# Extracting Communities from Networks 

Ji Zhu

Department of Statistics, University of Michigan

Joint work with Yunpeng Zhao and Elizaveta Levina

## Outline

- Review of community detection
- Community extraction
- Simulation study
- Real data analysis
- Asymptotic consistency
- Future work


## Network data

Data: links between nodes

- Social and friendship networks, citation networks
- Marketing, recommender systems
- Computer, mobile, sensor networks
- World Wide Web
- Gene regulatory networks, food webs


## Notation

Given a network $N=(V, E)$

- $V$ is the set of nodes, $E$ is the set of edges.
- $N$ is represented by its adjacency matrix $A$ :

$$
A_{i j}=\left\{\begin{array}{lc}
1 & \text { if there is an edge from node } i \text { to node } j \\
0 & \text { otherwise. }
\end{array}\right.
$$

- A can be symmetric (undirected network) or asymmetric (directed network).


## Community detection

- Communities: many links within and few links between
- Community detection is typically formulated as finding a partition $V=V_{1} \cup \cdots \cup V_{K}$ which gives "tight" communities in some suitable sense.
- For simplicity, give criteria for partitioning into two communities $V_{1}$ and $V_{2}$.


## Example: a school friendship network

Colors represent grades

$\bigcirc$

## Graph cuts

- Min-cut: minimize

$$
R=\sum_{i \in V_{1}, j \in V_{2}} A_{i j}
$$

Trivial solution of $V_{1}=V$ or $V_{2}=V$.

## Graph cuts

- Min-cut: minimize

$$
R=\sum_{i \in V_{1}, j \in V_{2}} A_{i j} .
$$

Trivial solution of $V_{1}=V$ or $V_{2}=V$.

- Ratio cut (Wei and Cheng, 1989): minimize

$$
\frac{R}{\left|V_{1}\right| \cdot\left|V_{2}\right|},
$$

where $\left|V_{1}\right|$ and $\left|V_{2}\right|$ are the sizes of the two communities.

## Graph cuts

- Min-cut: minimize

$$
R=\sum_{i \in V_{1}, j \in V_{2}} A_{i j}
$$

Trivial solution of $V_{1}=V$ or $V_{2}=V$.

- Ratio cut (Wei and Cheng, 1989): minimize

$$
\frac{R}{\left|V_{1}\right| \cdot\left|V_{2}\right|}
$$

where $\left|V_{1}\right|$ and $\left|V_{2}\right|$ are the sizes of the two communities.

- Normalized cut (Shi and Malik, 2000): minimize

$$
\frac{R}{D_{1}}+\frac{R}{D_{2}}
$$

where $D_{k}=\sum_{i \in V_{k}, j \in V} A_{i j}$ is the total number of edges from nodes in $V_{k}$.

## Modularity (Newman and Girvan, 2004)

Maximize

$$
Q=\sum_{k=1}^{2}\left[\frac{O_{k k}}{L}-\left(\frac{D_{k}}{L}\right)^{2}\right],
$$

where

- $O_{k k}=\sum_{i \in V_{k}, j \in V_{k}} A_{i j}$ is the number of edges within community $k$.
- $D_{k}=\sum_{i \in V_{k}, j \in V} A_{i j}, L=\sum_{k} D_{k}$ is the total number of edges.

$$
Q=\sum_{k}\left[\frac{O_{k k}}{L}-\left(\frac{D_{k}}{L}\right)^{2}\right]
$$

- $Q$ is the sum of observed - expected under the configuration model: probability of edge between nodes with degrees $d_{i}, d_{j}$ is $d_{i} d_{j} / L$.
- Typically solved by an eigenvalue method via relaxing $\max _{s_{i}= \pm 1} \boldsymbol{s}^{\top} \boldsymbol{M s}$ to $\max _{\|\boldsymbol{s}\|=1} \boldsymbol{s}^{\top} \boldsymbol{M} \boldsymbol{s}$.


## Limitation of partition methods

- Many real-world networks contain nodes with few links that may not belong to any community ("background").
- The "strength" of a community depends on links between nodes not related to the community.
- Determining the number of communities is difficult.


## Outline

$\checkmark$ Review of community detection

- Community extraction
- Simulation study
- Real data analysis
- Asymptotic consistency
- Future work


## Community extraction

- Allow for background nodes that only have sparse links to other nodes.
- Extract communities sequentially: at each step look for a set with a large number of links within and a small number of links to the rest of the network.
- Stop when no more meaningful communities exist.


## Toy example

- One community with 15 nodes, total 60 nodes.
- Links between community members form independently with probability 0.5 .
- Links between community members and other nodes form independently with probability 0.1 .
- Links between other nodes form independently with probability 0.1.
- Compare partition into two communities (via modularity) to extraction of a single community.

Shapes represent the truth, colors represent results.

## Partition



## Extraction criterion

Maximize

$$
W(S)=\frac{O(S)}{|S|^{2}}-\frac{B(S)}{|S| \cdot\left|S^{c}\right|},
$$

where

$$
O(S)=\sum_{i, j \in S} A_{i j}, B(S)=\sum_{i \in S, j \in S^{c}} A_{i j}
$$

The links within the complement of set $S$ do not matter.

