Sparse Linear Discriminant Analysis With High Dimensional Data

Jun Shao

East China Normal University University of Wisconsin

Joint work with Yazhen Wang, Xinwei Deng, Sijian Wang

- Introduction
- Linear discriminant analysis and asymptotic results
- Sparse linear discriminant analysis and asymptotic results
- Application and simulation
- Conclusion and discussion

Introduction

The classification problem

Classify a subject to class 1 or class 2 based on an observed vector $\textbf{x} \sim \textit{N}_{\textit{p}}(\mu, \Sigma)$

 $N_p(\mu, \Sigma)$: the *p*-dimensional normal distribution with mean vector $\mu = \mu_k$, k = 1, 2, and covariance matrix Σ

The dimension of **x**

In traditional applications, p is small (a few variables)

Modern technologies: a large p (many variables)

- genetic and microarray data
- data from biomedical imaging
- data from signal processing
- climate data
- high-frequency financial data.

Introduction

The classification problem

Classify a subject to class 1 or class 2 based on an observed vector $\textbf{x} \sim \textit{N}_{\textit{p}}(\mu, \Sigma)$

 $N_p(\mu, \Sigma)$: the *p*-dimensional normal distribution with mean vector $\mu = \mu_k$, k = 1, 2, and covariance matrix Σ

The dimension of **x**

In traditional applications, p is small (a few variables)

Modern technologies: a large p (many variables)

- genetic and microarray data
- data from biomedical imaging
- data from signal processing
- climate data
- high-frequency financial data.

Example: Classifying human acute leukemias into two types

- Gene expression microarray (Golub et al., 1999)
- Two types of human acute leukemias
 - acute myeloid leukemia (AML)
 - acute lymphoblastic leukemia (ALL)
- Distinguishing ALL from AML is crucial for successful treatment
- Classification based solely on gene expression monitoring
- *p* = 7,129 genes
- A training data set
 - 47 ALL
 - 25 AML
 - n = 47 + 25 = 72
- p is much larger than the sample size

● *p*/*n* ≈ 100

- A E 🕨

When the distribution of **x** is known (μ and Σ are known)

 An optimal classification rule exists, which classifies x to class 1 if and only if

$$\delta' \Sigma^{-1}(\mathbf{x} - \overline{\mu}) \geq 0$$

 $\delta=\mu_1-\mu_2,\,\overline{\mu}=(\mu_1+\mu_2)/2$

- It minimizes the average misclassification rate
- The optimal misclassification rate is

$$R_{
m OPT} = \Phi\left(-\Delta_{
ho}/2
ight), \qquad \Delta_{
ho} = \sqrt{\delta' \Sigma^{-1} \delta}$$

Φ: the standard normal distribution function

- This rule is the Bayes rule with equal prior probabilities for two classes
- The dimension *p*: the larger, the better

$$\lim_{\Delta_{\rho}\to\infty}R_{\rm OPT}=0,\qquad \lim_{\Delta_{\rho}\to0}R_{\rm OPT}=1/2$$

When μ and Σ are unknown

- We have a training sample $X = \{x_{ki}, i = 1, ..., n_k, k = 1, 2\}$
- $\mathbf{x}_{ki} \sim N_{p}(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}), \ k = 1, 2$
- $n = n_1 + n_2$
- All x_{ki}'s are independent and X is independent of x

Statistical issue

How to use the training sample to construct a rule having a misclassification rate close to $R_{\rm OPT}$

Traditional application: small-p-large-n

The well known linear discriminant analysis (LDA) replaces unknown δ , $\overline{\mu}$, and Σ by $\widehat{\delta} = \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2$, $\widehat{\overline{\mu}} = \overline{\mathbf{x}} = (\overline{\mathbf{x}}_1 + \overline{\mathbf{x}}_2)/2$, and $\widehat{\Sigma}^{-1} = \mathbf{S}^{-1}$ where

$$\overline{\mathbf{x}}_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \mathbf{x}_{ki}, \ k = 1, 2, \quad \mathbf{S} = \frac{1}{n} \sum_{k=1}^2 \sum_{i=1}^{n_k} (\mathbf{x}_{ki} - \overline{\mathbf{x}}_k) (\mathbf{x}_{ki} - \overline{\mathbf{x}}_k)'$$

are the maximum likelihood estimators

When μ and Σ are unknown

- We have a training sample $X = \{x_{ki}, i = 1, ..., n_k, k = 1, 2\}$
- $\mathbf{x}_{ki} \sim N_{p}(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}), \ k = 1, 2$
- $n = n_1 + n_2$
- All x_{ki}'s are independent and X is independent of x

Statistical issue

How to use the training sample to construct a rule having a misclassification rate close to $R_{\rm OPT}$

