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Percolation

In physics, chemistry and material sciences: movement of
fluids through porous materials.

In mathematical physics: one of the most studied topics
in statistical dynamics.
An ideal playground for the study of phase transition
and criticality.
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Critical planar percolation on the triangular lattice

We consider the critical Bernoulli percolation on triangular
lattice T. For illustration, paint the hexagons in the dual
lattice T∗ instead.

pc = 1/2 in this case.
Great breakthrough in the last 20 years on planar critical
percolation on T (thanks to the conformal invariance),
in particular in the understanding of scaling limit and
critical exponents.

3 / 24



Critical planar percolation on the triangular lattice

We consider the critical Bernoulli percolation on triangular
lattice T. For illustration, paint the hexagons in the dual
lattice T∗ instead.

pc = 1/2 in this case.
Great breakthrough in the last 20 years on planar critical
percolation on T (thanks to the conformal invariance),
in particular in the understanding of scaling limit and
critical exponents.

3 / 24



Critical planar percolation on the triangular lattice

We consider the critical Bernoulli percolation on triangular
lattice T. For illustration, paint the hexagons in the dual
lattice T∗ instead.

pc = 1/2 in this case.
Great breakthrough in the last 20 years on planar critical
percolation on T (thanks to the conformal invariance),
in particular in the understanding of scaling limit and
critical exponents.

3 / 24



A non-exhaustive list of progresses in understanding the
limit of critical planar percolation

[Schramm ’00] Introduction of Schramm-Loewner
Evolution as the conjectural scaling limit of percolation
interface (and many more critical 2D models);
[Smirnov ’01] Conformal invariance of the crossing
probability (aka Cardy’s formula) and scaling limit of
the interface as SLE6;
[Smirnov-Werner ’01][Lawler-Schramm-Werner ’01]
Identification of the value of various arm exponents;
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A non-exhaustive list of progresses in understanding the
limit of critical planar percolation

[Camia-Newman ’06] The full scaling limit of interfaces and
characterization as Conformal Loop Ensemble;

[Garban-Pete-Schramm ’10, ’13, ’18] Construction of
scaling limits of near-critical and dynamical percolation
via scaling limit of pivotal measures in the critical
percolation;
· · · · · ·
[Holden-Li-Sun ’22] Scaling limit in natural parametriza-
tion of percolation exploration process and pivotal points.
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Arm events

Definition
An arm is a self-avoiding path of nearest-neighbor
hexagons of the same color;
A+(r,R): half-annulus of inner- and outer-radius r and R;
The half-plane j-arm event:

Bj(r,R) :=
{
∃j disjoint arms crossing A+(r,R)

}
;

""

half- plane 5- arm event Bs ( r, R)
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More arm events
Definition

A(r,R): annulus of inner- and outer-radius r and R;
The whole-plane (polychromatic) j-arm event:

Pj(r,R) :=
{
∃j disjoint arms NOT all of the same color

(except j = 1) crossing A(r,R)
}
;

Aj(r,R) ⊂ Pj(r,R): the color sequence is alternative.
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Arm events and percolation

Arm events are central objects of interest for the study of
critical (and near-critical) planar percolation.

Whole-plane events:
one-arm: the cluster containing the origin;
two-arm: the interface, aka the exploration process;
four-arm event: pivotal points, correlation length,
near-critical percolation, dynamical percolation;
· · · · · ·

Half-plane events:
one-arm: the cluster touching a specific point on the
boundary;
two-arm: the hitting of the exploration process on the
boundary;
· · · · · ·
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Arm exponents via the knowledge of SLE6

Theorem (Werner-Smirnov ’01)
Half-plane exponents: for any j≥ 1,

P[Bj(r,R)] = R−j(j+1)/6+o(1).

Whole-plane exponents: for any j> 1,

P[Pj(r,R)] = R−(j2−1)/12+o(1).

Theorem (Lawler-Schramm-Werner ’01)

P[P1(r,R)] = R−5/48+o(1).

