Functional Latent Feature Models With A Single-Index Interaction

Naisyin Wang Department of Statistics University of Michigan

Yehua Li and Raymond J. Carroll University of Georgia and Texas A&M University

PL Hsu 100 Conference, Peking University

July 4, 2010

- Generalize the Standard FDA Model to allow for low-dimensional interactions
- Quantify the cost due to estimating functional principal components
- Analyze a nutrition data set

御 と く き と く き と

- ► The standard FDA model (Ramsay & Silverman, 2003)
- Allowing for low-dimensional interactions
- The Procedure
- Results with Known Basis Functions
- Results with Estimated Basis Functions
- Simulation
- Data Analysis

2

Some Basic Models

- Ordinary nonparametric regression of Y on X:
 E(Y|X) = μ{θ(X)
- The generalized partially linear model: $E(Y|X, Z) = \mu\{\theta(X) + Z^{T}\beta\}.$
- The single-index model (Stoker and Härdle, 89): E(Y|X) = μ{θ(X^Tκ)}
- The generalized partially linear single index model (GPLSIM, Carroll, Fan, Gijbels, Wand, 97):
 E(Y|X, Z) = μ{θ(X^Tκ) + Z^Tβ}.
- We want to do the GPLSIM for functional data and also allow for interactions

個人 くほん くほん しき

Scalar Response Y_i

- Longitudinal covariate $X_i(t)$, with mean $\mu_X(t)$
- ▶ Possibly observed covariate W_i(t) = X_i(t) + U_i(t), with U_i(·) white noise.
- Fixed covariate Z_i , includes a 1.0 for an intercept
- Relate Y to $\{X(\cdot), Z\}$

伺下 イヨト イヨト

► The standard FDA model says that there is an unknown function 𝔅(·) such that

$$Y_i = \int \mathfrak{A}(t) X_i(t) dt + Z_i^{\mathrm{T}} eta + \epsilon_i .$$

• We start with the simplest case that $X_i(\cdot)$ is entirely observed.

・ 回 ト ・ ヨ ト ・ ヨ ト

Standard FDA Model

- Let Ψ(t) = {ψ₁(t), ψ₂(t), · · · , ψ_p(t)}^T be p orthonormal functions.
- A standard model is that

$$\mathfrak{A}(t) = \Psi^{\mathrm{T}}(t) \alpha.$$

▶ Define for *j* = 1, ..., *p*,

$$\xi_{ij} = \int \psi_j(t) \{X_i(t) - \mu_X(t)\} dt.$$

• Then we have that with $\xi_i = (\xi_{i1}, ..., \xi_{ip})^{\mathrm{T}}$,

$$\int \mathfrak{A}(t) X_i(t) dt = \alpha_0 + \xi_i^{\mathrm{T}} \alpha_1.$$

(本部) (本語) (本語) (語)

- ξ is a vector of latent variables, which we refer as the latent feature of the functional data.
- Two typical structural considerations in functional data analysis.
 - ► Fixed bases: (ψ_j) are known basis functions, such as Fourier or wavelet basis functions.
 - ▶ Data-driven bases, e.g., the (ψ_j) are the leading principal components of X(t).

個 と く ヨ と く ヨ と …

- Let Z₁ be a subset of Z. The standard FDA model has no interactions between X(·) and Z.
- We propose a simple alternative, namely that instead of $\mathfrak{A}(t) = \Psi^{\mathrm{T}}(t) \alpha$, we have

$$\mathfrak{A}(t, Z_1, \theta) = \Psi^{\mathrm{T}}(t) \alpha(Z_1, \theta).$$

> To obtain dimension reduction, we further write

$$\mathfrak{A}(t, Z_1^{\mathrm{T}}\theta) = \Psi^{\mathrm{T}}(t) \{ \alpha_1 + \mathcal{S}(Z_1^{\mathrm{T}}\theta)\alpha_2 \}$$

where $S(\cdot)$ is of one dimension.

A B K A B K

Thoughts Behind the Interaction Structure

► Recall that we reduce $\Psi_1(t)\alpha_1(Z_1,\theta) + \cdots + \Psi_p(t)\alpha_p(Z_1,\theta)$ to

$$\Psi^{\mathrm{T}}(t)\{\alpha_1+\mathcal{S}(Z_1^{\mathrm{T}}\theta)\alpha_2\}.$$

- We consider only ONE $S(\cdot)$ instead of p of them.
- ► It would have been over-ambitious to estimate p S(·) due to the unstability of estimation of a higher PCA direction.
- ► $Z_1^{\mathrm{T}}\theta$ explains the main "Z-direction" on which X(t) interact with Z.
- We use α₂ (parametric) to accommodate differences in interactions among different PCA directions.