Traditional application: small-p-large-n

The well known linear discriminant analysis (LDA) replaces unknown δ , $\overline{\mu}$, and Σ by $\widehat{\delta} = \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2$, $\widehat{\overline{\mu}} = \overline{\mathbf{x}} = (\overline{\mathbf{x}}_1 + \overline{\mathbf{x}}_2)/2$, and $\widehat{\Sigma}^{-1} = \mathbf{S}^{-1}$ where

$$\overline{\mathbf{x}}_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \mathbf{x}_{ki}, \ k = 1, 2, \quad \mathbf{S} = \frac{1}{n} \sum_{k=1}^{2} \sum_{i=1}^{n_k} (\mathbf{x}_{ki} - \overline{\mathbf{x}}_k) (\mathbf{x}_{ki} - \overline{\mathbf{x}}_k)'$$

are the maximum likelihood estimators

When μ and Σ are unknown

- We have a training sample $X = \{x_{ki}, i = 1, ..., n_k, k = 1, 2\}$
- $\mathbf{x}_{ki} \sim N_{p}(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}), \ k = 1, 2$
- $n = n_1 + n_2$
- All x_{ki}'s are independent and X is independent of x

Statistical issue

How to use the training sample to construct a rule having a misclassification rate close to $R_{\rm OPT}$

Traditional application: small-p-large-n

The well known linear discriminant analysis (LDA) replaces unknown δ , $\overline{\mu}$, and Σ by $\hat{\delta} = \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2$, $\widehat{\overline{\mu}} = \overline{\mathbf{x}} = (\overline{\mathbf{x}}_1 + \overline{\mathbf{x}}_2)/2$, and $\widehat{\Sigma}^{-1} = \mathbf{S}^{-1}$ where

$$\overline{\mathbf{x}}_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \mathbf{x}_{ki}, \ k = 1, 2, \quad \mathbf{S} = \frac{1}{n} \sum_{k=1}^2 \sum_{i=1}^{n_k} (\mathbf{x}_{ki} - \overline{\mathbf{x}}_k) (\mathbf{x}_{ki} - \overline{\mathbf{x}}_k)'$$

are the maximum likelihood estimators

Modern application: large-*p*-small-*n* (large-*p*-not-so-large-*n*)

- How do we construct a rule when p > n?
- The LDA needs an estimator of Σ⁻¹ (a generalized inverse S⁻?)
- The larger *p*, the better?
- A larger *p* results in more information , but produces more uncertainty when the distribution of **x** is unknown
- A greater challenge for data analysis since the training sample size *n* cannot increase as fast as *p*
- Bickel and Levina (2004) showed that the LDA is as bad as random guessing when $p/n \rightarrow \infty$
- In some studies researchers found that it is better to ignore some information (such as the correlation among the *p* components of **x**) Domingos and Pazzani (1997), Lewis (1998), Dudoit et al. (2002).

Our task

To construct a nearly optimal rule for large dimension data

Modern application: large-*p*-small-*n* (large-*p*-not-so-large-*n*)

- How do we construct a rule when p > n?
- The LDA needs an estimator of Σ⁻¹ (a generalized inverse S⁻?)
- The larger *p*, the better?
- A larger *p* results in more information , but produces more uncertainty when the distribution of **x** is unknown
- A greater challenge for data analysis since the training sample size *n* cannot increase as fast as *p*
- Bickel and Levina (2004) showed that the LDA is as bad as random guessing when $p/n \rightarrow \infty$
- In some studies researchers found that it is better to ignore some information (such as the correlation among the *p* components of **x**) Domingos and Pazzani (1997), Lewis (1998), Dudoit et al. (2002).

Our task

To construct a nearly optimal rule for large dimension data

Jun Shao (ECNU and UW-Madison)

くほう く ヨン く ヨン

Linear discriminant analysis and asymptotic results

Regularity conditions

There is a constant c_0 (not depending on p or n) such that

- $c_0^{-1} \leq$ all eigenvalues of $\Sigma \leq c_0$
- $c_0^{-1} \leq \max_{j \leq \rho} \delta_j^2 \leq c_0 \\ \delta_j \text{ is the } j \text{th component of } \delta$

Consequences

•
$$\Delta_p \geq c_0^{-1}, \, \Delta_p = \sqrt{\delta' \Sigma^{-1} \delta}$$

•
$$R_{\text{OPT}} \leq \Phi(-(2c_0)^{-1}) < 1/2$$

• $\Delta_p^2 = O(\|\delta\|^2)$ and $\|\delta\|^2 = O(\Delta_p^2)$

Asymptotic setting

- $n = n_1 + n_2$, $n_1/n \rightarrow c \in (0,\infty)$ as $n \rightarrow \infty$
- *p* is a function of *n*, $p/n \rightarrow b \in [0,\infty]$ as $n \rightarrow \infty$

Linear discriminant analysis and asymptotic results

Regularity conditions

There is a constant c_0 (not depending on p or n) such that

- $c_0^{-1} \leq$ all eigenvalues of $\Sigma \leq c_0$
- $c_0^{-1} \leq \max_{j \leq p} \delta_j^2 \leq c_0 \\ \delta_j \text{ is the } j \text{th component of } \delta$

