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Our Goals

I Generalize the Standard FDA Model to allow for
low-dimensional interactions

I Quantify the cost due to estimating functional principal
components

I Analyze a nutrition data set
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Outline

I The standard FDA model (Ramsay & Silverman, 2003)

I Allowing for low-dimensional interactions

I The Procedure

I Results with Known Basis Functions

I Results with Estimated Basis Functions

I Simulation

I Data Analysis
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Some Basic Models

I Ordinary nonparametric regression of Y on X :
E (Y |X ) = µ{θ(X )

I The generalized partially linear model:
E (Y |X ,Z ) = µ{θ(X ) + ZTβ}.

I The single-index model (Stoker and Härdle, 89):
E (Y |X ) = µ{θ(XTκ)}

I The generalized partially linear single index model (GPLSIM,
Carroll, Fan, Gijbels, Wand, 97):
E (Y |X ,Z ) = µ{θ(XTκ) + ZTβ}.

I We want to do the GPLSIM for functional data and also allow
for interactions
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Data Structure

I Scalar Response Yi

I Longitudinal covariate Xi (t), with mean µX (t)

I Possibly observed covariate Wi (t) = Xi (t) + Ui (t), with Ui (·)
white noise.

I Fixed covariate Zi , includes a 1.0 for an intercept

I Relate Y to {X (·),Z}
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Standard FDA Model

I The standard FDA model says that there is an unknown
function A(·) such that

Yi =

∫
A(t)Xi (t)dt + ZT

i β + εi .

I We start with the simplest case that Xi (·) is entirely observed.
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Standard FDA Model

I Let Ψ(t) = {ψ1(t), ψ2(t), · · · , ψp(t)}T be p orthonormal
functions.

I A standard model is that

A(t) = ΨT(t)α.

I Define for j = 1, ..., p,

ξij =

∫
ψj(t){Xi (t)− µX (t)}dt.

I Then we have that with ξi = (ξi1, ..., ξip)T,∫
A(t)Xi (t)dt = α0 + ξTi α1.
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Functional Latent Features

I ξ is a vector of latent variables, which we refer as the latent
feature of the functional data.

I Two typical structural considerations in functional data
analysis.

I Fixed bases: (ψj) are known basis functions, such as Fourier or
wavelet basis functions.

I Data-driven bases, e.g., the (ψj) are the leading principal
components of X (t).
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Allowing Interactions

I Let Z1 be a subset of Z . The standard FDA model has no
interactions between X (·) and Z .

I We propose a simple alternative, namely that instead of
A(t) = ΨT(t)α, we have

A(t,Z1, θ) = ΨT(t)α(Z1, θ).

I To obtain dimension reduction, we further write

A(t,ZT
1 θ) = ΨT(t){α1 + S(ZT

1 θ)α2}

where S(·) is of one dimension.

Naisyin Wang Functional Latent Feature Models



Thoughts Behind the Interaction Structure

I Recall that we reduce Ψ1(t)α1(Z1, θ) + · · ·+ Ψp(t)αp(Z1, θ)
to

ΨT(t){α1 + S(ZT
1 θ)α2}.

I We consider only ONE S(·) instead of p of them.

I It would have been over-ambitious to estimate p S(·) due to
the unstability of estimation of a higher PCA direction.

I ZT
1 θ explains the main “Z -direction” on which X (t) interact

with Z .

I We use α2 (parametric) to accommodate differences in
interactions among different PCA directions.
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Allowing Interactions

I With the single index model and the known ξ’s, we are left
with the model

Y = ξT{α1 + S(ZT
1 θ)α2}+ ZTβ + ε

I This is a semiparametric single index model with an unknown
function S(·).

I There are various things needed for identifiability, we use
‖θ‖ = ‖α2‖ = 1, E{S(θTZ1)} = 0.
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Allowing Interactions With Non-Gaussian Data

I The material is easily generalized to quasilikelihood.

I Let the mean and variance of Y given (X ,Z ) be given as

E (Yi |Xi ,Zi ) = µ
[
ξTi {α1 + S(ZT

1i θ)α2}+ ZT
i β
]

;

var(Yi |Xi ,Zi ) = V
(
µ
[
ξTi {α1 + S(ZT

1i θ)α2}+ ZT
i β
])
.
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Algorithm

I The basic mean model is that

E (Yi |Xi ,Zi ) = µ
[
ξTi {α1 + S(ZT

1i θ)α2}+ ZT
i β
]
.

I The terms ξi are still known to us, for now.