(本部) (本語) (本語) (語)

With the single index model and the known ξ's, we are left with the model

$$Y = \xi^{\mathrm{T}} \{ \alpha_1 + \mathcal{S}(Z_1^{\mathrm{T}} \theta) \alpha_2 \} + Z^{\mathrm{T}} \beta + \epsilon$$

- This is a semiparametric single index model with an unknown function S(·).
- There are various things needed for identifiability, we use ||θ|| = ||α₂|| = 1, E{S(θ^TZ₁)} = 0.

・日・ ・ ヨ・ ・ ヨ・

- The material is easily generalized to quasilikelihood.
- Let the mean and variance of Y given (X, Z) be given as

$$E(Y_i|X_i, Z_i) = \mu \left[\xi_i^{\mathrm{T}} \{ \alpha_1 + \mathcal{S}(Z_{1i}^{\mathrm{T}}\theta)\alpha_2 \} + Z_i^{\mathrm{T}}\beta \right];$$

$$\mathsf{var}(Y_i|X_i, Z_i) = V\left(\mu\left[\xi_i^{\mathrm{T}}\{\alpha_1 + \mathcal{S}(Z_{1i}^{\mathrm{T}}\theta)\alpha_2\} + Z_i^{\mathrm{T}}\beta\right]\right).$$

The basic mean model is that

$$\mathsf{E}(Y_i|X_i, Z_i) = \mu \left[\xi_i^{\mathrm{T}} \{ \alpha_1 + \mathcal{S}(Z_{1i}^{\mathrm{T}}\theta) \alpha_2 \} + Z_i^{\mathrm{T}}\beta \right].$$

- The terms ξ_i are still known to us, for now.
- There are options in fitting quasilikelihood, we follow the use of the <u>MAVE</u> method of Xia and Härdle (06).
- The MAVE idea is to do two steps.
- Step 1: local quasilikelihood backfitting with full multivariate kernel weights to get a consistent estimate of θ, say θ.
- ► <u>Step 2</u>: local quasilikelihood backfitting with univariate kernel weights with arguments Z₁^T θ to get efficient estimates.

白 と く ヨ と く ヨ と …

Results when the Basis Functions are Known

- ► We have shown that the <u>final estimated function</u> has the <u>usual type of bias-variance decomposition</u>. Under given conditions, $\|\widetilde{\Theta} \Theta_0\| \rightarrow 0$ with probability 1.
- ▶ We have shown that the final estimates of all the parameters has \sqrt{n} rate of convergence, is asymptotically normal, and has an asymptotic covariance matrix of the form $\underline{A^{-1}BA^{-1}}$, where A^{-1} is a generalized inverse. Under some conditions,

$$\begin{split} &\sqrt{n}(\widehat{\Theta} - \Theta_0) \rightarrow \text{Normal}(\mathbf{0}, \mathcal{A}^- \mathcal{B} \mathcal{A}^-), \\ &\sqrt{nh}\{\widehat{\mathcal{S}}(u) - \mathcal{S}_0(u) - h^2 \mathcal{S}^{(2)}(u) \sigma_k^2/2\} \rightarrow \text{Normal}\{0, \sigma_{\mathcal{S}}^2(u)\}, \end{split}$$

What if the Basis Functions are Unknown?

The most widely used data driven method uses functional principal components (FPCA).

• Define
$$\mu_X(t) = E\{X(t)\}$$
,

$$R(s,t) = \operatorname{cov}\{X(s), X(t)\} = \sum_{k=1}^{\infty} \omega_k \psi_k(s) \psi_k(t).$$

The Karhunen-Loève expansion says that

$$X_i(t) = \mu(t) + \sum_{j=1}^{\infty} \xi_{ij} \psi_j(t),$$

where $\mathrm{E}(\xi_j) = 0$, $\mathrm{cov}(\xi_{ij}, \xi_{ik}) = I(j=k)\omega_j.$

伺 と く き と く き と

- We do not observe the process $X_i(\cdot)$.
- Instead, <u>we observe discrete observations with noise</u>, i.e., at observation times T_{ij}, we observe

$$W_{ij} = X_i(T_{ij}) + U_{ij}, \quad j = 1, \cdots, m_i,$$

where U_{ij} are independent zero-mean errors independent of $X_i(\cdot)$ and Z_i , with var $\{U_i(t)\} = \sigma_u^2$.

御 と く ヨ と く ヨ と … ヨ

- It is commonly assumed that there are infinite number non-zero eigenvalues.
- A more realistic assumption is that Y only depends on a <u>finite number</u> p of the leading principal components.
- ➤ To push this through, we have to estimate cov{X(s), X(t)}; we use kernel methods and W to do this.
- ► We have $\widehat{R}(s,t) = \widehat{\sigma}_{XX}(s,t) \widehat{\mu}_X(s)\widehat{\mu}_X(t)$, $\sigma_{XX}(s,t) = \mathbb{E}\{X(s)X(t)\}.$
- We then get $\hat{\sigma}_u^2$ based on $\sigma_w^2(t) = \operatorname{var}\{W(t)\} = R(t, t) + \sigma_u^2$.
- Estimate of PC-scores: numerical integration (NI) method (Müller, 2007).