Consequences

•
$$\Delta_{\rho} \geq c_0^{-1}, \, \Delta_{\rho} = \sqrt{\delta' \Sigma^{-1} \delta}$$

•
$$R_{\text{OPT}} \leq \Phi(-(2c_0)^{-1}) < 1/2$$

•
$$\Delta_{
ho}^2 = O(\|\delta\|^2)$$
 and $\|\delta\|^2 = O(\Delta_{
ho}^2)$

Asymptotic setting

- $n = n_1 + n_2$, $n_1/n \rightarrow c \in (0,\infty)$ as $n \rightarrow \infty$
- *p* is a function of *n*, $p/n \rightarrow b \in [0,\infty]$ as $n \rightarrow \infty$

Linear discriminant analysis and asymptotic results

Regularity conditions

There is a constant c_0 (not depending on p or n) such that

- $c_0^{-1} \leq$ all eigenvalues of $\Sigma \leq c_0$
- $c_0^{-1} \leq \max_{j \leq p} \delta_j^2 \leq c_0 \\ \delta_j \text{ is the } j \text{th component of } \delta$

Consequences

•
$$\Delta_{\rho} \geq c_0^{-1}, \, \Delta_{\rho} = \sqrt{\delta' \Sigma^{-1} \delta}$$

•
$$R_{\text{OPT}} \leq \Phi(-(2c_0)^{-1}) < 1/2$$

•
$$\Delta_{\rho}^2 = O(\|\delta\|^2)$$
 and $\|\delta\|^2 = O(\Delta_{\rho}^2)$

Asymptotic setting

•
$$n = n_1 + n_2, n_1/n \rightarrow c \in (0,\infty)$$
 as $n \rightarrow \infty$

•
$$p$$
 is a function of n , $p/n \rightarrow b \in [0,\infty]$ as $n \rightarrow \infty$

Conditional and uncoditional misclassification rate

T: a classification rule

- *R_T*(X): the average of the conditional probabilities of making two types of misclassification, where the conditional probabilities are with respect to x, given the training sample X
- $R_T = E[R_T(\mathbf{X})]$: unconditional misclassification rate of T

Asymptotic optimality $(n \rightarrow \infty)$

- T is asymptotically optimal if $R_T(\mathbf{X})/R_{\text{OPT}} \rightarrow_P 1$
- T is asymptotically sub-optimal if $R_T(\mathbf{X}) R_{OPT} \rightarrow_P 0$
- T is asymptotically worst if $R_T(\mathbf{X}) \rightarrow_P 1/2$

Note

- If R_{OPT} → 0 (i.e., Δ_ρ = √δ'Σ⁻¹δ is bounded), then the asymptotic sub-optimality is the same as the asymptotic optimality.
- If R_{OPT} → 0, however, we hope not only R_T(X) →_P 0 in probability, but also R_T(X) and R_{OPT} have the same convergence rate.

Conditional and uncoditional misclassification rate

- T: a classification rule
 - *R_T*(X): the average of the conditional probabilities of making two types of misclassification, where the conditional probabilities are with respect to x, given the training sample X
 - $R_T = E[R_T(\mathbf{X})]$: unconditional misclassification rate of T

Asymptotic optimality $(n \rightarrow \infty)$

- *T* is asymptotically optimal if $R_T(\mathbf{X})/R_{\text{OPT}} \rightarrow_P 1$
- T is asymptotically sub-optimal if $R_T(\mathbf{X}) R_{\text{OPT}} \rightarrow_P 0$
- T is asymptotically worst if $R_T(\mathbf{X}) \rightarrow_P 1/2$

Note

- If R_{OPT} → 0 (i.e., Δ_ρ = √δ'Σ⁻¹δ is bounded), then the asymptotic sub-optimality is the same as the asymptotic optimality.
- If R_{OPT} → 0, however, we hope not only R_T(X) →_P 0 in probability, but also R_T(X) and R_{OPT} have the same convergence rate.

Conditional and uncoditional misclassification rate

- T: a classification rule
 - *R_T*(X): the average of the conditional probabilities of making two types of misclassification, where the conditional probabilities are with respect to x, given the training sample X
 - $R_T = E[R_T(\mathbf{X})]$: unconditional misclassification rate of T

Asymptotic optimality $(n \rightarrow \infty)$

- T is asymptotically optimal if $R_T(\mathbf{X})/R_{\text{OPT}} \rightarrow_P 1$
- T is asymptotically sub-optimal if $R_T(\mathbf{X}) R_{\text{OPT}} \rightarrow_P 0$
- T is asymptotically worst if $R_T(\mathbf{X}) \rightarrow_P 1/2$

Note

- If R_{OPT} → 0 (i.e., Δ_p = √δ'Σ⁻¹δ is bounded), then the asymptotic sub-optimality is the same as the asymptotic optimality.
- If R_{OPT} → 0, however, we hope not only R_T(X) →_P 0 in probability, but also R_T(X) and R_{OPT} have the same convergence rate.

