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Introduction

The classification problem
Classify a subject to class 1 or class 2 based on an observed vector
x ∼ Np(µ,Σ)

Np(µ,Σ): the p-dimensional normal distribution with mean vector
µ = µk , k = 1,2, and covariance matrix Σ

The dimension of x
In traditional applications, p is small (a few variables)

Modern technologies: a large p (many variables)

genetic and microarray data

data from biomedical imaging

data from signal processing

climate data

high-frequency financial data.
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Example: Classifying human acute leukemias into two types
Gene expression microarray (Golub et al., 1999)
Two types of human acute leukemias

acute myeloid leukemia (AML)
acute lymphoblastic leukemia (ALL)

Distinguishing ALL from AML is crucial for successful treatment

Classification based solely on gene expression monitoring

p = 7,129 genes
A training data set

47 ALL
25 AML
n = 47+25 = 72

p is much larger than the sample size

p/n ≈ 100

Jun Shao (ECNU and UW-Madison) Sparse Linear Discriminant Analysis July, 2010 4 / 28



logo

When the distribution of x is known (µ and Σ are known)
An optimal classification rule exists, which classifies x to class 1 if
and only if

δ′
Σ

−1(x−µ) ≥ 0

δ = µ1 −µ2, µ = (µ1 +µ2)/2

It minimizes the average misclassification rate

The optimal misclassification rate is

ROPT = Φ(−∆p/2) , ∆p =
√

δ′Σ−1δ

Φ: the standard normal distribution function

This rule is the Bayes rule with equal prior probabilities for two
classes

The dimension p: the larger, the better

lim
∆p→∞

ROPT = 0, lim
∆p→0

ROPT = 1/2
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When µ and Σ are unknown
We have a training sample X = {xki , i = 1, ...,nk ,k = 1,2}
xki ∼ Np(µk ,Σ), k = 1,2

n = n1 +n2

All xki ’s are independent and X is independent of x

Statistical issue
How to use the training sample to construct a rule having a
misclassification rate close to ROPT

Traditional application: small-p-large-n
The well known linear discriminant analysis (LDA) replaces unknown
δ, µ, and Σ by δ̂ = x1 −x2, µ̂ = x = (x1 +x2)/2, and Σ̂

−1 = S−1 where

xk =
1
nk

nk

∑
i=1

xki , k = 1,2, S =
1
n

2

∑
k=1

nk

∑
i=1

(xki −xk )(xki −xk )′

are the maximum likelihood estimators
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Modern application: large-p-small-n (large-p-not-so-large-n)
How do we construct a rule when p > n?

The LDA needs an estimator of Σ
−1 (a generalized inverse S−?)

The larger p, the better?

A larger p results in more information , but produces more
uncertainty when the distribution of x is unknown

A greater challenge for data analysis since the training sample
size n cannot increase as fast as p

Bickel and Levina (2004) showed that the LDA is as bad as
random guessing when p/n → ∞
In some studies researchers found that it is better to ignore some
information (such as the correlation among the p components of x)
Domingos and Pazzani (1997), Lewis (1998), Dudoit et al. (2002).

Our task
To construct a nearly optimal rule for large dimension data
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Linear discriminant analysis and asymptotic results

Regularity conditions
There is a constant c0 (not depending on p or n) such that

c−1
0 ≤ all eigenvalues of Σ ≤ c0

c−1
0 ≤ maxj≤p δ 2

j ≤ c0

δj is the j th component of δ

Consequences

∆p ≥ c−1
0 , ∆p =

√
δ′Σ−1δ

ROPT ≤ Φ(−(2c0)
−1) < 1/2

∆2
p = O(‖δ‖2) and ‖δ‖2 = O(∆2

p)

Asymptotic setting

n = n1 +n2, n1/n → c ∈ (0,∞) as n → ∞
p is a function of n, p/n → b ∈ [0,∞] as n → ∞
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Conditional and uncoditional misclassification rate
T : a classification rule

RT (X): the average of the conditional probabilities of making two
types of misclassification, where the conditional probabilities are
with respect to x, given the training sample X

RT = E [RT (X)]: unconditional misclassification rate of T

Asymptotic optimality (n → ∞)
T is asymptotically optimal if RT (X)/ROPT →P 1

T is asymptotically sub-optimal if RT (X)−ROPT →P 0

T is asymptotically worst if RT (X) →P 1/2

Note

If ROPT 6→ 0 (i.e., ∆p =
√

δ′Σ−1δ is bounded), then the asymptotic
sub-optimality is the same as the asymptotic optimality.

