Optimal Risk Probability for First Passage Models

-in Semi-Markov Decision Processes

Xianping Guo (Coauthor: Yonghui Huang)
(Zhongshan University, Guangzhou)

Peking University, July 2010

Outline

- Motivation
- Semi-Markov decision processes
- Optimality problems
- Optimality equation
- Existence of optimal policies
- Numerable examples

1. Motivation

Background: Reliability engineering, and risk analysis
Problem: $\sup _{\pi} P_{i}^{\pi}\left(\tau_{B}>\lambda\right)$,

- i an initial state
- π is a policy
- B is a given target set
- τ_{B} is a first passage time to B
- λ is a threshold value.

2. Semi-Markov Decision Processes

The model of SMDP:

$$
\{S, B,(A(i), i \in S), Q(t, j \mid i, a)\}
$$

where

- S : the state space, a denumerable set;
- B : a given target set, a subset of S;
- $A(i)$: finite set of actions available at $i \in S$;
- $Q(t, j \mid i, a)$: semi-Markov kernel, $a \in A(i), i, j \in S$;

Notation:

- Policy π : A sequence $\pi=\left\{\pi_{n}, n=0,1, \ldots\right\}$ of stochastic kernels π_{n} on the action space A given H_{n} satisfying
$\pi_{n}\left(A\left(i_{n}\right) \mid\left(0, i_{0}, \lambda_{0}, a_{0}, \ldots, t_{n-1}, i_{n-1}, \lambda_{n-1}, a_{n-1}, t_{n}, i_{n}\right)=1\right.$
- Stationary policy: measurable $f, f(i, \lambda) \in A(i)$ for all (i, λ)
- $P_{(i, \lambda)}^{\pi}$: Probability measure on $\left(S \times[0, \infty) \times\left(\cup_{i \in S} A(i)\right)\right)^{\infty}$
- $S_{n}, J_{n}, A_{n}: n$-th decision epoch, the state and action at the S_{n}, respectively.

Assumption A. There exist $\delta>0$ and $\epsilon>0$ such that

$$
\sum_{j \in S} Q(\delta, j \mid i, a) \leq 1-\epsilon, \text { for all }(i, a) \in K
$$

Assumption $\mathrm{A} \Rightarrow P_{(i, \lambda)}^{\pi}\left(\left\{S_{\infty}=\infty\right\}\right)=1$

Semi-Markov decision process $\{(Z(t), A(t), t \geq 0\}$:

$$
Z(t)=J_{n}, A(t)=A_{n}, \quad \text { for } \quad S_{n} \leq t<S_{n+1}
$$

The first passage time into B, is defied by

$$
\tau_{B}:=\inf \{t \geq 0 \mid Z(t) \in B\}, \quad(\text { with } \inf \emptyset:=\infty)
$$

3. Optimality Problems

The risk probability:

$$
F^{\pi}(i, \lambda):=P_{(i, \lambda)}^{\pi}\left(\tau_{B} \leq \lambda\right)
$$

The optimal value:

$$
F_{*}(i, \lambda):=\inf _{\pi \in \Pi} F^{\pi}(i, \lambda),
$$

Definition 1. A policy $\pi^{*} \in \Pi$ is called optimal if

$$
F^{\pi^{*}}(i, \lambda)=F_{*}(i, \lambda) \quad \forall(i, \lambda) \in S \times R .
$$

- Existence and computation of optimal policies ???

4. Optimality Equation

For $i \in B^{c}, a \in A(i)$, and $\lambda \geq 0$, let

$$
T^{a} u(i, \lambda):=Q(\lambda, B \mid i, a)+\sum_{j \in B^{c}} \int_{0}^{\lambda} Q(d t, j \mid i, a) u(j, \lambda-t)
$$

with $u \in \mathcal{F}_{[0,1]}$ (the set of measurable functions $0 \leq u \leq 1$),

$$
Q(\lambda, B \mid i, a):=\sum_{j \in B} Q(\lambda, j \mid i, a), \quad T^{a} u(i, \lambda):=0 \text { for } \lambda<0
$$

Then, define operators T and T^{f} :

$$
T u(i, \lambda):=\min _{a \in A(i)} T^{a} u(i, \lambda) ; \quad T^{f} u(i, \lambda):=T^{f(i, \lambda)} u(i, \lambda),
$$

for each stationary policy f.