For what kind of p (which may diverge to ∞), the LDA is asymptotically optimal or sub-optimal?

Theorem 1

Suppose that $s_n = p \sqrt{\log p} / \sqrt{n} \rightarrow 0$.

(i) The conditional misclassification rate of the LDA is equal to

$$R_{\rm LDA}(\mathbf{X}) = \Phi(-[1+O_P(s_n)]\Delta_p/2).$$

(ii) If $\Delta_p = \sqrt{\delta' \Sigma^{-1} \delta}$ is bounded, then the LDA is asymptotically optimal and

$$\frac{R_{\text{LDA}}(\mathbf{X})}{R_{\text{OPT}}} - 1 = O_P(s_n).$$

(iii) If $\Delta_{\rho} \rightarrow \infty$, then the LDA is asymptotically sub-optimal.

(iv) If $\Delta_p \to \infty$ and $s_n \Delta_p^2 = (p \sqrt{\log p} / \sqrt{n}) \Delta_p^2 \to 0$, then the LDA is asymptotically optimal.

For what kind of p (which may diverge to ∞), the LDA is asymptotically optimal or sub-optimal?

Theorem 1

Suppose that
$$s_n = p \sqrt{\log p} / \sqrt{n} \rightarrow 0$$
.

(i) The conditional misclassification rate of the LDA is equal to

$$R_{\text{LDA}}(\mathbf{X}) = \Phi(-[1+O_P(s_n)]\Delta_p/2).$$

(ii) If $\Delta_{\rho} = \sqrt{\delta' \Sigma^{-1} \delta}$ is bounded, then the LDA is asymptotically optimal and

$$\frac{R_{\text{LDA}}(\mathbf{X})}{R_{\text{OPT}}} - 1 = O_P(s_n).$$

(iii) If $\Delta_{\rho} \rightarrow \infty$, then the LDA is asymptotically sub-optimal.

(iv) If $\Delta_p \to \infty$ and $s_n \Delta_p^2 = (p \sqrt{\log p} / \sqrt{n}) \Delta_p^2 \to 0$, then the LDA is asymptotically optimal.

When p > n, \mathbf{S}^{-1} does not exist.

But the estimation of Σ^{-1} is not the only problem

Even if Σ^{-1} is known (so that the LDA can use the prefect "estimator" of Σ^{-1}), the performance of the LDA may still be bad

Theorem 2

Suppose that $p/n \to \infty$ and that Σ is known so that the LDA classifies **x** to class 1 if and only if $\hat{\delta}' \Sigma^{-1}(\mathbf{x} - \hat{\overline{\mu}}) \ge 0$, where $\hat{\delta} = \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2$, and $\hat{\overline{\mu}} = \overline{\mathbf{x}}$.

- (i) If $\Delta_p^2/\sqrt{p/n} \to 0$ (which is true when $\Delta_p = \sqrt{\delta' \Sigma^{-1} \delta}$ is bounded), then $R_{\text{LDA}}(\mathbf{X}) \to_p 1/2$.
- (ii) If $\Delta_p^2/\sqrt{\rho/n} \to c$ with $0 < c < \infty$, then $R_{\text{LDA}}(\mathbf{X}) \to_P \Phi\left(-c/(2\sqrt{2})\right)$ and $R_{\text{LDA}}(\mathbf{X})/R_{\text{OPT}} \to_P \infty$.
- (iii) If $\Delta_p^2/\sqrt{p/n} \to \infty$, then $R_{\text{LDA}}(\mathbf{X}) \to_P 0$ but $R_{\text{LDA}}(\mathbf{X})/R_{\text{OPT}} \to_P \infty$

When p > n, \mathbf{S}^{-1} does not exist.

But the estimation of Σ^{-1} is not the only problem

Even if Σ^{-1} is known (so that the LDA can use the prefect "estimator" of Σ^{-1}), the performance of the LDA may still be bad

Theorem 2

Suppose that $p/n \to \infty$ and that Σ is known so that the LDA classifies **x** to class 1 if and only if $\widehat{\delta}' \Sigma^{-1}(\mathbf{x} - \widehat{\mu}) \ge 0$, where $\widehat{\delta} = \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2$, and $\widehat{\mu} = \overline{\mathbf{x}}$.

- (i) If $\Delta_p^2/\sqrt{p/n} \to 0$ (which is true when $\Delta_p = \sqrt{\delta' \Sigma^{-1} \delta}$ is bounded), then $R_{\text{LDA}}(\mathbf{X}) \to_P 1/2$.
- (ii) If $\Delta_p^2/\sqrt{p/n} \to c$ with $0 < c < \infty$, then $R_{\text{LDA}}(\mathbf{X}) \to_p \Phi\left(-c/(2\sqrt{2})\right)$ and $R_{\text{LDA}}(\mathbf{X})/R_{\text{OPT}} \to_p \infty$.
- (iii) If $\Delta_{\rho}^2/\sqrt{\rho/n} \to \infty$, then $R_{\text{LDA}}(\mathbf{X}) \to_{\rho} 0$ but $R_{\text{LDA}}(\mathbf{X})/R_{\text{OPT}} \to_{\rho} \infty$.