## Adjusted criterion

- In sparse networks, tends to pick small disconnected components first.
- To avoid small communities, can use

Maximize

$$
W_{a}(S)=|S| \cdot\left|S^{c}\right|\left(\frac{O(S)}{|S|^{2}}-\frac{B(S)}{|S| \cdot\left|S^{c}\right|}\right)
$$

The factor $|S| \cdot\left|S^{C}\right|$ encourages more balanced solutions.

## Algorithm

- Tabu Search (Glover, 1986; Glover and Laguna, 1997): a local optimization technique based on label switching.
- Switch labels to improve the value of the criterion but each node has to keep its label for at least T iterations.
- Run the algorithm for many randomly ordered nodes.


## Outline

$\checkmark$ Review of community detection
$\checkmark$ Community extraction

- Simulation study
- Real data analysis
- Asymptotic consistency
- Future work


## Numerical evaluation

- $S$ is the extracted community.
- $C_{S}$ is the true community that matches $S$ best.


## PPV and NPV

$$
\begin{array}{ll}
\mathrm{PPV}=\frac{\left|C_{S} \cap S\right|}{|S|} & \text { Purity } \\
\text { NPV }=1-\frac{\left|C_{S} \cap S^{c}\right|}{\left|S^{c}\right|} & \text { Completeness }
\end{array}
$$

## Simulation I

- One community with background
- $n=1000$
- $n_{1}=100,200,300$
- $p_{12}=0.05, p_{22}=0.05$
- $p_{11}=0.1,0.15,0.2$








## Simulation II

- Two communities plus background
- $n=1000$
- $n_{1}=100,300, n_{2}=100,300$
- $p_{12}=p_{23}=p_{13}=p_{33}=0.05$
- $p_{11}=0.1,0.15,0.2$
- $p_{22}=0.08,0.12,0.16$



## Outline

$\checkmark$ Review of community detection
$\checkmark$ Community extraction
$\checkmark$ Simulation study

- Real data analysis
- Asymptotic consistency
- Future work


## Karate club network

- Friendships between 34 members of a karate club (Zachary, 1977).
- This club has subsequently split into two parts following a disagreement between an instructor (node 0) and an administrator (node 33).


## Karate club network

Community extraction
Modularity



## Political books network

Links in the political books network (Newman, 2006) represent pairs of books frequently bought together on amazon.com.

Blue: liberal
Red: conservative

Community extraction
Modularity


## School friendship network

The school friendship network is complied from the National Longitudinal Study of Adolescent Health (AddHealth).

Grade 7: red
Grade 8: blue
Grade 9: green
Grade 10:
Grade 11: purple Grade 12: orange

## School friendship network

Grades
Modularity with 6 communities


○

## School friendship network

Extracting 6 communities
Extracting 7 communities


O

## Outline

$\checkmark$ Review of community detection
$\checkmark$ Community extraction
$\checkmark$ Simulation study
$\checkmark$ Real data analysis

- Asymptotic consistency
- Future work

One of the simplest random graph models for communities

- Each node is assigned to a block independently of other nodes, with probability $\pi_{k}$ for block $k, \sum_{k=1}^{K} \pi_{k}=1$.
- Given that node $i$ belongs to block $a$ and node $j$ belongs to block $b, P\left[A_{i j}=1\right]=p_{a b}$, and all edges are independent.
- Parametrized as $P_{n}=\rho_{n} P$, where $\rho_{n}=P_{n}\left[A_{i j}=1\right] \rightarrow 0$.
- Expected node degree $\lambda_{n}=n \rho_{n}$
- Can stipulate background: assume $p_{a K}<p_{b b}$ for all $a=1, \ldots, K$, and all $b=1, \ldots, K-1$.


## Asymptotic consistency result

- For simplicity, assume one community and background ( $K=2$ with parameters $p_{11}, p_{12}, p_{22}, \pi$ ).
- Let $\boldsymbol{c}$ be the true labels, $\hat{\boldsymbol{c}}^{(n)}$ the estimated labels.


## Theorem

For any $0<\pi<1$, if $p_{11}>p_{12}, p_{11}>p_{22}$ and $p_{11}+p_{22}>2 p_{12}$, $\frac{\lambda_{n}}{\log n} \rightarrow \infty$, the maximizer $\hat{\boldsymbol{c}}^{(n)}$ of both unadjusted and adjusted criteria satisfies

$$
P\left[\hat{\boldsymbol{c}}^{(n)}=\boldsymbol{c}\right] \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty .
$$

- Holds for $p_{12}=p_{22}=p<p_{11}$
- Proof: apply Bickel and Chen (PNAS, 2009)


## Bickel \& Chen consistency framework

- Assume a block model with known $K$
- Given a proposed label assignment $\boldsymbol{s}$, true labels $\boldsymbol{c}$, let $R$ be the confusion matrix with

$$
R_{a b}(\boldsymbol{s}, \boldsymbol{c})=\frac{1}{n} \sum_{i=1}^{n} I\left(s_{i}=a, c_{i}=b\right)
$$

- Many criteria, including ours, can be written as a function of the confusion matrix.
- Key condition: the population version of the criterion is maximized by the "correct" confusion matrix $\operatorname{diag}\left(\pi_{1}, \ldots, \pi_{k}\right)$.


## Future work

- Eigenvalue method
- Determining the number of communities
- Adjusted criterion

$$
W_{a}(S)=\left(|S| \cdot\left|S^{c}\right|\right)^{\alpha}\left(\frac{O(S)}{|S|^{2}}-\frac{B(S)}{|S| \cdot\left|S^{c}\right|}\right)
$$