Theorem 1. Let Under Assumption A, we have
(a) $F^{f}=\lim _{n \rightarrow \infty} u_{n}^{f}$, where $u_{n}^{f}:=T^{f} u_{n-1}, u_{-1}^{f}:=1$;
(b) F^{f} satisfied the equation, $u=T^{f} u$, for all $f \in F$;

- Theorem 1 gives an approximation of risk probability F^{f}.

For each $(i, \lambda) \in B^{c} \times R_{+}$and $\pi \in \Pi$, let

$$
\begin{aligned}
& F_{-1}^{\pi}(i, \lambda):=1 \\
& F_{n}^{\pi}(i, \lambda):=1-\sum_{m=0}^{n} P_{(i, \lambda)}^{\pi}\left(S_{m} \leq \lambda<S_{m+1}, J_{k} \in B^{c}, 0 \leq k \leq m\right)
\end{aligned}
$$

Theorem 2. Let $F_{n}^{*}(i, \lambda):=\inf _{\pi} F_{n}^{\pi}(i, \lambda)$, then
(a) $F_{n+1}^{*}=T F_{n}^{*}$ for all $n \geq-1$, and $\lim _{n \rightarrow \infty} F_{n}^{*}=F_{*}$.
(b) F_{*} satisfies the optimality equation: $F_{*}=T F_{*}$.
(c) F_{*} is the maximal fixed point of T in $\mathcal{F}_{[0,1]}$.

Remark 1.

- Theorem 2(a) gives a value iteration algorithm for computing the optimal value function F_{*}.
- Theorem 2(b) establishes the optimality equation.

5. Existence of Optimality Policise

To ensure the existence of optimal policies, we introduce the following condition.

Assumption B. For every $(i, \lambda) \in B^{c} \times R$ and f,

$$
P_{(i, \lambda)}^{f}\left(\tau_{B}<\infty\right)=1
$$

To verify Assumption B, we have a fact below:
Theorem 3. If there exists a constant $\alpha>0$ such that

$$
\sum_{j \in B} Q(\infty, j \mid i, a) \geq \alpha \text { for all } i \in B^{c}, a \in A(i)
$$

then Assumption B holds.

Theorem 4. Under Assumptions A and B, we have
(a) F^{f} and F_{*} are the unique solution in $\mathcal{F}_{[0,1]}$ to equations $u=T^{f} u$ and $u=T u$, respectively;
(b) any f, such that $F_{*}=T^{f} F_{*}$, is optimal;
(c) there exists a stationary policy f^{*} satisfying the optimality equation: $F_{*}=T F_{*}=T{ }^{f^{*}} F_{*}$, and such policy f^{*} is optimal.

Remark 2.

- Theorem 4(c) shows the existence of an optimal poliy.

To give the existence of special optimal policies, let

$$
\begin{aligned}
A^{*}(i, \lambda) & :=\left\{a \in A(i) \mid F^{*}(i, \lambda)=T^{a} F^{*}(i, \lambda)\right\} \\
A^{*}(i) & :=\bigcap_{\lambda \geq 0} A^{*}(i, \lambda)
\end{aligned}
$$

Theorem 5. If $\sup \sup Q\left(t, B^{c} \mid i, a\right)<1$ for some $i \in B^{c} a \in A(i)$
$t>0$, and Assumptions A and B hold, then,
(a) for any $g \in G:=\{g \mid g(i) \in A(i) \forall i \in S\}, F^{g}$ is the unique solution in $\mathcal{F}_{[0,1]}$ to the equation: $u=T^{g} u$;
(b) there exists an optimal policy $f \in G$ if and only if $A^{*}(i) \neq \emptyset$ for all $i \in B^{c}$.