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Reason for bad performance of the LDA when p > n

- Too many parameters in δ to be estimated, even if Σ is known
- Similarly, too many parameters in Σ to be estimated, even if μ_k is known

Solutions?

A reasonable classification rule can be obtained if both δ and Σ are sparse

Sparsity

- Many elements of δ are 0 or very small
- Many off-diagonal elements of Σ are 0 or very small
- Both are true in many applications

Reason for bad performance of the LDA when p > n

- Too many parameters in δ to be estimated, even if Σ is known
- Similarly, too many parameters in Σ to be estimated, even if μ_k is known

Solutions?

A reasonable classification rule can be obtained if both δ and Σ are sparse

Sparsity

- Many elements of δ are 0 or very small
- Many off-diagonal elements of Σ are 0 or very small
- Both are true in many applications

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Reason for bad performance of the LDA when p > n

- Too many parameters in δ to be estimated, even if Σ is known
- Similarly, too many parameters in Σ to be estimated, even if μ_k is known

Solutions?

A reasonable classification rule can be obtained if both δ and Σ are sparse

Sparsity

- Many elements of δ are 0 or very small
- Many off-diagonal elements of Σ are 0 or very small
- Both are true in many applications

Sparse linear discriminant analysis and asymptotic results

Sparsity measure for Σ

Bickel and Levina (2008) considered the following sparsity measure for Σ

$$C_{h,p} = \max_{j \leq p} \sum_{l=1}^{p} |\sigma_{jl}|^h$$

 σ_{jl} is the (j, l)th element of Σ *h* is a constant not depending on *p*, $0 \le h < 1$

Special case of h = 0

 $C_{0,\rho}$ is the maximum of the numbers of nonzero elements of rows of Σ

Sparsity on Σ

- Not sparse: $C_{h,p} = O(p)$
- Sparse: $C_{h,p}=O(\log p)$ or $C_{h,p}=O(n^eta),$ $0\leqeta<\gamma$

Sparse linear discriminant analysis and asymptotic results

Sparsity measure for Σ

Bickel and Levina (2008) considered the following sparsity measure for $\boldsymbol{\Sigma}$

$$C_{h,p} = \max_{j \leq p} \sum_{l=1}^{p} |\sigma_{jl}|^h$$

 σ_{jl} is the (j, l)th element of Σ *h* is a constant not depending on *p*, $0 \le h < 1$

Special case of h = 0

 $C_{0,p}$ is the maximum of the numbers of nonzero elements of rows of Σ

Sparsity on Σ

- Not sparse: $C_{h,p} = O(p)$
- Sparse: $C_{h,p}=O(\log p)$ or $C_{h,p}=O(n^eta),$ $0\leqeta<\gamma$

Sparse linear discriminant analysis and asymptotic results

Sparsity measure for Σ

Bickel and Levina (2008) considered the following sparsity measure for $\boldsymbol{\Sigma}$

$$C_{h,p} = \max_{j \leq p} \sum_{l=1}^{p} |\sigma_{jl}|^h$$

 σ_{jl} is the (j, l)th element of Σ *h* is a constant not depending on *p*, $0 \le h < 1$

Special case of h = 0

 $C_{0,p}$ is the maximum of the numbers of nonzero elements of rows of Σ

Sparsity on $\boldsymbol{\Sigma}$

• Not sparse:
$$C_{h,p} = O(p)$$

• Sparse:
$$C_{h,p} = O(\log p)$$
 or $C_{h,p} = O(n^{\beta})$, $0 \le \beta < 1$

Jun Shao (ECNU and UW-Madison)

Bickel and Levina's thresholding estimator of Σ

S: sample covariance matrix

 $\widetilde{\Sigma}$ is **S** thresholded at $t_n = M_1 \sqrt{\log p} / \sqrt{n}$ (M_1 is a constant)

i.e., the (j, l)th element of $\widetilde{\Sigma}$ is $\widehat{\sigma}_{jl} l(|\widehat{\sigma}_{jl}| > t_n)$

 $\hat{\sigma}_{jl}$ is the (j, l)th element of **S**, and I(A) is the indicator function of the set *A*

Consistency of Σ

lf

$$\frac{\log p}{n} \to 0$$
 and $d_n = C_{h,p} \left(\frac{\log p}{n}\right)^{(1-h)/2} \to 0$

then

 $\|\widetilde{\Sigma} - \Sigma\| = O_P(d_n)$ and $\|\widetilde{\Sigma}^{-1} - \Sigma^{-1}\| = O_P(d_n)$

||A||: the maximum of all eigenvalues of **A**

A B A B A
 A
 B
 A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Bickel and Levina's thresholding estimator of $\boldsymbol{\Sigma}$