(日) (同) (E) (E) (E)

Remember our basic model

$$E(Y_i|X_i, Z_i) = \mu \left[\xi_i^{\mathrm{T}} \{\alpha_1 + \mathcal{S}(Z_{1i}^{\mathrm{T}}\theta)\alpha_2\} + Z_i^{\mathrm{T}}\beta\right].$$

- We now substitute estimates $\hat{\xi}_i$ for ξ_i .
- We have shown <u>under certain technical conditions</u> that estimating the PC scores <u>will not</u> impact the variability of the estimate of S(·) but <u>will increase</u> the variability of the parameter estimates.

伺 と く き と く き と

- ▶ We generate Gaussian longitudinal process X(t) for $t \in [0, 1]$, with mean function $\mu_X(t) = (t 0.6)^2 0.1$.
- The covariance function of the process had 2 principal components, ψ₁(t) = 1, ψ₂(t) = √2 sin(2πt), and the eigenvalues were ω₁ = 1.0 and ω₂ = 0.6.
- Assume m = 30 discrete observations on each curve, with random observation time points being uniformly distributed on the interval [0, 1].
- ► Discrete observations on X are contaminated with zero-mean Gaussian error with variance $\sigma_u^2 = 0.1$.

- 〈 同 〉 〈 臣 〉 〈 臣 〉 ― 臣

► We generated a binary response Y from the logistic model

$$\mathsf{pr}(Y = 1 | Z, \xi) = H\{\alpha_1^{\mathrm{T}} \xi + \mathcal{S}(\theta^{\mathrm{T}} Z_1) \alpha_2^{\mathrm{T}} \xi + \beta^{\mathrm{T}} Z\}.$$

- ► Z = (1, Z₁^T, Z₂)^T, Z₁ is a 2-dimensional random vector with a uniform distribution on [0, 1]², and Z₂ is a binary variable with pr(Z₂ = 1) = 0.5.
- We let $S(\cdot)$ be a sine bump function similar to that used in Carroll et al. (1997), $S(t) = 2 \sin\{(t - c_1)/(c_2 - c_1)\}$, where $c_1 = 1/\sqrt{2} - 1.645/\sqrt{12}$ and $c_2 = 1/\sqrt{2} + 1.645/\sqrt{12}$.
- We let n = 100 and repeated the simulation 200 times.

▲圖 ▶ ★ 国 ▶ ★ 国 ▶

- We found some variance inflation due to estimating the PC scores.
- There was a 50% variance inflation for estimating the parameters associated with the second principal component
- Main effect parameters were badly biased if the interaction was ignored.

Image: A image: A

		Reduced Model						
	Truth	Mean	SD	Bias		Mean	SD	Bias
β_0	-1	-1.038	0.418	-0.038	β_0	-0.939	0.368	0.061
β_1	2	2.062	0.494	0.062	β_1	1.757	0.429	-0.243
β_2	-2	-2.021	0.466	-0.021	β_2	-1.741	0.406	0.259
β_3	2	2.076	0.299	0.076	β_3	1.888	0.270	-0.112
α_{11}^*	1.7986	1.755	0.194	-0.044	α_1	1.497	0.171	-0.301
$\alpha_{11}^{*} \\ \alpha_{12}^{*}$	-0.0014	-0.096	0.207	-0.095	α_2	-0.168	0.185	-0.167
α_{21}	0.7071	0.678	0.188	-0.029				
α_{22}	0.7071	0.666	0.249	-0.041				
θ_1	0.7071	0.699	0.116	-0.008				
θ_1	0.7071	0.696	0.116	-0.011				

<ロ> (四) (四) (三) (三) (三)

- Beneath the colon tissue, there are pore structures called 'colonic crypts', see next slide.
- A crypt typically contains 25-30 cells. Functional covariate, X(t),: p27 measured at cell level, and t: relative cell location within the crypt.
- ▶ *p*27 is a protein that inhibits the cell cycle.
- ► We sampled about 20 crypts from each of the 12 rats, with a total of n = 249 crypts.
- There are 2 diet groups (corn oil diet or fish oil diet) and 2 treatment groups (with/without butyrate supplement).

(4回) (1日) (日)

Goal of the study: to build a regression model between Y = mean apoptotic (programmed cell death) rate within a crypt and

- X = p27 profile curve within a crypt
- Z=environment variables (diet, treatment), and mean proliferation rate in each crypt
- ▶ interaction between X and Z. so that Z₁ is the same as Z but without the intercept.

