Bayesian Numerical Homogenization
                    
                  
                  
                  
                  
                  
                    
 
 
   
   主 题: Bayesian Numerical Homogenization
报告人: 张镭 (上海交通大学)
时 间: 2014-10-28 10:00-11:00 
地 点: 数学学院理科一号楼1418室(主持人:李若) 
  
 
  Recently, we proposed the so-call RPS (rough polyharmonic splines)  
  basis,  
  which has the optimal accuracy and localization property for  
  the numerical  
  homogenization of divergence form elliptic equation with  
  rough (L^\infty)  
  coefficients. The construction is found by the  
  compactness of solution space.  
  Surprisingly, this basis can be obtained  
  by the reformulation of the numerical  
  homogenization problem as a Bayesian  
  Inference problem in which a given  
  PDE with rough coefficients (or mult 
  i-scale op- 
  erator) is excited with noise  
  (random right hand side/source term)  
  and one tries to  
  estimate the value  
  of the solution at a given point based on a finite num 
  ber of obser- 
  inference  
  problem: given a finite number of observations, the basis is  
  the conditional  
  expectation when the right hand side of the PDE is  
  replaced by a Gaussian  
  random field. This formulation can be applied to 
   general linear integro-differential  
  equations, and can be further  
  extended to finite temperature systems. 
  
      
  
 
  
    报告人简介:张镭, 
   上海交通大学数学系、自然科学研究院特别研究员,美国加州理工学院博士。 
  
 
  研究方向:  
  着眼于解决多尺度建模,分析和 
  计算的根本性问题,内容包括偏微分方程, 
  数值分析,以及在材料科学,地球物理科学,生命科学等领域中的广泛应用问题。