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Braid groups

Braid groups were studied by E. Artin in the 1920’s.

a a a a1 2 3 n

The isotopy classes of geometric braids as above form a group by
composition. This is the braid group with n strands denoted by Bn.
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Braid relations

1   2            i    i                 n1

σi

+

Bn is generated by σi, 1 ≤ i ≤ n− 1 with relations

σiσi+1σi = σi+1σiσi+1

σiσj = σjσi, |i− j| > 1
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Braid groups

A braid and its closure (figure eight knot):
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Quantum symmetry in representations of braid groups
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Plan

Monodromy representations of logarithmic connections

Knizhnik-Zamolodchikov (KZ) connection

Homological representations and KZ connections

Quantum symmetry in homological representations
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Configuration spaces

Fn(X) : configuration space of ordered distinct n points in X.

Fn(X) = {(x1, · · · , xn) ∈ Xn ; xi 6= xj if i 6= j},

Cn(X) = Fn(X)/Sn

Suppose X = C.

π1(Fn(C)) = Pn, π1(Cn(C)) = Bn

We set Xn = Fn(C)
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Logarithmic forms

We set
ωij = d log(zi − zj), 1 ≤ i 6= j ≤ n.

Consider a total differential equation of the form dφ = ωφ for a
logarithmic form

ω =
∑
i<j

Aijωij

with Aij ∈Mm(C).
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Infinitesimal pure braid relations

As the integrability condition we infinitesimal pure braid relations

[Aik, Aij +Ajk] = 0, (i, j, k distinct),
[Aij , Ak`] = 0, (i, j, k, ` distinct)

The following are generalized for the complement of the union of
complex hyperplanes.

As the holonomy of the flat connection ω we obtain linear
representation of the pure braid group Pn.

The horizontal section of ω is expressed as an infinite sum of
iterated integrals of logarithmic forms (hyperlogarithms).

Infinitesimal pure braid relations describe the nilpotent
completion of the pure braid group Pn over Q (Malcev
algebra).
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KZ connections

g : complex semi-simple Lie algebra.
{Iµ} : orthonormal basis of g w.r.t. Killing form.
Ω =

∑
µ Iµ ⊗ Iµ

ri : g→ End(Vi), 1 ≤ i ≤ n representations.

Ωij : the action of Ω on the i-th and j-th components of
V1 ⊗ · · · ⊗ Vn.

ω =
1
κ

∑
i<j

Ωijd log(zi − zj), κ ∈ C \ {0}

ω defines a flat connection for a trivial vector bundle over the
configuration space Xn = Fn(C) with fiber V1 ⊗ · · · ⊗ Vn since we
have

ω ∧ ω = 0
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Monodromy representations of braid groups

As the holonomy we have representations

θκ : Pn → GL(V1 ⊗ · · · ⊗ Vn).

In particular, if V1 = · · · = Vn = V , we have representations of
braid groups

θκ : Bn → GL(V ⊗n).

We shall express the horizontal sections of the KZ connection :
dϕ = ωϕ in terms of homology with coefficients in local system
homology on the fiber of the projection map

π : Xm+n −→ Xn.

Xn,m : fiber of π, Yn,m = Xn,m/Sm
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Representations of sl2(C)

g = sl2(C) has a basis

H =
(

1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
.

λ ∈ C
Mλ : Verma module of sl2(C) with highest weight vector v such
that

Hv = λv, Ev = 0

Mλ is spanned by

v, Fv, F 2v, · · ·

For a non-negative integer λ we obtain an irreducible irreducible
representation Vλ of dimension λ+ 1 as a quotient of Mλ.
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KZ equation for sl2(C)

Consider the case λ = 1. Put V = Vλ.
The monodromy representations of braid groups

θκ : Bn → GL(V ⊗n).

Set q = e2π
√
−1/κ and

gi = q1/4θκ(σi)

Then we have
(gi − q1/2)(gi + q−1/2) = 0.

The monodromy representations factor through the Iwahori-Hecke
algebra H(q). The above quadratic relation leads to the skein
relation of the Jones polynomial.
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Relative configuration spaces

Fix P = {(1, 0), · · · , (n, 0)} ⊂ D, where D is a 2 dimensional disc.
Σ = D \ P

Fn,m(D) = Fm(Σ), Cn,m(D) = Fm(Σ)/Sm

P P P
1 2 n

Q
Q

Q
1

2

m
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Homology of relative configuration spaces

H1(Cn,m(D); Z) ∼= Z⊕n ⊕ Z

P P P
1 2 n

Q
Q

Q
1

2

m
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Abelian coverings

Consider the homomorphism

α : H1(Cn,m(D); Z) −→ Z⊕ Z

defined by α(x1, · · · , xn, y) = (x1 + · · ·+ xn, y).

