,,
one assumes that each has an implicit (i.e., unknown) high level descriptor A', h?, .. ..
To give an (advanced) example, x* could be a pixel-level description of a photo of an
unknown bird, and 4 could say in some form * white bird with long legs and long beak.”
Clearly, each h* corresponds to multiple (even infinitely many) images and conversely
even an image can have multiple high level descriptions. Methods for unsupervised
learning allow for this possibility. They define some (possibly loose) way to go from
x' to h' and vice versa. The following is a non-exhaustive list of ideas that have been
tried for many years.

3.1 Dimension reduction of some sort. Dimension reduction amounts to finding
low-dimensional vectors y!, y2, ..., that capture the * essential properties” of x!, x2,
.... The simplest example is to try to approximate the distance: for all 7, j the distance
between y’ and y/ is approximately the same as between x’ and x/.

Specific formulations include Principal Component Analysis (project to top k eigen-
directions of Y_; x' ® x'), Manifold Learning (assume there is an unknown low-dimen-
sional manifold M such that each x* = A’ + noise where h' is a point on the manifold),
tSNE, etc.

3.2 Fitting a bayesian model to the data. This method assumes that there is a dis-
tribution pg(x, h) from which the sample x’’s were generated. Here 6 is a vector of
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parameters that describe the distribution, and p;jer, comes from a specific family of
distributions. To give a simple example, a multivariate gaussian distribution is given by
the density function px(x,h) = exp(%) where / is the mean and 71 is
the covariance matrix. Hence we can think of x as & with some added noise.

Examples of bayesian models in unsupervised learning include topic models, hidden
Markov models, mixed membership models, Indian buffet process, hierarchical topic
models, Restricted Boltzmann Machines etc.

There are two important problems associated with this approach to unsupervised
learning. We assume that the machine is given independent samples x*, x2, ..., x"
from the distribution pg(x) = [ pg(x,h)dh. (In words, “ pick a sample (x, /) from
po(x,h), and discard the h.”) It is customary to assume pg(x,h) factors as
po(x|h)pg(h) where pg(h) has some simple functional form that is known. (Note that
such a pg(h) always exists by Bayes’ rule, but in general may not have a simple func-
tional form.)

Parameter learning consists of estimating the best 6 that explains the data. The
method used is classical maximum likelihood: select the 6 that assigns the maximum
probability to the data. Since the data x', x2, ..., x" were independent samples from
the distribution, this amounts to

®) argmaxg [ | po(x').

4

It is customary to take logarithms and re-express as

9) argmaxg Z log pg(x*),

1

which is the so-called cross-entropy loss.

Inference involves constructing / given x, where 6 is assumed to be known. This
involves sampling from the conditional distribution pg(h|x), which is given by Bayes
rule.

While the problems are clear enough, the calculations are not easy. For fairly simple
models, inference and parameter learning can be computationally intractable. It is cus-
tomary to use heuristic approaches such as Expectation Maximization and variational
inference. Recently there has been success in designing provably efficient algorithms
for parameter learning via tensor decomposition methods; see Anandkumar, Ge, Hsu,
Kakade, and Telgarsky [2014] for a comprehensive introduction.

3.3 Learning to generate portion of a datapoint from the rest. As mentioned, a
full bayesian treatment of unsupervised learning runs into difficult computational prob-
lems that have not been easy to solve for large-scale problems. A more successful ap-
proach is to treat unsupervised learning more analogously to supervised learning, by
observing that there is implicit supervision in the data itself.

Concretely, in many settings the datapoint x is much larger (i.e, has many more
coordinates) than the latent 4, which after all is a meant to be a high-level description.
Thus 4 in principle could be inferred from (say) the first 3/4th of coordinates of x.
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And given h we could predict (at least in a probabilistic sense) the last 1/4th of the
coordinates of x. This train of thought suggests that the last 1/4th coordinates of x can
be predicted from its first 3/4th coordinates. Thus if we try to set ourselves the task of
predicting the last 1/4th coordinates of x from its first 3/4th coordinates, implicitly we
must need to learn the underlying structure, in other words, some version of /.