I There are options in fitting quasilikelihood, we follow the use
of the MAVE method of Xia and Härdle (06).

I The MAVE idea is to do two steps.

I Step 1: local quasilikelihood backfitting with full multivariate

kernel weights to get a consistent estimate of θ, say θ̃.

I Step 2: local quasilikelihood backfitting with univariate kernel

weights with arguments ZT
1 θ̃ to get efficient estimates.
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Results when the Basis Functions are Known

I We have shown that the final estimated function has the
usual type of bias-variance decomposition. Under given

conditions, ‖Θ̃−Θ0‖ → 0 with probability 1.

I We have shown that the final estimates of all the parameters
has
√
n rate of convergence, is asymptotically normal, and

has an asymptotic covariance matrix of the form A−1BA−1,
where A−1 is a generalized inverse. Under some conditions,

√
n(Θ̂−Θ0)→ Normal(000,A−BA−),√
nh{Ŝ(u)− S0(u)− h2S(2)(u)σ2k/2} → Normal{0, σ2S(u)},
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What if the Basis Functions are Unknown?

I The most widely used data driven method uses
functional principal components (FPCA).

I Define µX (t) = E{X (t)},

R(s, t) = cov{X (s),X (t)} =
∞∑
k=1

ωkψk(s)ψk(t).

I The Karhunen-Loève expansion says that

Xi (t) = µ(t) +
∑∞

j=1ξijψj(t),

where E(ξj) = 0, cov(ξij , ξik) = I (j = k)ωj .
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Discrete functional data

I We do not observe the process Xi (·).

I Instead, we observe discrete observations with noise, i.e.,
at observation times Tij , we observe

Wij = Xi (Tij) + Uij , j = 1, · · · ,mi ,

where Uij are independent zero-mean errors independent of
Xi (·) and Zi , with var{Ui (t)} = σ2u.
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Discrete functional data

I It is commonly assumed that there are infinite number non-zero
eigenvalues.

I A more realistic assumption is that Y only depends on a
finite number p of the leading principal components.

I To push this through, we have to estimate cov{X (s),X (t)}; we use
kernel methods and W to do this.

I We have R̂(s, t) = σ̂XX (s, t)− µ̂X (s)µ̂X (t),
σXX (s, t) = E{X (s)X (t)}.

I We then get σ̂2
u based on σ2

w (t) = var{W (t)} = R(t, t) + σ2
u.

I Estimate of PC-scores: numerical integration (NI) method (Müller,
2007).
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Effect of Estimating Basis Function

I Remember our basic model

E (Yi |Xi ,Zi ) = µ
[
ξTi {α1 + S(ZT

1i θ)α2}+ ZT
i β
]
.

I We now substitute estimates ξ̂i for ξi .

I We have shown under certain technical conditions that
estimating the PC scores will not impact the variability of the
estimate of S(·) but will increase the variability of the
parameter estimates.
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Simulation

I We generate Gaussian longitudinal process X (t) for t ∈ [0, 1],
with mean function µX (t) = (t − 0.6)2 − 0.1.

I The covariance function of the process had 2 principal
components, ψ1(t) = 1, ψ2(t) =

√
2 sin(2πt), and the

eigenvalues were ω1 = 1.0 and ω2 = 0.6.

I Assume m = 30 discrete observations on each curve, with
random observation time points being uniformly distributed on
the interval [0, 1].

I Discrete observations on X are contaminated with zero-mean
Gaussian error with variance σ2u = 0.1.
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Simulation

I We generated a binary response Y from the logistic model

pr(Y = 1|Z , ξ) = H{αT
1 ξ + S(θTZ1)αT

2 ξ + βTZ}.

I Z = (1,ZT
1 ,Z2)T, Z1 is a 2-dimensional random vector with a

uniform distribution on [0, 1]2, and Z2 is a binary variable with
pr(Z2 = 1) = 0.5.

I We let S(·) be a sine bump function similar to that used in
Carroll et al. (1997), S(t) = 2 sin{(t − c1)/(c2 − c1)}, where
c1 = 1/

√
2− 1.645/

√
12 and c2 = 1/

√
2 + 1.645/

√
12.

I We let n = 100 and repeated the simulation 200 times.
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Results of the Simulation

I We found some variance inflation due to estimating the PC
scores.