Composing with the abelianization map
π1(Cn,m(D), x0)→ H1(Cn,m(D); Z), we obtain the homomorphism

β : π1(Cn,m(D), x0) −→ Z⊕ Z.

π : C̃n,m(D)→ Cn,m(D) : the covering corresponding to Kerβ.
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Homological representations

H∗(C̃n,m(D); Z) considered to be a Z[Z⊕ Z]-module by deck
transformations.

Express Z[Z⊕ Z] as the ring of Laurent polynomials
R = Z[q±1, t±1].

Hn,m = Hm(C̃n,m(D); Z)

Hn,m is a free R-module of rank

dn,m =
(
m+ n− 2

m

)
.

ρn,m : Bn −→ AutRHn,m : homological representations (m > 1)
extensively studied by Bigelow and Krammer ; they are faithful
representations.
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Space of null vectors

Λ = (λ1, · · · , λn) ∈ Cn, |Λ| = λ1 + · · ·+ λn
Consider the tensor product Mλ1 ⊗ · · · ⊗Mλn .

m : non-negative integer

W [|Λ| − 2m] = {x ∈Mλ1 ⊗ · · · ⊗Mλn ; Hx = (|Λ| − 2m)x}

The space of null vectors is defined by

N [|Λ| − 2m] = {x ∈W [|Λ| − 2m] ; Ex = 0}.

The KZ connection ω commutes with the diagonal action of g on
Mλ1 ⊗ · · · ⊗Mλn , hence it acts on the space of null vectors
N [|Λ| − 2m].
The monodromy of KZ connection

θκ,λ : Pn −→ AutN [|Λ| − 2m]
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Comparison theorem

We fix a complex number λ and consider the case
λ1 = · · · = λn = λ. We have

θκ,λ : Bn −→ AutN [nλ− 2m].

Theorem

There exists an open dense subset U in (C∗)2 such that for
(λ, κ) ∈ U the homological representation ρn,m with the
specialization

q = e−2π
√
−1λ/κ, t = e2π

√
−1/κ

is equivalent to the monodromy representation of the KZ
connection θλ,κ with values in the space of null vectors

N [nλ− 2m] ⊂M⊗nλ .
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Local system over the configuration space

π : Xn+m → Xn : projection defined by
(z1, · · · , zn, t1, · · · , tm) 7→ (z1, · · · , zn).
Xn,m : fiber of π.

Φ =
∏

1≤i<j≤n
(zi − zj)

λiλj
κ

∏
1≤i≤m,1≤`≤n

(ti − z`)−
λ`
κ

×
∏

1≤i<j≤m
(ti − tj)

2
κ

(multi-valued function on Xn+m).
Consider the local system L associated with Φ.
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Solutions to KZ equation

Notation:
W [|Λ| − 2m] has a basis

F Jv = F j1vλ1 ⊗ · · · ⊗ F jnvλn

with |J | = j1 + · · ·+ jn = m and vλj ∈Mλj the highest weight
vector.

Theorem (Schechtman-Varchenko, Date-Jimbo-Matsuo-Miwa, ...)

The hypergeometric integral∑
|J |=m

(∫
∆

ΦRJ(z, t)dt1 ∧ · · · ∧ dtm
)
F Jv

lies in N [|Λ| − 2m] and is a solution of the KZ equation, where ∆
is a cycle in Hm(Yn,m,L∗).
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Quantum symmetry

Theorem

There is an isomorphism

Nh[λn− 2m] ∼= Hm(Yn,m,L∗)

which is equivariant with respect to the action of the braid group
Bn, where Nh[λn− 2m] is the space of null vectors for the
corresponding Uh(g)-module with h = 1/κ.
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Quantum symmetry for twisted chains

There is the following correspondence:

twisted multi-chains⇐⇒ weight vectors F j1v1 ⊗ · · · ⊗ F jnvn

twisted boundary operator⇐⇒ the action of E ∈ Uh(g)

Hm(Yn,m,L∗)⇐⇒ Nh[λn− 2m]
j j
1 n

twisted multi-chains
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