主 题: On Galois Extensions for Azumaya Group Rings
报告人: Prof. Lany XUE (Bradley University)
时 间: 2010-10-29 14:00-14:45
地 点: 资源大厦1328 
  
 Let $R$ be a ring with 1, $G$ a group, and $RG$ a group ring with center $C$. Assume $RG$ 
  
 is an Azumaya $C$-algebra. Then the inner automorphism group $\overline G$ of $RG$ induced 
  
by the elements of $G$ is finite, and $RG$ is not a Galois extension of $(RG)^{\overline G}$ with 
  
Galois group $\overline G$. For a proper subgroup $\overline K$ of $\overline G$ with an 
  
invertible order, the following are equivalent: 
   
  
(1) $RG$ is a Galois extension of $(RG)^{\overline K}$ with Galois group 
  
$\overline K$; 
   
  
(2) $RG$ is a projective right $(RG)^{\overline K}$-module and the 
  
centralizer of $(RG)^{\overline K}$ is $\oplus\sum_{\overline g\in \overline K}J_{\overline g}$ where 
  
$J_{\overline g}=\{a\in RG\,\big|\,ax=\overline g(x)a$ for each $x\in RG\}$; and 
   
  
(3) $\{g\in G\,\big|\,g$ is a representative of $\overline g\in \overline K\}$ are linearly independent over $C$.