Concretely, if the input x is written as x; xo where x; contains the first 3 /4th of coor-
dinates and x5 the last 1/4th then such a learning approach assumes there is a mapping
So such that fy(x1) & x5 where ~ is formalized using some measure of closeness, e.g.,
£, norm. Here 6 is a vector of parameters. For example, 6 could describe a multilayer
deep net that maps x; to xs, and the deep net could be found via something like

(10) argming )~ [x5 — fp(x})[5.
i
This is very analogous to the Empirical Risk Minimization paradigm mentioned above.

Application: Word embeddings. How can we mathematically capture the meaning
of an English word? From a mathematical viewpoint one is tempted to reach for mathe-
matical notions such as model theory, which codifies semantics for formal logic. How-
ever, the meaning of a word is much more elusive. For one, the word may have multiple
meanings (bank can refer to a financial institution or the side of a river), and each mean-
ing may have many shades of meaning (is paint used in the same sense in he painted
the wall and he painted a mural on the wall?)

In machine learning it has been more useful to represent the meaning of the word with
a vector. This started with work in information retrieval (Turney and Pantel [2010]) but
recent techniques resort to the general idea sketched above. Specifically, it assumes that
every word w is represented by a vector v, € %? for some d which is not too large or
too small. (Depending upon the application, d is chosen to be a few hundred to a few
thousand. There is no good theory explaining the choice.) Thus the model parameters
0 consists of these vectors, one for every word in the English dictionary. The model is
trained by assuming that if we black out a word in a text corpus, then we can typically
figure out the missing word by looking at say 5 words to the left and to the right. For
example in the famous word2vec method Mikolov, Sutskever, Chen, Corrado, and Dean
[2013], the precise functional form assumed is

1
(1 Pr[w |wl,wg,...,w;,]ocexp(vw~(52vwi)).

Training such a model requires some tricks, which we won’t cover here. Note that the
trained embeddings have fascinating properties. One of them is the ability to solve
word analogy tasks. To solve the analogy problem man : woman :: king : ??, one
tries to find the word w such that vy, — Vg;ng is most similar to Vyoman — Vman, that is
to say, minimizes || Vy — Vking + Vwoman — VUman 2. Among all 100, 000 words in the
English dictionary, the minimizer word happens to be gueen. This simple idea can solve
many simple word analogies, though success rate is far from perfect. This and related
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discoveries have made word embeddings a useful tool in natural language processing.
A theoretical explanation for the above method for analogy solving appears in Arora,
Y. Li, Liang, Ma, and Risteski [2016].

3.4 Deep Generative Models. Deep nets, which were mentioned above, have also
been used for unsupervised learning although the successes here are not as spectacular
so far. A deep generative model G consists of a deep net that is defined completely
analogously as before, which maps %? to %" for some d,n. It maps a random seed
s, usually assumed to be a sample from the standard Gaussian distribution in %4, to
a vector x in N” that is supposed to be a random sample from the target distribution
that we are trying to learn. This model is trained using a set of samples from the target
distribution  (for example, real-life images).

Thus the deep net implicitly defines a probability distribution U, which we are trying
to make close to . This technically is a subcase of the setting in Section 3.2, and
the main idea in training is to do some form of gradient descent on the objective (9).
Some notable notions in this line of work include Restricted Boltzman Machines Hinton
and Salakhutdinov [2006], Variational Autoencoders Kingma and Welling [2014], and
Generative Adversarial Nets . J. Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley,
Ozair, Courville, and Bengio [2015].

4 Reinforcement learning

Reinforcement learning concerns design of autonomous agents that take a sequence
(potentially of unbounded length) of actions. For example, a self-driving car that has to
take a dozens of actions every second, and maintain a safe course on the road. Such an
agent may be trained a long time in various ways, but once trained has to be autonomous.
Another setting where similar issues arise is in playing a complicated game like Chess
or Go, where machines now outplay humans.

To formulate the goals of such learning, let’s identify key aspects of such a system. (a)
It needs to maintain some sfate at every time step, to allow it to store relevant information
from previous steps (e.g., current speed, direction, separation from nearby vehicles) that
will be needed in future steps. We denote the set of all possible states by S. (b) There is
uncertainty in every measurement and action, which will be modeled via probabilities.
(c) In each state the agent has the choice of some actions. Let A denote the set of possible
actions. When the agent takes action a € A in a state, it makes a probabilistic transition
to another state. (d) The agent moves from state to state as follows. Upon reaching a
state, it takes an action, which causes it to transition probabilistically to another state,
and in the process get some internal reward. This reward is its “ internal motivation,” so
to speak. For example, reward function for a self-driving car may be a simple function of
distances from the nearest vehicles in all four directions. The agent is trying to maximise
this reward, as formalized later.

Similar frameworks have been well-studied in the past century in fields such as con-
trol theory, finance, economic theory, operations research, etc. In machine learning the
above framework is called a Markov Decision Process (MDP). As sketched above, it
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consists of the following components: a finite set of states S; a set of actions A (each
action can be taken in each state); a probabilistic transition function that gives for each
pair of states (s,s’) and action a a probability p(s,a,s’) of transitioning to s when
action ¢ is taken in state s (for all s, a it satisfies >, p(s.a,s’) = 1); and a reward
function that gives for each pair of states (s, s") and action a a reward r (s, a, s") which
is obtained when an action a is taken in state s followed by a transition to state s’.

The goal of the learner is to identify a policy &, which maps states to actions. Once
an agent decides a policy w: S — A, the MDP turns effectively into a Markov chain,
where p(s, 7 (s),s’) is the probability of transitioning to s’ at the next step if the agent
is currently at state s. Thus if it is started in a state s, the agent’s trajectory is a random
sample from the distribution of random walks starting from sg. It is customary to assume
for convenience that this Markov chain is ergodic. Thus if s¢, 1, S2, ..., are random
variables listing am infinite sequence of states that are visited during a random walk
starting from s then the expected reward is

o0

E[Y " R(si,(si).si41)]-

i=0

In general this can be infinite, so it is customary to use a discounting whereby rewards
obtained ¢ steps into the future are treated as if they were multiplied by a factor y* where
y < 1is the discount factor. Then total expected reward

[o.¢]

E[Z Y R(si, 7 (si), si1)]

i=0

stays finite. (The discounting idea is borrowed from economics, where this is a formal-
ization of the familiar human instinct to treat a bird in hand as better than two in the
bush.) The policy is optimum if this discount reward is optimum for every choice of sg.
The optimum policy can be computed using dynamic programming or linear program-
ming in time that is a fixed polynomial of the number of states.

However, in practice today the set of states is often very large, or even infinite. For
example, perhaps a state is a vector in ¢ and an action is a vector in 0¥, which makes a
policy a function from %t¢ to %t*. Now there is no known efficient algorithm for finding
an optimum policy, and in fact the task is known to be NP-hard. In practice, various
heuristics are known such as policy iteration and value interacction, where the policy
being computed is represented implicitly via a suitable representation, often a deep net.
Usually the machine does not know the underlying MDP and has to learn it while coming
up with the policy. For a detailed introduction see Sutton and Barto [1998]. Providing
theoretical support for this heuristic work is an important open problem, since obvious
ways to formalize it run into NP-hard problems. A start would be to formalize what it
means for training to generalize here, since the above algorithms such as policy iteration
do an exploration to progressively improve the policy, which takes us far afield from
the independent sample framework utilized in our treatment of supervised learning in
Section 1.
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We note that the above framework can be changed in various ways to provide other
well-studied frameworks that we will not describe here, such as online computation, ban-
dit optimization, etc.. These capture less general types of sequential decision-making,
which retain aspects of classical optimization by restricting attention to convex func-
tions. For an introduction see Hazan [2016].
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