9 / 24



The quest for improvement of arm probabilities

As long as there is “o(1)” in the exponent of asympototics for
arm probability, one is not entirely satisfied. In the proceedings
of ICM 2006, Oded Schramm proposed the following

Problem (3.1)
Improve the estimates R−5/48+o(1) and R−5/4+o(1) mentioned
abovea (as well as other similar estimates) to more precise
formulas. It would be especially nice to obtain estimates that
are sharp up to multiplicative constants.

ai.e. arm probability asymptotics for j = 1 and j = 4 in the whole-plane
case

Cited from “Conformally invariant scaling limits: an overview and a
collection of problems” by Oded Schramm, ICM proceedings, 2006.
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A small step forward
Some easy up-to-constants estimates: in the half-plane case,

P[B2(1,R)] ≍ R−1 and P[B3(1,R)] ≍ R−2;

in the whole-plane case,

P[P5(1,R)] ≍ R−2.

Improvements for other arm probability asymptotics are much
more difficult.

Mendelson, Nachmias and Watson obtained a rate of
convergence for the Cardy’s formula1, and improved
half-plane 1-arm asymptotics:

Theorem (Mendelson-Nachmias-Watson ’14)
P[B1(1,R)] = eO(

√
log logR)R−1/3 = (logR)O(1/

√
log logR)R−1/3.

1Also independently obtained in [Binder-Chayes-Lei ’15].
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Sharp asymptotics for half-plane arm probabilities

In the half-plane case, we are now able to give sharp
asymptotics for arm probabilities.

Theorem (D.-Gao-Li-Zhuang ’22)
For any j ≥ 1, for any r ≥ r0(j), ∃C = C(r), c = c(r) s.t.

P[Bj(r,R)] = CR−j(j+1)/6(1 + O(R−c)
)
.

In particular, one can take r0(j) = 1 for j = 1, 2, 3.

The requirement that r ≥ r0 devotes to ensure the arm
probability P[Bj(r,R)] > 0.
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Up-to-constant estimates for whole-plane case

For whole-plane arm events, we can give sharp asymptotics of
probabilities of alternating arm events, as well as up-to-constant
estimates for probabilities of polychromatic arm events:

Theorem (D.-Gao-Li-Zhuang ’22)
For any j ≥ 2 and some r ≥ r0(j), ∀r ≥ r0, the following hold:
For the alternating arm event Aj(r,R), ∃C′ = C′(r) s.t.

P[Aj(r,R)] = (C′ + o(1))R−(j2−1)/12;

For polychromatic arm event Pj(r,R),

P[Pj(r,R)] ≍ R−(j2−1)/12.

In particular, one can take r0(j) = 1 for j = 2, · · · , 6.
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The need of a rate of convergence for discrete processes
to SLE

(Still cited from Schramm, ibid.)
The difficulty in getting more precise estimates is not in the
analysis of SLE. Rather, it is due to the passage between
the discrete and continuous setting. Consequently, the
above problem seems to be related to the following

Problem (3.2)
Obtain reasonable estimates for the speed of convergence of the
discrete processes which are known to converge to SLE.
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Power-law rate of convergence for exploration process
Take a Jordan domain Ω and two boundary points a, b.
For η > 0, let (Ωη, aη, bη) be the η-discretization of Ω by
ηT∗, along with the discrete approximation of the marked
points.
Consider critical face percolation on ηT∗ with Dobrushin
boundary condition. Let γη be the exploration process
from aη to bη and a chordal SLE6 γ in Ω from a to b.
Given open U ⊂ Ω, such that a ̸∈ U and b ∈ U, let Tη (resp.
T) be the first time that γη (resp. γ) enters Uη (resp. U).
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Power-law rate of convergence for exploration process

Theorem (Binder-Richards ’21)
For any η > 0, there is u = u(Ω, a, b,U) > 0 and a coupling P of
γη and γ such that

P
[
d
(
γη|[0,Tη ], γ|[0,T]

)
> ηu] < O(ηu) ,

where d is the up-to-reparametrization metric between curves.
16 / 24



Proof strategy overview

Even equipped with the convergence rate of percolation
exploration path to SLE6, the derivation of main results
is still far from trivial, since the connection between
microscopic and macroscopic scales are considered;
The convergence rate result allows us to further encode
information between mesoscopic and macroscopic
scales;
We use discrete coupling techniques to encode the
information between microscopic and mesoscopic
scales;
Finally, we apply a “functional equation” trick to put
everything together and reach the sharp estimates via
an abstract approach.
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Strategy of the proof, Step 1
We focus on the “clean” half-plane case.