S: sample covariance matrix

 $\widetilde{\Sigma}$ is **S** thresholded at $t_n = M_1 \sqrt{\log p} / \sqrt{n}$ (M_1 is a constant)

i.e., the (j, l)th element of $\widetilde{\Sigma}$ is $\widehat{\sigma}_{jl} l(|\widehat{\sigma}_{jl}| > t_n)$

 $\hat{\sigma}_{jl}$ is the (j, l)th element of **S**, and I(A) is the indicator function of the set *A*

Consistency of $\widetilde{\Sigma}$

lf

$$\frac{\log p}{n} \to 0 \qquad \text{and} \qquad d_n = C_{h,p} \left(\frac{\log p}{n}\right)^{(1-h)/2} \to 0$$

then

$$\|\widetilde{\Sigma} - \Sigma\| = O_P(d_n)$$
 and $\|\widetilde{\Sigma}^{-1} - \Sigma^{-1}\| = O_P(d_n)$

||A||: the maximum of all eigenvalues of **A**

Sparsity on δ

A large $\|\delta\|$ results in a large difference between $N_p(\mu_1, \Sigma)$ and $N_p(\mu_2, \Sigma)$

But it also results in a more difficult task of constructing a good classification rule, since δ has to be estimated based on the training sample **X** of a size that is much smaller than *p*.

Sparsity measure for δ

We consider the following sparsity measure for δ :

$$D_{g,p} = \sum_{j=1}^p \delta_j^{2g}$$

 δ_j is the jth component of δ g is a constant not depending on p, 0 \leq g < 1

 δ is sparse if $D_{g,p}$ is much smaller than p

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Sparsity on δ

A large $\|\delta\|$ results in a large difference between $N_p(\mu_1, \Sigma)$ and $N_p(\mu_2, \Sigma)$

But it also results in a more difficult task of constructing a good classification rule, since δ has to be estimated based on the training sample **X** of a size that is much smaller than *p*.

Sparsity measure for δ

We consider the following sparsity measure for δ :

$$D_{g,p} = \sum_{j=1}^p \delta_j^{2g}$$

 δ_j is the *j*th component of δ *g* is a constant not depending on *p*, $0 \le g < 1$

 δ is sparse if $D_{g,p}$ is much smaller than p

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Sparse estimator of δ

 $\widetilde{\delta}$: $\widehat{\delta}$ thresholded at

$$a_n = M_2 \left(\frac{\log p}{n}\right)^{\alpha}$$
 with constants $M_2 > 0$ and $\alpha \in (0, 1/2)$

i.e., the *j*th component of δ is $\hat{\delta}_j I(|\hat{\delta}_j| > a_n)$ $\hat{\delta}_j$ is the *j*th component of $\hat{\delta}$

A useful result

lf

$$\frac{\log p}{n} \to 0,$$

then

$$P\left(|\widehat{\delta}_j| \leq a_n, \ j=1,...,p ext{ with } |\delta_j| \leq a_n/r
ight) o r$$

and

$$\mathsf{P}\left(|\widehat{\delta}_{j}| > a_{n}, j = 1, ..., p \text{ with } |\delta_{j}| > ra_{n}\right)
ightarrow 0$$

Jun Shao (ECNU and UW-Madison)

Sparse Linear Discriminant Analysis

Sparse estimator of δ

 $\widetilde{\delta}$: $\widehat{\delta}$ thresholded at

$$a_n = M_2 \left(\frac{\log p}{n}\right)^{\alpha}$$
 with constants $M_2 > 0$ and $\alpha \in (0, 1/2)$

i.e., the *j*th component of δ is $\hat{\delta}_j I(|\hat{\delta}_j| > a_n)$ $\hat{\delta}_j$ is the *j*th component of $\hat{\delta}$

A useful result

lf

$$\frac{\log p}{n} \to 0,$$

then

$${\mathcal P} \left(|\widehat{\delta_j}| \leq a_n, \, j=1,..., {\boldsymbol p} ext{ with } |\delta_j| \leq a_n/r
ight) o 1$$

and

$$\mathsf{P}\left(|\widehat{\delta}_j| > a_n, \ j = 1, ..., p \text{ with } |\delta_j| > ra_n
ight) o 1$$

Sparse linear discriminant analysis (SLDA) for high dimension data

Classify **x** to class 1 if and only if $\tilde{\delta}' \tilde{\Sigma}^{-1}(\mathbf{x} - \overline{\mathbf{x}}) \ge 0$