If ROPT → 0, however, we hope not only RT (X) →P 0 in probability,
but also RT (X) and ROPT have the same convergence rate.
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Linear discriminant analysis (p < n)
For what kind of p (which may diverge to ∞), the LDA is asymptotically
optimal or sub-optimal?

Theorem 1

Suppose that sn = p
√

logp/
√

n → 0.

(i) The conditional misclassification rate of the LDA is equal to

RLDA(X) = Φ
(
−[1+OP(sn)]∆p/2

)
.

(ii) If ∆p =
√

δ′Σ−1δ is bounded, then the LDA is asymptotically
optimal and

RLDA(X)

ROPT
−1 = OP(sn).

(iii) If ∆p → ∞, then the LDA is asymptotically sub-optimal.

(iv) If ∆p → ∞ and sn∆
2
p = (p

√
logp/

√
n)∆2

p → 0, then the LDA is
asymptotically optimal.
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Linear discriminant analysis (p > n)

When p > n, S−1 does not exist.

But the estimation of Σ
−1 is not the only problem

Even if Σ
−1 is known (so that the LDA can use the prefect “estimator”

of Σ
−1), the performance of the LDA may still be bad

Theorem 2
Suppose that p/n → ∞ and that Σ is known so that the LDA classifies x
to class 1 if and only if δ̂′

Σ
−1(x− µ̂)≥ 0, where δ̂ = x1−x2, and µ̂ = x.

(i) If ∆2
p/

√
p/n → 0 (which is true when ∆p =

√
δ′Σ−1δ is bounded),

then RLDA(X) →P 1/2.

(ii) If ∆2
p/

√
p/n → c with 0 < c < ∞, then RLDA(X) →P Φ

(
−c/(2

√
2)

)

and RLDA(X)/ROPT →P ∞.

(iii) If ∆2
p/

√
p/n → ∞, then RLDA(X) →P 0 but RLDA(X)/ROPT →P ∞.
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Linear discriminant analysis (p > n)
Reason for bad performance of the LDA when p > n

Too many parameters in δ to be estimated, even if Σ is known

Similarly, too many parameters in Σ to be estimated, even if µk is
known

Solutions?
A reasonable classification rule can be obtained if both δ and Σ are
sparse

Sparsity
Many elements of δ are 0 or very small

Many off-diagonal elements of Σ are 0 or very small

Both are true in many applications
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Sparse linear discriminant analysis and asymptotic
results

Sparsity measure for Σ

Bickel and Levina (2008) considered the following sparsity measure for
Σ

Ch,p = max
j≤p

p

∑
l=1

|σjl |h

σjl is the (j , l)th element of Σ

h is a constant not depending on p, 0 ≤ h < 1

Special case of h = 0
C0,p is the maximum of the numbers of nonzero elements of rows of Σ

Sparsity on Σ

Not sparse: Ch,p = O(p)

Sparse: Ch,p = O(logp) or Ch,p = O(nβ ), 0 ≤ β < 1
Jun Shao (ECNU and UW-Madison) Sparse Linear Discriminant Analysis July, 2010 13 / 28
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Bickel and Levina’s thresholding estimator of Σ

S: sample covariance matrix

Σ̃ is S thresholded at tn = M1
√

logp/
√

n (M1 is a constant)

i.e., the (j , l)th element of Σ̃ is σ̂jl I(|σ̂jl | > tn)

σ̂jl is the (j , l)th element of S, and I(A) is the indicator function of the
set A