5. Numerable examples

Example 5.1. Let $S=\{1,2,3\}, \mathrm{B}=\{3\}$, where

- state 1: the good state
- state 2: the medium state
- state 3: the failure state

Let $A(1)=\left\{a_{11}, a_{12}\right\}, A(2)=\left\{a_{21}, a_{22}\right\}, A(3)=\left\{a_{31}\right\}$.
The semi-Markov kernel is of the form:

$$
Q(t, j \mid i, a)=H(t \mid i, a) p(j \mid i, a)
$$

- $H(t \mid i, a)$: the distribution functions of the sojourn time
- $p(j \mid i, a)$: the transition probabilities.

$$
\begin{aligned}
& H\left(t \mid 1, a_{11}\right):= \begin{cases}1 / 25, & t \in[0,25], \\
1, & t>25 ;\end{cases} \\
& H\left(t \mid 2, a_{21}\right):= \begin{cases}1 / 20, & t \in[0,20], \\
1, & t>20 ;\end{cases} \\
& H\left(t \mid 3, a_{31}\right):=1-e^{-0.2 t} \\
& H\left(t \mid 1, a_{12}\right)=1-e^{-0.08 t} ; \\
& H\left(t \mid 2, a_{22}\right)=1-e^{-0.15 t} ;
\end{aligned}
$$

$$
\begin{aligned}
& p\left(1 \mid 1, a_{11}\right)=0, p\left(2 \mid 1, a_{11}\right)=\frac{9}{20}, p\left(3 \mid 1, a_{11}\right)=\frac{11}{20} \\
& p\left(1 \mid 1, a_{12}\right)=0, p\left(2 \mid 1, a_{12}\right)=\frac{1}{2}, p\left(3 \mid 1, a_{12}\right)=\frac{1}{2} ; \\
& p\left(1 \mid 2, a_{21}\right)=\frac{1}{5}, p\left(2 \mid 2, a_{21}\right)=0, p\left(3 \mid 2, a_{21}\right)=\frac{4}{5} \\
& p\left(1 \mid 2, a_{22}\right)=\frac{1}{4}, p\left(2 \mid 2, a_{22}\right)=0, p\left(3 \mid 2, a_{22}\right)=\frac{3}{4} ; \\
& p\left(3 \mid 3, a_{31}\right)=1
\end{aligned}
$$

Using the value iteration algorithm in Theorem 2, we obtain some computational results as in Figure 1 and Figure 2.

Figure 1. The functions $T^{a} F^{*}(i, \lambda)$

Figure 2. The value function $F^{*}(i, \lambda)$

More clearly, we have

$$
\begin{aligned}
& F^{*}(1, \lambda)= \begin{cases}T^{a_{11}} F^{*}(1, \lambda), & 0 \leq \lambda<21.36, \\
T^{a_{11}} F^{*}(1, \lambda)=T^{a_{12}} F^{*}(1, \lambda), & \lambda=21.36 \\
T^{a_{12}} F^{*}(1, \lambda), & 21.36<\lambda<29.3, \\
T^{a_{11}} F^{*}(1, \lambda)=T^{a_{12}} F^{*}(1, \lambda), & \lambda=29.3, \\
T^{a_{11}} F^{*}(1, \lambda)(=0.7742), & \lambda>29.3,\end{cases} \\
& F^{*}(2, \lambda)= \begin{cases}T^{a_{21}} F^{*}(2, \lambda), & 0 \leq \lambda<18.54, \\
T^{a_{21}} F^{*}(2, \lambda)=T^{a_{22}} F^{*}(2, \lambda), & \lambda=18.54, \\
T_{22}^{a_{22}} F^{*}(2, \lambda), & 18.54<\lambda<23.82 \\
T^{a_{21}} F^{*}(2, \lambda)=T^{a_{22}} F^{*}(2, \lambda), & \lambda=23.82, \\
T^{a_{21}} F^{*}(2, \lambda)(=0.8542), & \lambda>23.82 .\end{cases}
\end{aligned}
$$