Theorem 3

Assume $(\log p)/n \rightarrow 0$ and

$$b_n = \max\left\{d_n, \ \frac{a_n^{1-g}\sqrt{D_{g,p}}}{\Delta_p}, \ \frac{\sqrt{C_{h,p}q_n}}{\Delta_p\sqrt{n}}
ight\}
ightarrow 0$$

$$\Delta_{p} = \sqrt{\delta' \Sigma^{-1} \delta}, \quad a_{n} = \left(\frac{\log p}{n}\right)^{\alpha}, \quad d_{n} = C_{h,p} \left(\frac{\log p}{n}\right)^{(1-h)/2}$$
$$C_{h,p} = \max_{j \le p} \sum_{l=1}^{p} |\sigma_{jl}|^{h}, \quad D_{g,p} = \sum_{j=1}^{p} \delta_{j}^{2g},$$
$$q_{n} = \#\{j : |\delta_{i}| > a_{n}/r\}$$

Jun Shao (ECNU and UW-Madison)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Sparse linear discriminant analysis (SLDA) for high dimension data

Classify **x** to class 1 if and only if $\widetilde{\delta}' \widetilde{\Sigma}^{-1}(\mathbf{x} - \overline{\mathbf{x}}) \ge 0$

Theorem 3

Assume $(\log p)/n \rightarrow 0$ and

$$b_n = \max\left\{d_n, \ \frac{a_n^{1-g}\sqrt{D_{g,p}}}{\Delta_p}, \ \frac{\sqrt{C_{h,p}q_n}}{\Delta_p\sqrt{n}}\right\} \to 0$$
$$\Delta_p = \sqrt{\delta'\Sigma^{-1}\delta}, \quad a_n = \left(\frac{\log p}{n}\right)^{\alpha}, \quad d_n = C_{h,p}\left(\frac{\log p}{n}\right)^{(1-h)/2}$$
$$C_{h,p} = \max_{j \le p} \sum_{l=1}^p |\sigma_{jl}|^h, \quad D_{g,p} = \sum_{j=1}^p \delta_j^{2g},$$
$$q_n = \#\{j : |\delta_j| > a_n/r\}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem 3 (continued)

(i) The conditional misclassification rate of the SLDA is equal to

$$R_{\rm SLDA}(\mathbf{X}) = \Phi\left(-[1+O_P(b_n)]\Delta_p/2\right).$$

(ii) If Δ_{ρ} is bounded, then the SLDA is asymptotically optimal and

$$\frac{R_{\rm SLDA}(\mathbf{X})}{R_{\rm OPT}} - 1 = O_P(b_n).$$

(iii) If $\Delta_p \to \infty$, then the SLDA is asymptotically sub-optimal. (iv) If $\Delta_p \to \infty$ and $b_n \Delta_p^2 \to 0$, then the SLDA is asymptotically optimal.

Situations where the SLDA is asymptotically optimal

There are two constants c_1 and c_2 such that $0 < c_1 \le |\delta_j| \le c_2$ for any nonzero δ_j

 q_n is exactly the number of nonzero δ_j 's

 Δ_p^2 and $D_{0,p}$ have exactly the order q_n .

- If q_n is bounded (e.g., there are only finitely many nonzero δ_j 's), then Δ_p is bounded and the result in Theorem 3 holds if $d_n = C_{h,p}(n^{-1}\log p)^{(1-h)/2} \rightarrow 0$
- When $q_n \to \infty$ ($\Delta_p \to \infty$), we assume that $q_n = O(n^{\eta})$ and $C_{h,p} = O(n^{\gamma})$ with $\eta \in (0, 1)$ and $\gamma \in [0, 1)$. Choose $\alpha = (1 - h)/4$
 - If $p = O(n^{\kappa})$ for a $\kappa \ge 1$, then the result in Theorem 3 holds when $\eta + \gamma < (1 h)/2$ and $\eta < (1 + h)/2$
 - If $p = O(e^{n^{\beta}})$ for a $\beta \in (0, 1)$, then the result in Theorem 3 holds if $\eta + \gamma < (1 h)(1 \beta)/2$ and $\eta < 1 (1 h)(1 \beta)/2$

Situations where the SLDA is asymptotically optimal

- Consider the case where $C_{h,p} = O(\log p)$, $D_{g,p} = O(\log p)$, and $p = O(e^{n^{\beta}})$ for a $\beta \in (0, 1)$
 - If Δ_p is bounded, $d_n = O(n^{\beta + (\beta 1)(1 h)/2}) \rightarrow 0$, i.e., the SLDA is asymptotically optimal, if $\beta < (1 h)/(3 h)$
 - If Δ_p → ∞, then the largest divergence rate of Δ²_p is O(log p) = O(n^β) and Δ²_pd_n → 0, i.e., the SLDA is asymptotically optimal, when β < (1 − h)/(5 − h).

When h = 0, this means $\beta < 1/5$.