Consistency of Σ̃

If
logp

n
→ 0 and dn = Ch,p

(
logp

n

)(1−h)/2

→ 0

then
‖Σ̃−Σ‖= OP (dn) and ‖Σ̃−1 −Σ

−1‖ = OP (dn)

‖A‖: the maximum of all eigenvalues of A

Jun Shao (ECNU and UW-Madison) Sparse Linear Discriminant Analysis July, 2010 14 / 28
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Sparsity on δ

A large ‖δ‖ results in a large difference between Np(µ1,Σ) and
Np(µ2,Σ)

But it also results in a more difficult task of constructing a good
classification rule, since δ has to be estimated based on the training
sample X of a size that is much smaller than p.

Sparsity measure for δ

We consider the following sparsity measure for δ:

Dg,p =
p

∑
j=1

δ 2g
j

δj is the j th component of δ

g is a constant not depending on p, 0 ≤ g < 1

δ is sparse if Dg,p is much smaller than p

Jun Shao (ECNU and UW-Madison) Sparse Linear Discriminant Analysis July, 2010 15 / 28
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Sparse estimator of δ

δ̃: δ̂ thresholded at

an = M2

(
logp

n

)α
with constants M2 > 0 and α ∈ (0,1/2)

i.e., the j th component of δ̃ is δ̂j I(|δ̂j | > an)

δ̂j is the j th component of δ̂

A useful result
If

logp
n

→ 0,

then
P

(
|δ̂j | ≤ an, j = 1, ...,p with |δj | ≤ an/r

)
→ 1

and
P

(
|δ̂j | > an, j = 1, ...,p with |δj | > ran

)
→ 1

r > 1 is any fixed constantJun Shao (ECNU and UW-Madison) Sparse Linear Discriminant Analysis July, 2010 16 / 28
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Sparse linear discriminant analysis (SLDA) for high dimension
data

Classify x to class 1 if and only if δ̃′
Σ̃

−1(x−x) ≥ 0

Theorem 3
Assume (logp)/n → 0 and

bn = max

{
dn,

a1−g
n

√
Dg,p

∆p
,

√
Ch,pqn

∆p
√

n

}
→ 0

∆p =
√

δ′Σ−1δ, an =

(
logp

n

)α
, dn = Ch,p

(
logp

n

)(1−h)/2

Ch,p = max
j≤p

p

∑
l=1

|σjl |h, Dg,p =
p

∑
j=1

δ 2g
j ,

qn = #{j : |δj | > an/r}
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Theorem 3 (continued)
(i) The conditional misclassification rate of the SLDA is equal to

RSLDA(X) = Φ(−[1+OP(bn)]∆p/2) .

(ii) If ∆p is bounded, then the SLDA is asymptotically optimal and

RSLDA(X)

ROPT
−1 = OP(bn).

(iii) If ∆p → ∞, then the SLDA is asymptotically sub-optimal.

(iv) If ∆p → ∞ and bn∆
2
p → 0, then the SLDA is asymptotically optimal.
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Situations where the SLDA is asymptotically optimal
There are two constants c1 and c2 such that 0 < c1 ≤ |δj | ≤ c2 for any
nonzero δj

qn is exactly the number of nonzero δj ’s

∆2
p and D0,p have exactly the order qn.

If qn is bounded (e.g., there are only finitely many nonzero δj ’s),
then ∆p is bounded and the result in Theorem 3 holds if
dn = Ch,p(n−1 logp)(1−h)/2 → 0

When qn → ∞ (∆p → ∞), we assume that qn = O(nη ) and
Ch,p = O(nγ) with η ∈ (0,1) and γ ∈ [0,1).
Choose α = (1−h)/4

If p = O(nκ) for a κ ≥ 1, then the result in Theorem 3 holds when
η + γ < (1−h)/2 and η < (1+h)/2
If p = O(enβ

) for a β ∈ (0,1), then the result in Theorem 3 holds if
η + γ < (1−h)(1−β )/2 and η < 1− (1−h)(1−β )/2
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Situations where the SLDA is asymptotically optimal
Consider the case where Ch,p = O(logp), Dg,p = O(logp), and

p = O(enβ
) for a β ∈ (0,1)

If ∆p is bounded, dn = O(nβ+(β−1)(1−h)/2) → 0, i.e., the SLDA is
asymptotically optimal, if β < (1−h)/(3−h)
If ∆p → ∞, then the largest divergence rate of ∆2

p is
O(logp) = O(nβ ) and ∆2

pdn → 0, i.e., the SLDA is asymptotically
optimal, when β < (1−h)/(5−h).