Consider variants of arm events that are tailored for the
application of [Binder-Richards ’21]:

Hj(r,R) :=
{
∃ j disjoint arms of alternating colors
from [−r, r]× 0 to C+

R in B+
R
}
.

" "

-R R

N : the exploration process
under Dobrush in boundary Condition 1-

Note that this is an event that can be described by the
exploration process.
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Strategy of the proof, Step 2
Use couplings of conditioned percolation configurations to
relate the classical arm events to the variant defined above:
for α ∈ (0, 1), with universal constants,
P[Bj(r,R)|Bj(r,Rα)] = P[Hj(r,R)|Hj(r,Rα)]

(
1 + O(R−c)

)
,

n

ha
-

R
initial
information

and to establish a proportion between microscopic and
mesoscopic arm probabilities: for α ∈ (0, 1),

P[Hj(r,mR)]

P[Hj(r,R)]
=

P[Hj(Rα,mR)]

P[Hj(Rα,R)]

(
1 + O(R−c)

)
.
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Strategy of the proof, Step 3
Apply [Binder-Richards] to obtain a comparison across
scales at mesoscopic level:

Proposition
There exists c1 > 0 such that for all a ∈ (1 − c1, 1) and
m ∈ (1.1, 10)

P[Hj(nα,R)] = P[Hj(mRα,mR)]
(
1 + O(−c)

)
with universal constants.

"H"÷:
"

-%
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Strategy of the proof, Steps 4 and 5

Combine various asymptotic “identities” of proportions to
conclude with the following one:

P[Bj(r,m2R)]

P[Bj(r,mR)]
=

P[Bj(r,mR)]

P[Bj(r,R)]

(
1 + O(R−c)

)
with uniform constants for m ∈ (1.1, 10).
Finally, use a “functional equation” trick to obtain the
desired result from the asymptotic proportion above.

Similar strategy also appears in [L.-Shiraishi ’19] to deal with
sharp one-point function for 3-dimensional loop-erased random
walk.
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Coupling of configurations conditioned on arm events
In Step 2, we use coupling to establish estimates such as

P[Bj(r,R)|Bj(r,Rα)] = P[Hj(r,R)|Hj(r,Rα)]
(
1 + O(R−c)

)
,

Proposition
For any j ≥ 2, there exists δ = δ(j) > 0 such that for any large r
and R, there is a coupling Q of the conditional laws
P[· | Hj(r,R)] and P[· | Bj(r,R)] such that if we sample (ω, ω′)
according to Q, then with probability at least 1 − ( r

R)δ, there
exists a common configuration of j inner faces Θ∗ around C+

R
and ω coincides with ω′ outside these faces.

*
÷

(ommen faces

Configurations eoincide- 22 / 24



Half-plane super-strong separation lemma
A crucial step in establishing the coupling is to show that
interfaces between arms exhibit a “separation phenomenon”
with uniformly positive probability in each scale.
Let Γ be a set of interfaces from C+

u to C+
v , u < v. Suppose that

Γ contains j ≥ 1 interfaces and let e1, · · · , ej be end-edges of the
interfaces in Γ on C+

v (in counterclockwise order). Then Γ has
an exterior quality

Qex(Γ) := Qv
ex(Γ) =

1
v d(v, e1) ∧ d(e1, e2) ∧ · · · ∧ d(ej,−v).

Proposition (Super-strong separation lemma)
For any j ≥ 2, there exist M = M(j) > 1 and c = c(j) > 0 such
that for any r0 < r < u < Mu ≤ R, and any B+

u (ω),

P[Qex(Γ) > j−1 | Bj(r,R),B+
u (ω)] > c

where Γ is the set of interfaces crossing A+(u,R).
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A list of open questions

Can similar strategy be applied to other models to obtain
sharp asymptotics of arm probabilities, in particular the
critical FK-Ising model (partial progress) and the
harmonic explorer (seems difficult)?
Can one improve asympotics for P[P1(1,R)], the
whole-plane one-arm probability?
· · · · · ·

Preprint available at arXiv:2205.15901

Thank you!
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