If p = O(n^κ) for a κ ≥ 1 and max{C_{h,p}, D_{g,p}} = cn^γ for a γ ∈ (0, 1) and a positive constant c, then log p = O(log n) diverges to ∞ at a rate slower than n^γ. Assume that Δ²_p = O(n^{ργ}) with a ρ ∈ [0, 1] (ρ = 0 corresponds to a bounded Δ_p). The SLDA is asymptotically optimal if (1 + ρ)γ ≤ (1 - h)/2 and (1 + ρ)γ/[2(1 - g)] < α ≤ [1 - (1 + ρ)γ]/[2(1 - g)]

Choosing constants in thresholding: A cross-validation procedure

 \mathbf{X}_{ki} : the data set with \mathbf{x}_{ki} deleted T_{ki} : the SLDA rule based on \mathbf{X}_{ki} , $i = 1, ..., n_k$, k = 1, 2. The cross-validation estimator of R_{SLDA} is

$$\widehat{R}_{\text{SLDA}} = \frac{1}{n} \sum_{k=1}^{2} \sum_{i=1}^{n_k} r_{ki}$$

 r_{ki} is the indicator function of whether T_{ki} classifies \mathbf{x}_{ki} incorrectly If $R_{\text{SLDA}} = R(n_1, n_2)$,

$$E(\widehat{R}_{SLDA}) = \sum_{k=1}^{2} \sum_{i=1}^{n_k} \frac{E(r_{ki})}{n} = \frac{n_1 R(n_1 - 1, n_2) + n_2 R(n_1, n_2 - 1)}{n} \approx R_{SLDA}$$

 $\widehat{R}_{SLDA}(M_1, M_2)$: the cross-validation estimator when (M_1, M_2) is used Minimize $\widehat{R}_{SLDA}(M_1, M_2)$ over a suitable range of (M_1, M_2) The resulting \widehat{R}_{SLDA} can also be used as an estimate of R_{SLDA}

Jun Shao (ECNU and UW-Madison)

Sparse Linear Discriminant Analysis

Application and Simulation

Applying the SLDA to human acute leukemias classification

p = 7,129 genes $n_1 = 47, n_2 = 25, n = 72$

Plot of the cumulative proportions of δ_i^2

Jun Shao (ECNU and UW-Madison)

Plot of off-diagonal elements of **S** (0.45% values are above the blue line)

Index

Jun Shao (ECNU and UW-Madison)

Cross-validation selection of M_1 and M_2

 $\alpha = 0.3$ $M_1 = 10^7, M_2 = 300$ 2,492 nonzero $\widetilde{\delta}_j$ (35% of 7,129) 227,083 nonzero $\widetilde{\sigma}_{jk}$ (0.45% of 25,407,756)

Cross validation estimates

- Cross validation for SLDA
 - misclassification rate is 0.0278
 - I of 47 cases in class 1 are misclassified
 - 1 of 25 cases in class 2 are misclassified
- Cross validation for LDA
 - misclassification rate is 0.0972
 - 2 of 47 cases in class 1 are misclassified
 - 5 of 25 cases in class 2 are misclassified

Simulation

Data are generated from $N(\hat{\mu}_1, \tilde{\Sigma})$ and $N(\hat{\mu}_2, \tilde{\Sigma})$ $n_1 = 47, n_2 = 25, p = 1,714$

Misclassification rates of

- LDA = 0.152 (0.006)
- SLDA = 0.069 (0.005)
- optimal rule = 0.03

Cross validation estimates

- Cross validation for SLDA
 - misclassification rate is 0.0278
 - I of 47 cases in class 1 are misclassified
 - 1 of 25 cases in class 2 are misclassified
- Cross validation for LDA
 - misclassification rate is 0.0972
 - 2 of 47 cases in class 1 are misclassified
 - 5 of 25 cases in class 2 are misclassified

Simulation

Data are generated from $N(\hat{\mu}_1, \tilde{\Sigma})$ and $N(\hat{\mu}_2, \tilde{\Sigma})$ $n_1 = 47, n_2 = 25, p = 1,714$

Misclassification rates of

- LDA = 0.152 (0.006)
- SLDA = 0.069 (0.005)
- optimal rule = 0.03

Boxplots of conditional misclassification rates of LDA and SLDA

Two-way plot of conditional misclassification rates: LDA vs SLDA

Conclusion and Discussion

- The ordinary linear discriminant analysis is OK if $p = o(\sqrt{n})$
- When p/n→∞, the linear discriminant analysis may be asymptotically as bad as random guessing
- When *p* is much larger than *n*, asymptotically optimal classification can be made if both the mean signal $\delta = \mu_1 \mu_2$ and covariance matrix Σ are sparse
- A sparse linear discriminant analysis (SLDA) is proposed, and it is asymptotically optimal under some conditions
- SLDA is different from variable selection for $\delta +$ LDA
 - Correlation among variables have to be considered
 - SLDA does not require the number of nonzero $\tilde{\delta}_j$'s to be smaller than n
- Extension to non-normal data
- Extension to unequal covariance matrices: quadratic discriminant analysis