Define a policy f^{*} by

$$
\begin{aligned}
f^{*}(1, \lambda) & = \begin{cases}a_{11}, & 0 \leq \lambda \leq 21.36 \\
a_{12}, & 21.36<\lambda \leq 29.3 \\
a_{11}, & \lambda>29.3\end{cases} \\
f^{*}(2, \lambda) & = \begin{cases}a_{21}, & 0 \leq \lambda \leq 18.54 \\
a_{22}, & 18.54<\lambda \leq 23.82 \\
a_{21}, & \lambda>23.82\end{cases}
\end{aligned}
$$

Then, we have

- $F^{*}(i, \lambda)=T^{f^{*}} F^{*}(i, \lambda)$ for $i=1,2$ and all $\lambda \geq 0$,
- f^{*} is an optimal stationary policy.

$$
\begin{gathered}
A^{*}(1, \lambda)= \begin{cases}\left\{a_{11}\right\}, & 0 \leq \lambda<21.36, \\
\left\{a_{11}, a_{12}\right\}, & \lambda=21.36 \\
\left\{a_{12}\right\}, & 21.36<\lambda<29.3, \\
\left\{a_{11}, a_{12}\right\}, & \lambda=29.3, \\
\left\{a_{11}\right\}, & \lambda>29.3,\end{cases} \\
A^{*}(2, \lambda)= \begin{cases}\left\{a_{21}\right\}, & 0 \leq \lambda<18.54, \\
\left\{a_{21}, a_{22}\right\}, & \lambda=18.54, \\
\left\{a_{22}\right\}, & 18.54<\lambda<23.82, \\
\left\{a_{21}, a_{22}\right\}, & \lambda=23.82, \\
\left\{a_{21}\right\}, & \lambda>23.82,\end{cases}
\end{gathered}
$$

Hence,

$$
A^{*}(1)=\bigcap_{\lambda \geq 0} A^{*}(1, \lambda)=\emptyset, A^{*}(2)=\bigcap_{\lambda \geq 0} A^{*}(2, \lambda)=\emptyset,
$$

which show there is no optimal policy in G.
Remark 3. This shows that the assumption in the previous
literature is not satisfied for this example !!!

Example 5.2. Let $S=\{1,2\}, \mathrm{B}=\{2\}$;
$A(1)=\left\{a_{11}, a_{12}\right\}, A(2)=\left\{a_{21}\right\} ;$
$Q(t, j \mid i, a)$ is given by

$$
\begin{aligned}
& Q\left(t, j \mid 1, a_{11}\right)= \begin{cases}1 / 2, & \text { if } t \geq 1, j=1,2, \\
0, & \text { otherwise } ;\end{cases} \\
& Q\left(t, j \mid 1, a_{12}\right)= \begin{cases}1, & \text { if } t \geq 2, j=2, \\
0, & \text { otherwise } ;\end{cases} \\
& Q\left(t, j \mid 2, a_{21}\right)= \begin{cases}1-e^{-t}, & \text { if } t \geq 0, j=2, \\
0, & \text { otherwise. } .\end{cases}
\end{aligned}
$$

Assumptions A and B holds in this example.

We now define a policy d as follows:

$$
d(1, \lambda)=\left\{\begin{array}{l}
a_{12}, \quad 0 \leq \lambda \leq 2 \\
a_{11}, \lambda>2
\end{array}\right.
$$

Then, by Theorem 1, we have $F^{d}(1, \lambda)=\lim _{n \rightarrow \infty} F_{n}^{d}(1, \lambda)$, which yields

$$
F^{d}(1, \lambda)= \begin{cases}0, & 0 \leq \lambda<2 \\ 1, & \lambda=2 \\ 1 / 2, & 2<\lambda<3\end{cases}
$$

Hence, $F^{d}(1, \lambda)$ is not a distribution function of λ.

Many Thanks !!!