I There was a 50% variance inflation for estimating the
parameters associated with the second principal component

I Main effect parameters were badly biased if the interaction
was ignored.
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Simulation results

Full Model Reduced Model
Truth Mean SD Bias Mean SD Bias

β0 -1 -1.038 0.418 -0.038 β0 -0.939 0.368 0.061
β1 2 2.062 0.494 0.062 β1 1.757 0.429 -0.243
β2 -2 -2.021 0.466 -0.021 β2 -1.741 0.406 0.259
β3 2 2.076 0.299 0.076 β3 1.888 0.270 -0.112

α∗
11 1.7986 1.755 0.194 -0.044 α1 1.497 0.171 -0.301
α∗
12 -0.0014 -0.096 0.207 -0.095 α2 -0.168 0.185 -0.167

α21 0.7071 0.678 0.188 -0.029
α22 0.7071 0.666 0.249 -0.041

θ1 0.7071 0.699 0.116 -0.008
θ1 0.7071 0.696 0.116 -0.011
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Colon Carcinogenesis Data

I Beneath the colon tissue, there are pore structures called ‘colonic
crypts’, see next slide.

I A crypt typically contains 25-30 cells. Functional covariate, X (t),:
p27 measured at cell level, and t: relative cell location within the
crypt.

I p27 is a protein that inhibits the cell cycle.

I We sampled about 20 crypts from each of the 12 rats, with a total
of n = 249 crypts.

I There are 2 diet groups (corn oil diet or fish oil diet) and 2
treatment groups (with/without butyrate supplement).
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Colonic crypts
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Colon Carcinogenesis Data

Goal of the study: to build a regression model between Y =
mean apoptotic (programmed cell death) rate within a crypt and

I X=p27 profile curve within a crypt

I Z=environment variables (diet, treatment), and mean
proliferation rate in each crypt

I interaction between X and Z . so that Z1 is the same as Z but
without the intercept.
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PCA for p27 data

I The first 3 eigenvalues are 0.871, 0.019 and 0.005 respectively.

I In our regression, we will only use the first 2 PC’s.
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PCA for p27 data
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The Shape of the Interaction Surface

I Our model is

Yi =

∫
A(t,ZT

i1θ)Xi (t)dt + ZT
i β + εi

A(t,ZT
1 θ) = ΨT(t){α1 + S(ZT

1 θ)α2}

I The shape of A(t,ZT
1 θ) varies dramatically based on where

the cell is located, see next.
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Estimated functional coefficient function

Figure: Semiparametric estimator of A(t, θTZ1) in the colon carcinogenesis p27 data.
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The Single Index

I The main effects for Z in ZTβ were modest but dominated by
an increase in Apoptosis for the fish oil diet.

I The interaction θ was dominated by a highly significant effect
of butyrate exposure and the proliferative index.

I If we ignore the possible interaction, NOTHING is statistically
significant in the resulting model, including fish oil intake.

Naisyin Wang Functional Latent Feature Models



Interaction

I If S(·) is constant, then there should be no relationship
between it and X , the p27 biomarker or on Y

I By implication, there should thus be no relationship between
S(·) and the PC scores.

I We thus first divide the function estimates Ŝ(·) into three
subgroups:

I high values of S(·), (Shigh: S > 1.5);
I low values of S(·) (Slow: S < −1.5);
I and the ones that are in between (Smid).
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Interaction

I We then dichotomized each of the two p27 PC scores
according whether they belong to the top or bottom 50% of
the scores.

I This produces 4 groups in the data: PC1-Low, PC1-High,
PC2-Low and PC2-High.

I If S(·) is constant, there there should be no systematic
relationship between Ŝ(·) and the average apoptotic index of
these four PC groups.

I The next graph shows a clear relationship.
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Interpretation of interaction (Cont.)
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Summary

I We proposed a new class of functional generalized linear models,
which allows multivariate covariates and their interaction with
functional latent features.

I The interaction between the functional and multivariate predictor is
modeled with a single-index structure, which is flexible yet
parsimonious.

I We propose a MAVE-type of estimating procedure based on local
quasi-likelihood.

I We show an asymptotic variance inflation on parameter estimates
due to estimating PC scores and basis functions. This may be an
important issue in practice.
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Fitted model

α11 α12 α21 α22
Estimate -0.0004 0.0235 -0.0480 0.9988

SE 0.0108 0.1003 0.1653 0.0767
p-value 0.9719 0.8145 0.7714 0.0000

β0 βfish βbuty βprolif
Estimate 0.2627 0.0514 0.0223 -0.0062

SE 0.0247 0.0193 0.0201 0.0135
p-value 0.0000 0.0078 0.2667 0.6484

θfish θbuty θprolif
Estimate 0.4208 -0.7143 -0.5592

SE 0.2847 0.2419 0.2005
p-value 0.1394 0.0031 0.0053
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