When h = 0, this means β < 1/5.

If p = O(nκ) for a κ ≥ 1 and max{Ch,p,Dg,p} = cnγ for a γ ∈ (0,1)
and a positive constant c, then logp = O(logn) diverges to ∞ at a
rate slower than nγ .
Assume that ∆2

p = O(nργ ) with a ρ ∈ [0,1] (ρ = 0 corresponds to a
bounded ∆p).
The SLDA is asymptotically optimal if (1+ ρ)γ ≤ (1−h)/2 and
(1+ ρ)γ/[2(1−g)] < α ≤ [1− (1+ ρ)γ]/[2(1−g)]
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Choosing constants in thresholding: A cross-validation
procedure
Xki : the data set with xki deleted
Tki : the SLDA rule based on Xki , i = 1, ...,nk , k = 1,2.
The cross-validation estimator of RSLDA is

R̂SLDA =
1
n

2

∑
k=1

nk

∑
i=1

rki

rki is the indicator function of whether Tki classifies xki incorrectly
If RSLDA = R(n1,n2),

E(R̂SLDA) =
2

∑
k=1

nk

∑
i=1

E(rki)

n
=

n1R(n1 −1,n2)+n2R(n1,n2 −1)

n
≈ RSLDA

R̂SLDA(M1,M2): the cross-validation estimator when (M1,M2) is used
Minimize R̂SLDA(M1,M2) over a suitable range of (M1,M2)

The resulting R̂SLDA can also be used as an estimate of RSLDA
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Application and Simulation

Applying the SLDA to human acute leukemias classification
p = 7,129 genes
n1 = 47, n2 = 25, n = 72

Plot of the cumulative proportions of δ̂ 2
j
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Plot of off-diagonal elements of S
(0.45% values are above the blue line)
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Cross-validation selection of M1 and M2

α = 0.3
M1 = 107, M2 = 300
2,492 nonzero δ̃j

(35% of 7,129)
227,083 nonzero σ̃jk

(0.45% of 25,407,756)
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Cross validation estimates
Cross validation for SLDA

misclassification rate is 0.0278
1 of 47 cases in class 1 are misclassified
1 of 25 cases in class 2 are misclassified

Cross validation for LDA
misclassification rate is 0.0972
2 of 47 cases in class 1 are misclassified
5 of 25 cases in class 2 are misclassified

Simulation

Data are generated from N(µ̂1,Σ̃) and N(µ̂2,Σ̃)
n1 = 47, n2 = 25, p = 1,714

Misclassification rates of

LDA = 0.152 (0.006)

SLDA = 0.069 (0.005)

optimal rule = 0.03
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Boxplots of conditional misclassification rates of LDA and SLDA
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Two-way plot of conditional misclassification rates: LDA vs SLDA
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Conclusion and Discussion

The ordinary linear discriminant analysis is OK if p = o(
√

n)

When p/n → ∞, the linear discriminant analysis may be
asymptotically as bad as random guessing

When p is much larger than n, asymptotically optimal
classification can be made if both the mean signal δ = µ1 −µ2

and covariance matrix Σ are sparse

A sparse linear discriminant analysis (SLDA) is proposed, and it is
asymptotically optimal under some conditions
SLDA is different from variable selection for δ+ LDA

Correlation among variables have to be considered
SLDA does not require the number of nonzero δ̃j ’s to be smaller
than n

Extension to non-normal data

Extension to unequal covariance matrices: quadratic discriminant
analysis

Jun Shao (ECNU and UW-Madison) Sparse Linear Discriminant Analysis July, 2010 28 / 28