向下 イヨト イヨト

- ► The first 3 eigenvalues are 0.871, 0.019 and 0.005 respectively.
- ▶ In our regression, we will only use the first 2 PC's.

- 17

★ E ► ★ E ►

・ロト ・日子・ ・ヨト

<= ≣⇒

æ

Our model is

$$\begin{array}{lll} Y_i &=& \int \mathfrak{A}(t, Z_{i1}^{\mathrm{T}}\theta) X_i(t) dt + Z_i^{\mathrm{T}}\beta + \epsilon_i \\ \mathfrak{A}(t, Z_1^{\mathrm{T}}\theta) &=& \Psi^{\mathrm{T}}(t) \{\alpha_1 + \mathcal{S}(Z_1^{\mathrm{T}}\theta)\alpha_2\} \end{array}$$

 The shape of 𝔅(t, Z₁^Tθ) varies dramatically based on where the cell is located, see next.

ヨット イヨット イヨッ

Estimated functional coefficient function

Figure: Semiparametric estimator of $\mathfrak{A}(t, \theta^T Z_1)$ in the colon carcinogenesis p27 data.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

- The main effects for Z in Z^Tβ were modest but dominated by an increase in Apoptosis for the fish oil diet.
- The interaction θ was dominated by a highly significant effect of butyrate exposure and the proliferative index.
- If we ignore the possible interaction, NOTHING is statistically significant in the resulting model, including fish oil intake.

白 と く ヨ と く ヨ と

- ► If S(·) is constant, then there should be no relationship between it and X, the p27 biomarker or on Y
- ► By implication, there should thus be no relationship between S(·) and the PC scores.
- ► We thus first divide the function estimates S
 (·) into three subgroups:
 - high values of $\mathcal{S}(\cdot)$, $(\mathcal{S}_{\text{high}}: \mathcal{S} > 1.5)$;
 - low values of $\mathcal{S}(\cdot)$ (\mathcal{S}_{low} : $\mathcal{S} < -1.5$);
 - and the ones that are in between (S_{mid}) .

回 と く ヨ と く ヨ と

- We then dichotomized each of the two p27 PC scores according whether they belong to the top or bottom 50% of the scores.
- This produces 4 groups in the data: PC1-Low, PC1-High, PC2-Low and PC2-High.
- If S(·) is constant, there there should be no systematic relationship between Ŝ(·) and the average apoptotic index of these four PC groups.
- The next graph shows a clear relationship.

< 🗇 🕨

< ∃⇒

- We proposed a new class of functional generalized linear models, which allows multivariate covariates and their interaction with functional latent features.
- The interaction between the functional and multivariate predictor is modeled with a single-index structure, which is flexible yet parsimonious.
- We propose a MAVE-type of estimating procedure based on local quasi-likelihood.
- We show an asymptotic variance inflation on parameter estimates due to estimating PC scores and basis functions. This may be an important issue in practice.

・ 回 ト ・ ヨ ト ・ ヨ ト

α_{11}	α_{12}	α_{21}	α_{22}
-0.0004	0.0235	-0.0480	0.9988
0.0108	0.1003	0.1653	0.0767
0.9719	0.8145	0.7714	0.0000
0	2	2	2
, ,	/ 11011		$\beta_{\rm prolif}$
0.2627	0.0514	0.0223	-0.0062
0.0247	0.0193	0.0201	0.0135
0.0000	0.0078	0.2667	0.6484
Ac. 1	θ.	θ 1:6	
0.2847			
0.1394	0.0031	0.0053	
	$-0.0004 \\ 0.0108 \\ 0.9719 \\ \beta_0 \\ 0.2627 \\ 0.0247 \\ 0.0000 \\ \theta_{fish} \\ 0.4208 \\ 0.2847 \\ \end{array}$	$\begin{array}{ccc} -0.0004 & 0.0235 \\ 0.0108 & 0.1003 \\ 0.9719 & 0.8145 \\ \end{array}$	$\begin{array}{cccc} -0.0004 & 0.0235 & -0.0480 \\ 0.0108 & 0.1003 & 0.1653 \\ 0.9719 & 0.8145 & 0.7714 \\ \\ \hline \beta_0 & \beta_{\rm fish} & \beta_{\rm buty} \\ 0.2627 & 0.0514 & 0.0223 \\ 0.0247 & 0.0193 & 0.0201 \\ 0.0000 & 0.0078 & 0.2667 \\ \\ \hline \theta_{\rm fish} & \theta_{\rm buty} & \theta_{\rm prolif} \\ 0.4208 & -0.7143 & -0.5592 \\ 0.2847 & 0.2419 & 0.2005 \\ \end{array}$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで