Grothendieck's absolute purity conjecture Motivic homotopy theory The fundamental class Absolute purity in motivic homotopy theory

Absolute purity in motivic homotopy theory

Fangzhou Jin joint work with F. Déglise, J. Fasel and A. Khan

October 8, 2020

Table of contents

- 1 Grothendieck's absolute purity conjecture
- 2 Motivic homotopy theory
- The fundamental class
- 4 Absolute purity in motivic homotopy theory

The absolute purity conjecture

Grothendieck's absolute (cohomological) purity conjecture (SGA5, Exposé I 3.1.4) is the following statement: if $i: Z \to X$ is a closed immersion between noetherian regular schemes of pure codimension $c, n \in \mathcal{O}(X)^*$ and $\Lambda = \mathbb{Z}/n\mathbb{Z}$, then the étale cohomology sheaf supported in Z with values in Λ can be computed as

$$\mathcal{H}_{Z}^{q}(X_{\text{\'et}}, \Lambda) = \begin{cases} i_{*}\Lambda_{Z}(-c) & \text{if } q = 2c \\ 0 & \text{else} \end{cases}$$

The absolute purity conjecture

Grothendieck's absolute (cohomological) purity conjecture (SGA5, Exposé I 3.1.4) is the following statement: if $i: Z \to X$ is a closed immersion between noetherian regular schemes of pure codimension $c, n \in \mathcal{O}(X)^*$ and $\Lambda = \mathbb{Z}/n\mathbb{Z}$, then the étale cohomology sheaf supported in Z with values in Λ can be computed as

$$\mathcal{H}_{Z}^{q}(X_{\mathrm{\acute{e}t}},\Lambda) = \begin{cases} i_{*}\Lambda_{Z}(-c) & \text{if } q = 2c \\ 0 & \text{else} \end{cases}$$

In other words, $i^! \Lambda_X = \Lambda_Z(-c)[-2c]$.

The absolute purity conjecture

Grothendieck's absolute (cohomological) purity conjecture (SGA5, Exposé I 3.1.4) is the following statement: if $i: Z \to X$ is a closed immersion between noetherian regular schemes of pure codimension $c, n \in \mathcal{O}(X)^*$ and $\Lambda = \mathbb{Z}/n\mathbb{Z}$, then the étale cohomology sheaf supported in Z with values in Λ can be computed as

$$\mathcal{H}^q_Z(X_{\mathrm{\acute{e}t}},\Lambda) = egin{cases} i_* \Lambda_Z(-c) & \text{if } q = 2c \\ 0 & \text{else} \end{cases}$$

In other words, $i^! \Lambda_X = \Lambda_Z(-c)[-2c]$. This conjecture has been solved by Gabber.

• SGA4: case where both X and Z are smooth over a field

- SGA4: case where both X and Z are smooth over a field
- Popescu: equal characteristic case

- SGA4: case where both X and Z are smooth over a field
- Popescu: equal characteristic case
- Gabber(1976): case where dim $X \leq 2$

- SGA4: case where both X and Z are smooth over a field
- Popescu: equal characteristic case
- Gabber(1976): case where dim $X \leq 2$
- Thomason(1984): case where all prime divisors of n are greater or equal to dim X+2

- SGA4: case where both X and Z are smooth over a field
- Popescu: equal characteristic case
- Gabber(1976): case where dim $X \leq 2$
- Thomason(1984): case where all prime divisors of n are greater or equal to dim X+2

Uses Atiyah-Hirzebruch spectral sequence of étale K-theory

- SGA4: case where both X and Z are smooth over a field
- Popescu: equal characteristic case
- Gabber(1976): case where dim $X \leq 2$
- Thomason(1984): case where all prime divisors of n are greater or equal to dim X+2
 - Uses Atiyah-Hirzebruch spectral sequence of étale K-theory
- Gabber(1986): general case (written by Fujiwara)

- SGA4: case where both X and Z are smooth over a field
- Popescu: equal characteristic case
- Gabber(1976): case where dim $X \leq 2$
- Thomason(1984): case where all prime divisors of n are greater or equal to dim X+2
 - Uses Atiyah-Hirzebruch spectral sequence of étale K-theory
- Gabber(1986): general case (written by Fujiwara)
 Based on Thomason's method + rigidity for algebraic K-theory

The absolute purity property, together with resolution of singularities, is frequently used in cohomological studies of schemes:

• Show that the six functors on the derived category of étale sheaves preserve constructible objects.

- Show that the six functors on the derived category of étale sheaves preserve constructible objects.
- Prove the Grothendieck-Verdier local duality:

- Show that the six functors on the derived category of étale sheaves preserve constructible objects.
- Prove the *Grothendieck-Verdier local duality*: S a regular scheme, $n \in \mathcal{O}(S)^*$ and $\Lambda = \mathbb{Z}/n\mathbb{Z}$, $f: X \to S$ a separated morphism of finite type, then $f^!\Lambda_S$ is a dualizing object, i.e. $\mathbb{D}_{X/S} := R\underline{Hom}(\cdot, f^!\Lambda_S)$ satisfies $D \circ D = \mathrm{Id}$.

- Show that the six functors on the derived category of étale sheaves preserve constructible objects.
- Prove the Grothendieck-Verdier local duality: S a regular scheme, $n \in \mathcal{O}(S)^*$ and $\Lambda = \mathbb{Z}/n\mathbb{Z}$, $f: X \to S$ a separated morphism of finite type, then $f^!\Lambda_S$ is a dualizing object, i.e. $\mathbb{D}_{X/S} := R\underline{Hom}(\cdot, f^!\Lambda_S)$ satisfies $D \circ D = \mathrm{Id}$.
- Construct Gysin morphisms and establish intersection theory.

- Show that the six functors on the derived category of étale sheaves preserve constructible objects.
- Prove the Grothendieck-Verdier local duality: S a regular scheme, $n \in \mathcal{O}(S)^*$ and $\Lambda = \mathbb{Z}/n\mathbb{Z}$, $f: X \to S$ a separated morphism of finite type, then $f^!\Lambda_S$ is a dualizing object, i.e. $\mathbb{D}_{X/S} := R\underline{Hom}(\cdot, f^!\Lambda_S)$ satisfies $D \circ D = \mathrm{Id}$.
- Construct Gysin morphisms and establish intersection theory.
- Study the coniveau spectral sequence.

 The study of these problems has lead to a great number of new methods: Deligne, Verdier, Bloch-Ogus, Gabber, Fulton, ...

- The study of these problems has lead to a great number of new methods: Deligne, Verdier, Bloch-Ogus, Gabber, Fulton, ...
- Our work: study absolute purity in the framework of motivic homotopy theory.

- The study of these problems has lead to a great number of new methods: Deligne, Verdier, Bloch-Ogus, Gabber, Fulton, ...
- Our work: study absolute purity in the framework of motivic homotopy theory.
- Main result: the absolute purity in motivic homotopy theory is satisfied with rational coefficients in mixed characteristic.

 The motivic homotopy theory or A¹-homotopy theory is introduced by Morel and Voevodsky (1998) as a framework to study cohomology theories in algebraic geometry, by importing tools from algebraic topology

- The motivic homotopy theory or \mathbb{A}^1 -homotopy theory is introduced by Morel and Voevodsky (1998) as a framework to study cohomology theories in algebraic geometry, by importing tools from algebraic topology
- Idea: use the affine line \mathbb{A}^1 as a substitute of the unit interval to get an algebraic version of the homotopy theory

- The motivic homotopy theory or \mathbb{A}^1 -homotopy theory is introduced by Morel and Voevodsky (1998) as a framework to study cohomology theories in algebraic geometry, by importing tools from algebraic topology
- Idea: use the affine line \mathbb{A}^1 as a substitute of the unit interval to get an algebraic version of the homotopy theory
- Can be used to study cohomology theories such as algebraic K-theory, Chow groups (motivic cohomology) and many others

- The motivic homotopy theory or \mathbb{A}^1 -homotopy theory is introduced by Morel and Voevodsky (1998) as a framework to study cohomology theories in algebraic geometry, by importing tools from algebraic topology
- Idea: use the affine line \mathbb{A}^1 as a substitute of the unit interval to get an algebraic version of the homotopy theory
- Can be used to study cohomology theories such as algebraic K-theory, Chow groups (motivic cohomology) and many others
- Advantage: has many a lot of structures coming from both topological and algebraic geometrical sides

 Part of Voevodsky's proof of the Bloch-Kato conjecture uses the classification of cohomological operations that can be studied by means of motivic homotopy theory

- Part of Voevodsky's proof of the Bloch-Kato conjecture uses the classification of cohomological operations that can be studied by means of motivic homotopy theory
- K-theory and hermitian K-theory (Riou, Cisinski, Panin-Walter, Hornbostel, Schlichting-Tripathi)

- Part of Voevodsky's proof of the Bloch-Kato conjecture uses the classification of cohomological operations that can be studied by means of motivic homotopy theory
- K-theory and hermitian K-theory (Riou, Cisinski, Panin-Walter, Hornbostel, Schlichting-Tripathi)
- Euler classes and splitting vector bundles (Murthy, Barge-Morel, Asok-Fasel)

- Part of Voevodsky's proof of the Bloch-Kato conjecture uses the classification of cohomological operations that can be studied by means of motivic homotopy theory
- K-theory and hermitian K-theory (Riou, Cisinski, Panin-Walter, Hornbostel, Schlichting-Tripathi)
- Euler classes and splitting vector bundles (Murthy, Barge-Morel, Asok-Fasel)
- Computations of homotopy groups of spheres (Isaksen, Wang, Xu)

- Part of Voevodsky's proof of the Bloch-Kato conjecture uses the classification of cohomological operations that can be studied by means of motivic homotopy theory
- K-theory and hermitian K-theory (Riou, Cisinski, Panin-Walter, Hornbostel, Schlichting-Tripathi)
- Euler classes and splitting vector bundles (Murthy, Barge-Morel, Asok-Fasel)
- Computations of homotopy groups of spheres (Isaksen, Wang, Xu)
- \mathbb{A}^1 -enumerative geometry (Hoyois, Levine, Kass-Wickelgren)

- Part of Voevodsky's proof of the Bloch-Kato conjecture uses the classification of cohomological operations that can be studied by means of motivic homotopy theory
- K-theory and hermitian K-theory (Riou, Cisinski, Panin-Walter, Hornbostel, Schlichting-Tripathi)
- Euler classes and splitting vector bundles (Murthy, Barge-Morel, Asok-Fasel)
- Computations of homotopy groups of spheres (Isaksen, Wang, Xu)
- A¹-enumerative geometry (Hoyois, Levine, Kass-Wickelgren)
- Non-commutative geometry and singularity categories (Tabuada, Blanc-Robalo-Toën-Vezzosi)

• A **spectrum** \mathbb{E} is a sequence $(E_n)_{n\in\mathbb{N}}$ of pointed spaces (e.g. CW-complexes or simplicial sets) together with continuous maps $\sigma_n: S^1 \wedge E_n \to E_{n+1}$ called **suspension maps**

- A **spectrum** \mathbb{E} is a sequence $(E_n)_{n\in\mathbb{N}}$ of pointed spaces (e.g. CW-complexes or simplicial sets) together with continuous maps $\sigma_n: S^1 \wedge E_n \to E_{n+1}$ called **suspension maps**
- A morphism of spectra is a sequence of continuous maps on each degree which commutes with suspension maps

- A **spectrum** \mathbb{E} is a sequence $(E_n)_{n\in\mathbb{N}}$ of pointed spaces (e.g. CW-complexes or simplicial sets) together with continuous maps $\sigma_n: S^1 \wedge E_n \to E_{n+1}$ called **suspension maps**
- A morphism of spectra is a sequence of continuous maps on each degree which commutes with suspension maps
- Stable homotopy groups:

$$\pi_n(E) = \underset{i}{\operatorname{colim}} \ \pi_{n+i}(E_i)$$

- A **spectrum** \mathbb{E} is a sequence $(E_n)_{n\in\mathbb{N}}$ of pointed spaces (e.g. CW-complexes or simplicial sets) together with continuous maps $\sigma_n: S^1 \wedge E_n \to E_{n+1}$ called **suspension maps**
- A morphism of spectra is a sequence of continuous maps on each degree which commutes with suspension maps
- Stable homotopy groups:

$$\pi_n(E) = \underset{i}{\operatorname{colim}} \ \pi_{n+i}(E_i)$$

• The theory stems from the Freudenthal suspension theorem: if $E_i = X \wedge S^i$ for some $X \in Top$ (i.e. E is the **suspension spectrum** of X), then the sequence $i \mapsto \pi_{n+i}(E_i)$ stabilizes

- A **spectrum** \mathbb{E} is a sequence $(E_n)_{n\in\mathbb{N}}$ of pointed spaces (e.g. CW-complexes or simplicial sets) together with continuous maps $\sigma_n: S^1 \wedge E_n \to E_{n+1}$ called **suspension maps**
- A morphism of spectra is a sequence of continuous maps on each degree which commutes with suspension maps
- Stable homotopy groups:

$$\pi_n(E) = \operatorname{colim}_i \pi_{n+i}(E_i)$$

- The theory stems from the Freudenthal suspension theorem: if $E_i = X \wedge S^i$ for some $X \in Top$ (i.e. E is the **suspension spectrum** of X), then the sequence $i \mapsto \pi_{n+i}(E_i)$ stabilizes
- A morphism of spectra is a stable weak equivalence if it induces isomorphisms on stable homotopy groups

• The (topological) stable homotopy category SH_{top} is defined from spectra by inverting stable weak equivalences

- The (topological) stable homotopy category \mathbf{SH}_{top} is defined from spectra by inverting stable weak equivalences
- SH_{top} is a **triangulated category**, with shift given by S^1 -suspension

- The (topological) stable homotopy category SH_{top} is defined from spectra by inverting stable weak equivalences
- \mathbf{SH}_{top} is a **triangulated category**, with shift given by S^1 -suspension
- Every object represents a cohomology theory

$$\mathbb{E}^n(X) = [X, \mathbb{E} \wedge S^n]_{\mathsf{SH}_{top}}$$

- The (topological) stable homotopy category SH_{top} is defined from spectra by inverting stable weak equivalences
- \mathbf{SH}_{top} is a **triangulated category**, with shift given by S^1 -suspension
- Every object represents a cohomology theory

$$\mathbb{E}^n(X) = [X, \mathbb{E} \wedge S^n]_{\mathsf{SH}_{top}}$$

• Examples: Suspension spectra $\Sigma^{\infty}X$ for $X \in Top_{\bullet}$, in particular sphere spectrum S; HA Eilenberg-Mac Lane spectrum for a ring A; MU complex cobordism spectrum

- The (topological) stable homotopy category SH_{top} is defined from spectra by inverting stable weak equivalences
- \mathbf{SH}_{top} is a **triangulated category**, with shift given by S^1 -suspension
- Every object represents a cohomology theory

$$\mathbb{E}^n(X) = [X, \mathbb{E} \wedge S^n]_{\mathsf{SH}_{top}}$$

- Examples: Suspension spectra $\Sigma^{\infty}X$ for $X \in Top_{\bullet}$, in particular sphere spectrum S; HA Eilenberg-Mac Lane spectrum for a ring A; MU complex cobordism spectrum
- From an ∞-categorical point of view, the category of spectra is the stabilization of the category of spaces, and is the universal stable (triangulated) category

• For any scheme S, a **motivic space** is a presheaf of simplicial sets over the category of smooth S-schemes Sm_S

- For any scheme S, a **motivic space** is a presheaf of simplicial sets over the category of smooth S-schemes Sm_S
- The **(pointed) unstable motivic homotopy category H**(S) ($\mathbf{H}_{\bullet}(S)$) is obtained from (pointed) motivic spaces by localizing with respect to the Nisnevich topology and projections of the form $Y \times \mathbb{A}^1 \to Y$

- For any scheme S, a **motivic space** is a presheaf of simplicial sets over the category of smooth S-schemes Sm_S
- The **(pointed) unstable motivic homotopy category H**(S) ($\mathbf{H}_{\bullet}(S)$) is obtained from (pointed) motivic spaces by localizing with respect to the Nisnevich topology and projections of the form $Y \times \mathbb{A}^1 \to Y$
- Bigraded \mathbb{A}^1 -homotopy sheaves: for $X \in \mathbf{H}_{\bullet}(S)$, $\pi_{a,b}^{\mathbb{A}^1}(X)$ is the Nisnevich sheaf on Sm_S associated to the presheaf

$$U \mapsto [U \wedge S^{a-b} \wedge \mathbb{G}_m^b, X]_{\mathbf{H}_{\bullet}(S)}$$

• For any scheme S, a **motivic spectrum** or \mathbb{P}^1 -**spectrum** is a sequence $\mathbb{E} = (E_n)_{n \geq 0}$ of pointed motivic spaces together with morphisms $\sigma_n : \mathbb{P}^1 \wedge E_n \to E_{n+1}$

- For any scheme S, a **motivic spectrum** or \mathbb{P}^1 -**spectrum** is a sequence $\mathbb{E} = (E_n)_{n \geqslant 0}$ of pointed motivic spaces together with morphisms $\sigma_n : \mathbb{P}^1 \wedge E_n \to E_{n+1}$
- A morphism of motivic spectra is a stable motivic weak equivalence if it induces isomorphisms on A¹-homotopy sheaves
- The stable motivic homotopy category SH(S) is defined from \mathbb{P}^1 -spectra by inverting stable motivic weak equivalences

- For any scheme S, a **motivic spectrum** or \mathbb{P}^1 -**spectrum** is a sequence $\mathbb{E} = (E_n)_{n \geqslant 0}$ of pointed motivic spaces together with morphisms $\sigma_n : \mathbb{P}^1 \wedge E_n \to E_{n+1}$
- A morphism of motivic spectra is a stable motivic weak equivalence if it induces isomorphisms on A¹-homotopy sheaves
- The stable motivic homotopy category SH(S) is defined from \mathbb{P}^1 -spectra by inverting stable motivic weak equivalences
- ullet Two spheres: $\mathbb{P}^1\sim_{\mathbb{A}^1}S^1\wedge\mathbb{G}_m$

- For any scheme S, a **motivic spectrum** or \mathbb{P}^1 -**spectrum** is a sequence $\mathbb{E} = (E_n)_{n \geqslant 0}$ of pointed motivic spaces together with morphisms $\sigma_n : \mathbb{P}^1 \wedge E_n \to E_{n+1}$
- A morphism of motivic spectra is a stable motivic weak equivalence if it induces isomorphisms on A¹-homotopy sheaves
- The stable motivic homotopy category SH(S) is defined from \mathbb{P}^1 -spectra by inverting stable motivic weak equivalences
- ullet Two spheres: $\mathbb{P}^1\sim_{\mathbb{A}^1}S^1\wedge\mathbb{G}_m$
- SH(S) is triangulated by S^1 -suspension

- For any scheme S, a **motivic spectrum** or \mathbb{P}^1 -**spectrum** is a sequence $\mathbb{E} = (E_n)_{n \geqslant 0}$ of pointed motivic spaces together with morphisms $\sigma_n : \mathbb{P}^1 \wedge E_n \to E_{n+1}$
- A morphism of motivic spectra is a stable motivic weak equivalence if it induces isomorphisms on A¹-homotopy sheaves
- The stable motivic homotopy category SH(S) is defined from \mathbb{P}^1 -spectra by inverting stable motivic weak equivalences
- Two spheres: $\mathbb{P}^1 \sim_{\mathbb{A}^1} S^1 \wedge \mathbb{G}_m$
- SH(S) is triangulated by S^1 -suspension
- In the classical notation, $S^1 = \mathbb{1}[1]$ and $\mathbb{G}_m = \mathbb{1}(1)[1]$

- For any scheme S, a **motivic spectrum** or \mathbb{P}^1 -**spectrum** is a sequence $\mathbb{E} = (E_n)_{n \geqslant 0}$ of pointed motivic spaces together with morphisms $\sigma_n : \mathbb{P}^1 \wedge E_n \to E_{n+1}$
- A morphism of motivic spectra is a stable motivic weak equivalence if it induces isomorphisms on A¹-homotopy sheaves
- The stable motivic homotopy category SH(S) is defined from P¹-spectra by inverting stable motivic weak equivalences
- Two spheres: $\mathbb{P}^1 \sim_{\mathbb{A}^1} S^1 \wedge \mathbb{G}_m$
- SH(S) is triangulated by S^1 -suspension
- ullet In the classical notation, $S^1=\mathbb{1}[1]$ and $\mathbb{G}_m=\mathbb{1}(1)[1]$
- $\mathbf{SH}(S)$ is the universal stable ∞ -category which satisfies Nisnevich descent and \mathbb{A}^1 -invariance (Robalo, Drew-Gallauer)

$$\mathbb{E}^{p,q}(U) = [U, (S^1)^{\wedge (p-q)} \wedge (\mathbb{G}_m)^{\wedge q} \wedge \mathbb{E}]_{\mathsf{SH}(S)}$$

Every object in SH(S) represents a bigraded cohomology theory

$$\mathbb{E}^{p,q}(U) = [U, (S^1)^{\wedge (p-q)} \wedge (\mathbb{G}_m)^{\wedge q} \wedge \mathbb{E}]_{\mathsf{SH}(S)}$$

 Motivic Eilenberg-Mac Lane spectrum HZ, represents motivic cohomology (extend Chow groups for smooth schemes)

$$\mathbb{E}^{p,q}(U) = [U, (S^1)^{\wedge (p-q)} \wedge (\mathbb{G}_m)^{\wedge q} \wedge \mathbb{E}]_{\mathsf{SH}(S)}$$

- Motivic Eilenberg-Mac Lane spectrum HZ, represents motivic cohomology (extend Chow groups for smooth schemes)
- Algebraic K-theory spectrum KGL, represents homotopy K-theory (Voevodsky, Riou)

$$\mathbb{E}^{p,q}(U) = [U, (S^1)^{\wedge (p-q)} \wedge (\mathbb{G}_m)^{\wedge q} \wedge \mathbb{E}]_{\mathsf{SH}(S)}$$

- Motivic Eilenberg-Mac Lane spectrum HZ, represents motivic cohomology (extend Chow groups for smooth schemes)
- Algebraic K-theory spectrum KGL, represents homotopy K-theory (Voevodsky, Riou)
- Algebraic cobordism spectrum MGL, represents algebraic cobordism (Levine-Morel)

$$\mathbb{E}^{p,q}(U) = [U, (S^1)^{\wedge (p-q)} \wedge (\mathbb{G}_m)^{\wedge q} \wedge \mathbb{E}]_{\mathsf{SH}(S)}$$

- Motivic Eilenberg-Mac Lane spectrum HZ, represents motivic cohomology (extend Chow groups for smooth schemes)
- Algebraic K-theory spectrum KGL, represents homotopy K-theory (Voevodsky, Riou)
- Algebraic cobordism spectrum MGL, represents algebraic cobordism (Levine-Morel)
- Hermitian K-theory spectrum KQ represents higher Grothendieck-Witt groups (Schlichting, Panin-Walter, Hornbostel)

$$\mathbb{E}^{p,q}(U) = [U, (S^1)^{\wedge (p-q)} \wedge (\mathbb{G}_m)^{\wedge q} \wedge \mathbb{E}]_{\mathsf{SH}(S)}$$

- Motivic Eilenberg-Mac Lane spectrum HZ, represents motivic cohomology (extend Chow groups for smooth schemes)
- Algebraic K-theory spectrum KGL, represents homotopy K-theory (Voevodsky, Riou)
- Algebraic cobordism spectrum MGL, represents algebraic cobordism (Levine-Morel)
- Hermitian K-theory spectrum KQ represents higher Grothendieck-Witt groups (Schlichting, Panin-Walter, Hornbostel)
- Milnor-Witt spectrum $\mathbf{H}_{MW}\mathbb{Z}$ represents Milnor-Witt motivic cohomology/higher Chow-Witt groups (Déglise-Fasel)

• The sphere spectrum $\mathbb{1}_S = \Sigma_{\mathbb{P}^1}^{\infty} S_+$ is the unit object for the monoidal structure on $\mathbf{SH}(S)$ defined by $\otimes = \wedge$

- The sphere spectrum $\mathbb{1}_S = \Sigma_{\mathbb{P}^1}^{\infty} S_+$ is the unit object for the monoidal structure on $\mathbf{SH}(S)$ defined by $\otimes = \wedge$
- Its stable homotopy groups/sheaves are hard to compute, and are related to the open problem of computing stable homotopy groups of spheres in topology

- The sphere spectrum $\mathbb{1}_S = \Sigma_{\mathbb{P}^1}^{\infty} S_+$ is the unit object for the monoidal structure on $\mathbf{SH}(S)$ defined by $\otimes = \wedge$
- Its stable homotopy groups/sheaves are hard to compute, and are related to the open problem of computing stable homotopy groups of spheres in topology
- Morel's theorem: k field, then $\pi_{n,n}(\mathbb{1}_k) \simeq K_n^{MW}$ is the Milnor-Witt K-theory sheaf

- The sphere spectrum $\mathbb{1}_S = \Sigma_{\mathbb{P}^1}^{\infty} S_+$ is the unit object for the monoidal structure on $\mathbf{SH}(S)$ defined by $\otimes = \wedge$
- Its stable homotopy groups/sheaves are hard to compute, and are related to the open problem of computing stable homotopy groups of spheres in topology
- Morel's theorem: k field, then $\pi_{n,n}(\mathbb{1}_k) \simeq K_n^{MW}$ is the Milnor-Witt K-theory sheaf
- In particular, $End(\mathbb{1}_k)_{\mathbf{SH}(k)} \simeq GW(k)$ is the Grothendieck-Witt groups of symmetric bilinear forms over k

- The sphere spectrum $\mathbb{1}_S = \Sigma_{\mathbb{P}^1}^{\infty} S_+$ is the unit object for the monoidal structure on $\mathbf{SH}(S)$ defined by $\otimes = \wedge$
- Its stable homotopy groups/sheaves are hard to compute, and are related to the open problem of computing stable homotopy groups of spheres in topology
- Morel's theorem: k field, then $\pi_{n,n}(\mathbb{1}_k) \simeq K_n^{MW}$ is the Milnor-Witt K-theory sheaf
- In particular, $End(\mathbb{1}_k)_{SH(k)} \simeq GW(k)$ is the Grothendieck-Witt groups of symmetric bilinear forms over k
- This leads to the theory of A¹-enumerative geometry

- The sphere spectrum $\mathbb{1}_S = \Sigma_{\mathbb{P}^1}^{\infty} S_+$ is the unit object for the monoidal structure on $\mathbf{SH}(S)$ defined by $\otimes = \wedge$
- Its stable homotopy groups/sheaves are hard to compute, and are related to the open problem of computing stable homotopy groups of spheres in topology
- Morel's theorem: k field, then $\pi_{n,n}(\mathbb{1}_k) \simeq K_n^{MW}$ is the Milnor-Witt K-theory sheaf
- In particular, $End(\mathbb{1}_k)_{SH(k)} \simeq GW(k)$ is the Grothendieck-Witt groups of symmetric bilinear forms over k
- This leads to the theory of A¹-enumerative geometry
- The 1-line is also computed (Röndigs-Spitzweck-Østvaer):

$$0 \to K_{2-n}^{M}/24 \to \pi_{n+1,n}(\mathbb{1}_k) \to \pi_{n+1,n}f_0(\mathbf{KQ})$$

 Originates from Grothendieck's theory for I-adic sheaves (SGA4), and worked out in the motivic setting by Ayoub and Cisinski-Déglise

- Originates from Grothendieck's theory for *I*-adic sheaves (SGA4), and worked out in the motivic setting by Ayoub and Cisinski-Déglise
- For any morphism of schemes f : X → Y, there is a pair of adjoint functors

$$f^* : SH(Y) \rightleftharpoons SH(X) : f_*$$

- Originates from Grothendieck's theory for I-adic sheaves (SGA4), and worked out in the motivic setting by Ayoub and Cisinski-Déglise
- For any morphism of schemes f : X → Y, there is a pair of adjoint functors

$$f^* : \mathsf{SH}(Y) \rightleftharpoons \mathsf{SH}(X) : f_*$$

For any separated morphism of finite type $f: X \to Y$, there is an additional pair of adjoint functors

$$f_!: \mathbf{SH}(X) \rightleftharpoons \mathbf{SH}(Y): f^!$$

- Originates from Grothendieck's theory for *I*-adic sheaves (SGA4), and worked out in the motivic setting by Ayoub and Cisinski-Déglise
- For any morphism of schemes f : X → Y, there is a pair of adjoint functors

$$f^* : \mathsf{SH}(Y) \rightleftharpoons \mathsf{SH}(X) : f_*$$

For any separated morphism of finite type $f: X \to Y$, there is an additional pair of adjoint functors

$$f_!: \mathbf{SH}(X) \rightleftharpoons \mathbf{SH}(Y): f^!$$

There is also a pair $(\otimes, \underline{Hom})$ of adjoint functors inducing a closed symmetric monoidal structure on **SH**

- Originates from Grothendieck's theory for *I*-adic sheaves (SGA4), and worked out in the motivic setting by Ayoub and Cisinski-Déglise
- For any morphism of schemes f : X → Y, there is a pair of adjoint functors

$$f^* : \mathsf{SH}(Y) \rightleftharpoons \mathsf{SH}(X) : f_*$$

For any separated morphism of finite type $f: X \to Y$, there is an additional pair of adjoint functors

$$f_!: \mathbf{SH}(X) \rightleftharpoons \mathbf{SH}(Y): f^!$$

There is also a pair $(\otimes, \underline{Hom})$ of adjoint functors inducing a closed symmetric monoidal structure on **SH**

 They satisfy formal properties axiomatizing important theorems such as duality, base change and localization.

• If $V \to X$ is a vector bundle, then the **Thom space** $Th_X(V) \in \mathbf{H}_{\bullet}(X)$ is the pointed motivic space V/V - 0

- If $V \to X$ is a vector bundle, then the **Thom space** $Th_X(V) \in \mathbf{H}_{\bullet}(X)$ is the pointed motivic space V/V 0
- This construction passes through \mathbb{P}^1 -stabilization and defines a \otimes -invertible object in $\mathbf{SH}(X)$, and the map $V \mapsto Th(V)$ extends to a map $K_0(X) \to \mathbf{SH}(X)$

- If $V \to X$ is a vector bundle, then the **Thom space** $Th_X(V) \in \mathbf{H}_{\bullet}(X)$ is the pointed motivic space V/V 0
- This construction passes through \mathbb{P}^1 -stabilization and defines a \otimes -invertible object in $\mathbf{SH}(X)$, and the map $V \mapsto Th(V)$ extends to a map $K_0(X) \to \mathbf{SH}(X)$
- Relative purity (Ayoub): $f: X \to Y$ smooth morphism with tangent bundle T_f , then $f^! \simeq Th(T_f) \otimes f^*$

- If $V \to X$ is a vector bundle, then the **Thom space** $Th_X(V) \in \mathbf{H}_{\bullet}(X)$ is the pointed motivic space V/V 0
- This construction passes through \mathbb{P}^1 -stabilization and defines a \otimes -invertible object in $\mathbf{SH}(X)$, and the map $V \mapsto Th(V)$ extends to a map $K_0(X) \to \mathbf{SH}(X)$
- Relative purity (Ayoub): $f: X \to Y$ smooth morphism with tangent bundle T_f , then $f^! \simeq Th(T_f) \otimes f^*$
- In the presence of an orientation, we recover the usual relative purity

Orientations

• An absolute motivic spectrum is the data of $\mathbb{E}_X \in \mathbf{SH}(X)$ for every scheme X, together with natural isomorphisms $f^*\mathbb{E}_X \simeq \mathbb{E}_Y$ for every morphism $f: Y \to X$

- An absolute motivic spectrum is the data of $\mathbb{E}_X \in \mathbf{SH}(X)$ for every scheme X, together with natural isomorphisms $f^*\mathbb{E}_X \simeq \mathbb{E}_Y$ for every morphism $f: Y \to X$
- Examples: 1, $H\mathbb{Z}$, KGL, MGL, KQ, $H_{MW}\mathbb{Z}$

- An absolute motivic spectrum is the data of $\mathbb{E}_X \in \mathbf{SH}(X)$ for every scheme X, together with natural isomorphisms $f^*\mathbb{E}_X \simeq \mathbb{E}_Y$ for every morphism $f: Y \to X$
- Examples: 1, $H\mathbb{Z}$, KGL, MGL, KQ, $H_{MW}\mathbb{Z}$
- An **orientation** of $\mathbb E$ is the data of isomorphisms $E_X \otimes Th_X(V) \simeq E_X(r)[2r]$ for all vector bundles $V \to X$ of rank r, which is compatible with pullbacks and products

- An absolute motivic spectrum is the data of $\mathbb{E}_X \in \mathbf{SH}(X)$ for every scheme X, together with natural isomorphisms $f^*\mathbb{E}_X \simeq \mathbb{E}_Y$ for every morphism $f: Y \to X$
- Examples: 1, $H\mathbb{Z}$, KGL, MGL, KQ, $H_{MW}\mathbb{Z}$
- An **orientation** of $\mathbb E$ is the data of isomorphisms $E_X \otimes Th_X(V) \simeq E_X(r)[2r]$ for all vector bundles $V \to X$ of rank r, which is compatible with pullbacks and products
- This is equivalent to the existence of Chern classes in the sense of oriented cohomology theories

- An absolute motivic spectrum is the data of $\mathbb{E}_X \in \mathbf{SH}(X)$ for every scheme X, together with natural isomorphisms $f^*\mathbb{E}_X \simeq \mathbb{E}_Y$ for every morphism $f: Y \to X$
- Examples: 1, $H\mathbb{Z}$, KGL, MGL, KQ, $H_{MW}\mathbb{Z}$
- An **orientation** of $\mathbb E$ is the data of isomorphisms $E_X \otimes Th_X(V) \simeq E_X(r)[2r]$ for all vector bundles $V \to X$ of rank r, which is compatible with pullbacks and products
- This is equivalent to the existence of Chern classes in the sense of oriented cohomology theories
- Examples: HZ, KGL, MGL, or the spectrum representing étale cohomology

- An absolute motivic spectrum is the data of $\mathbb{E}_X \in \mathbf{SH}(X)$ for every scheme X, together with natural isomorphisms $f^*\mathbb{E}_X \simeq \mathbb{E}_Y$ for every morphism $f: Y \to X$
- Examples: 1, $H\mathbb{Z}$, KGL, MGL, KQ, $H_{MW}\mathbb{Z}$
- An **orientation** of $\mathbb E$ is the data of isomorphisms $E_X \otimes Th_X(V) \simeq E_X(r)[2r]$ for all vector bundles $V \to X$ of rank r, which is compatible with pullbacks and products
- This is equivalent to the existence of Chern classes in the sense of oriented cohomology theories
- Examples: HZ, KGL, MGL, or the spectrum representing étale cohomology
- Non-examples: 1, **KQ**, $\mathbf{H}_{MW}\mathbb{Z}$

 The algebraic cobordism spectrum MGL is the universal oriented absolute spectrum

- The algebraic cobordism spectrum MGL is the universal oriented absolute spectrum
- With an orientation, we have an associated formal group law, as well as many extra properties such as projective bundle formula or double point formula (Levine-Pandharipande)

- The algebraic cobordism spectrum MGL is the universal oriented absolute spectrum
- With an orientation, we have an associated formal group law, as well as many extra properties such as projective bundle formula or double point formula (Levine-Pandharipande)
- A theory of fundamental classes aims at establishing a cohomological intersection theory

- The algebraic cobordism spectrum MGL is the universal oriented absolute spectrum
- With an orientation, we have an associated formal group law, as well as many extra properties such as projective bundle formula or double point formula (Levine-Pandharipande)
- A theory of fundamental classes aims at establishing a cohomological intersection theory
- For oriented spectra, Déglise defined fundamental classes using Chern classes

Bivariant groups

• For $f: X \to S$ be a separated morphism of finite type, $v \in K_0(X)$ and $\mathbb{E} \in \mathbf{SH}(S)$, define the \mathbb{E} -bivariant groups (or Borel-Moore \mathbb{E} -homology) as

$$\mathbb{E}_n(X/S,v) = [f_! Th(v)[n], \mathbb{E}]_{SH(S)}$$

Bivariant groups

• For $f: X \to S$ be a separated morphism of finite type, $v \in K_0(X)$ and $\mathbb{E} \in \mathbf{SH}(S)$, define the \mathbb{E} -bivariant groups (or Borel-Moore \mathbb{E} -homology) as

$$\mathbb{E}_n(X/S,v)=[f_!Th(v)[n],\mathbb{E}]_{SH(S)}$$

• If S is a field and $\mathbb{E} = \mathbf{H}\mathbb{Z}$, then $\mathbb{E}_i(X/S, v) = CH_r(X, i)$ are the higher Chow groups, where r is the virtual rank of v

Bivariant groups

• For $f: X \to S$ be a separated morphism of finite type, $v \in K_0(X)$ and $\mathbb{E} \in \mathbf{SH}(S)$, define the \mathbb{E} -bivariant groups (or Borel-Moore \mathbb{E} -homology) as

$$\mathbb{E}_n(X/S,v)=[f_!Th(v)[n],\mathbb{E}]_{SH(S)}$$

- If S is a field and $\mathbb{E} = \mathbf{H}\mathbb{Z}$, then $\mathbb{E}_i(X/S, v) = CH_r(X, i)$ are the higher Chow groups, where r is the virtual rank of v
- Its intersection theory is motivated by the intersection theory on Chow groups

Functoriality of bivariant groups

Base change:

$$Y \xrightarrow{q} X$$

$$g \downarrow \Delta \qquad \downarrow^f$$

$$T \xrightarrow{p} S$$

$$\Delta^* : \mathbb{E}_n(T/S, v) \to \mathbb{E}_n(Y/X, g^*v)$$

Functoriality of bivariant groups

Base change:

$$\begin{array}{ccc}
Y & \xrightarrow{q} X \\
g & & \downarrow f \\
T & \xrightarrow{p} S \\
\Delta^* : \mathbb{E}_n(T/S, v) \to \mathbb{E}_n(Y/X, g^*v)
\end{array}$$

• Proper push-forward: $f: X \rightarrow Y$ proper

$$f_*: \mathbb{E}_n(X/S, f^*v) \to \mathbb{E}_n(Y/S, v)$$

Functoriality of bivariant groups

Base change:

$$Y \xrightarrow{q} X$$

$$g \mid \Delta \quad \downarrow f$$

$$T \xrightarrow{p} S$$

$$\Delta^* : \mathbb{E}_n(T/S, v) \to \mathbb{E}_n(Y/X, g^*v)$$

• Proper push-forward: $f: X \rightarrow Y$ proper

$$f_*: \mathbb{E}_n(X/S, f^*v) \to \mathbb{E}_n(Y/S, v)$$

• Product: if \mathbb{E} has a ring structure, $X \xrightarrow{f} Y \xrightarrow{g} S$

$$\mathbb{E}_m(X/Y, w) \otimes \mathbb{E}_n(Y/S, v) \to \mathbb{E}_{m+n}(X/S, w + f^*v)$$

• We say that a morphism of schemes $f: X \to Y$ is local complete intersection (lci) if it factors as a regular closed immersion followed by a smooth morphism

- We say that a morphism of schemes $f: X \to Y$ is local complete intersection (lci) if it factors as a regular closed immersion followed by a smooth morphism
- To such a morphism is associated a virtual tangent bundle $\tau_f \in K_0(X)$, which agrees with the class of the cotangent complex of f

- We say that a morphism of schemes $f: X \to Y$ is local complete intersection (lci) if it factors as a regular closed immersion followed by a smooth morphism
- To such a morphism is associated a virtual tangent bundle $\tau_f \in K_0(X)$, which agrees with the class of the cotangent complex of f
- 3 equivalent formulations:
 - purity transformation $f^* \otimes \mathsf{Th}(\tau_f) \to f^!$
 - fundamental class $\eta_f \in \mathbb{E}_0(X/Y, \tau_f)$
 - Gysin morphisms $\mathbb{E}_n(Y/S, v) \to \mathbb{E}_n(X/S, \tau_f + f^*v)$

all compatible with compositions

- We say that a morphism of schemes $f: X \to Y$ is local complete intersection (lci) if it factors as a regular closed immersion followed by a smooth morphism
- To such a morphism is associated a virtual tangent bundle $\tau_f \in K_0(X)$, which agrees with the class of the cotangent complex of f
- 3 equivalent formulations:
 - purity transformation $f^* \otimes \mathsf{Th}(\tau_f) \to f^!$
 - fundamental class $\eta_f \in \mathbb{E}_0(X/Y, \tau_f)$
 - Gysin morphisms $\mathbb{E}_n(Y/S, v) \to \mathbb{E}_n(X/S, \tau_f + f^*v)$
 - all compatible with compositions
- Morally, these operations contain the information of "intersecting cycles over X with Y"

- We say that a morphism of schemes $f: X \to Y$ is local complete intersection (lci) if it factors as a regular closed immersion followed by a smooth morphism
- To such a morphism is associated a virtual tangent bundle $\tau_f \in K_0(X)$, which agrees with the class of the cotangent complex of f
- 3 equivalent formulations:
 - purity transformation $f^* \otimes \mathsf{Th}(\tau_f) \to f^!$
 - fundamental class $\eta_f \in \mathbb{E}_0(X/Y, \tau_f)$
 - Gysin morphisms $\mathbb{E}_n(Y/S, v) \to \mathbb{E}_n(X/S, \tau_f + f^*v)$
 - all compatible with compositions
- Morally, these operations contain the information of "intersecting cycles over X with Y"
- The construction uses the deformation to the normal cone

Euler class and excess intersection formula

The Euler class of a vector bundle V → X is the map
 e(V): 1_X → Th(V) induced by the zero section seen as a
 monomorphism of vector bundles

Euler class and excess intersection formula

- The Euler class of a vector bundle V → X is the map
 e(V): 1_X → Th(V) induced by the zero section seen as a
 monomorphism of vector bundles
- Excess intersection formula: for a Cartesian square

$$Y \stackrel{q}{\to} X$$

$$g \downarrow \qquad \qquad \qquad \downarrow f$$

$$T \stackrel{p}{\to} S$$

where p and q are lci, we have $\Delta^* \eta_p = \eta_q \cdot e(\xi)$, where ξ is the excess bundle

Euler class and excess intersection formula

- The Euler class of a vector bundle V → X is the map
 e(V): 1_X → Th(V) induced by the zero section seen as a
 monomorphism of vector bundles
- Excess intersection formula: for a Cartesian square

$$Y \stackrel{q}{\to} X$$

$$g \downarrow \Delta \downarrow f$$

$$T \stackrel{p}{\to} S$$

where p and q are lci, we have $\Delta^* \eta_p = \eta_q \cdot e(\xi)$, where ξ is the excess bundle

• Motivic Gauss-Bonnet formula (Levine, Déglise-J.-Khan) For $p: X \to S$ a smooth and proper morphism

$$\chi(X/S) = p_*e(T_p)$$

where $\chi(X/S)$ is the categorical Euler characteristic

The absolute purity property

• We say that an absolute spectrum $\mathbb E$ satisfies **absolute purity** if for any closed immersion $i:Z\to X$ between regular schemes, the purity transformation $\mathbb E_Z\otimes \operatorname{Th}(\tau_f)\to f^!\mathbb E_X$ is an isomorphism

The absolute purity property

- We say that an absolute spectrum $\mathbb E$ satisfies **absolute purity** if for any closed immersion $i:Z\to X$ between regular schemes, the purity transformation $\mathbb E_Z\otimes \operatorname{Th}(\tau_f)\to f^!\mathbb E_X$ is an isomorphism
- Example: the algebraic K-theory spectrum KGL satisfies absolute purity because K-theory satisfies localization property (also called dévissage, due to Quillen)

$$K(Z) \rightarrow K(X) \rightarrow K(X-Z)$$

The absolute purity property

- We say that an absolute spectrum $\mathbb E$ satisfies **absolute purity** if for any closed immersion $i:Z\to X$ between regular schemes, the purity transformation $\mathbb E_Z\otimes \operatorname{Th}(\tau_f)\to f^!\mathbb E_X$ is an isomorphism
- Example: the algebraic K-theory spectrum KGL satisfies absolute purity because K-theory satisfies localization property (also called dévissage, due to Quillen)

$$K(Z) \rightarrow K(X) \rightarrow K(X-Z)$$

• From this property Cisinski-Déglise deduce that the rational motivic Eilenberg-Mac Lane spectrum $\mathbf{H}\mathbb{Q}$ also satisfies absolute purity, mainly because $\mathbf{H}\mathbb{Q}$ is a direct summand of $\mathbf{KGL}_{\mathbb{Q}}$ by the Grothendieck-Riemann-Roch theorem

Theorem (Déglise-Fasel-J.-Khan):

The rational sphere spectrum $\mathbb{1}_{\mathbb{O}}$ satisfies absolute purity.

Theorem (Déglise-Fasel-J.-Khan):

The rational sphere spectrum $\mathbb{1}_{\mathbb{O}}$ satisfies absolute purity.

First reductions:

• The "switching factors" endomorphism of $\mathbb{P}^1 \wedge \mathbb{P}^1$ induces a decomposition of the sphere spectrum $\mathbb{1}_{\mathbb{Q}}$ into the direct sum of the plus-part $\mathbb{1}_{+,\mathbb{Q}}$ and the minus-part $\mathbb{1}_{-,\mathbb{Q}}$ (Morel)

Theorem (Déglise-Fasel-J.-Khan):

The rational sphere spectrum $\mathbb{1}_{\mathbb{Q}}$ satisfies absolute purity.

First reductions:

- The "switching factors" endomorphism of $\mathbb{P}^1 \wedge \mathbb{P}^1$ induces a decomposition of the sphere spectrum $\mathbb{1}_{\mathbb{Q}}$ into the direct sum of the plus-part $\mathbb{1}_{+,\mathbb{Q}}$ and the minus-part $\mathbb{1}_{-,\mathbb{Q}}$ (Morel)
- The +-part $\mathbb{1}_{+,\mathbb{O}}$ agrees with $\mathbf{H}\mathbb{Q}$ (Cisinski-Déglise)

Theorem (Déglise-Fasel-J.-Khan):

The rational sphere spectrum $\mathbb{1}_{\mathbb{Q}}$ satisfies absolute purity.

First reductions:

- The "switching factors" endomorphism of $\mathbb{P}^1 \wedge \mathbb{P}^1$ induces a decomposition of the sphere spectrum $\mathbb{1}_{\mathbb{Q}}$ into the direct sum of the plus-part $\mathbb{1}_{+,\mathbb{Q}}$ and the minus-part $\mathbb{1}_{-,\mathbb{Q}}$ (Morel)
- The +-part $\mathbb{1}_{+,\mathbb{Q}}$ agrees with $\mathbf{H}\mathbb{Q}$ (Cisinski-Déglise)
- Therefore it suffices to show that the minus part satisfies aboslute purity

The first proof

 By a devissage theorem of Schlichting and an argument similar to the case of KGL, one can show that the Hermitian K-theory spectrum KQ satisfies aboslute purity

The first proof

- By a devissage theorem of Schlichting and an argument similar to the case of KGL, one can show that the Hermitian K-theory spectrum KQ satisfies aboslute purity
- Similar to the Chern character, the **Borel character** (defined by Déglise-Fasel) induces a decomposition of $\mathbf{KQ}_{\mathbb{Q}}$, where $\mathbb{1}_{-,\mathbb{Q}}$ can be identified as a direct summand

The first proof

- By a devissage theorem of Schlichting and an argument similar to the case of KGL, one can show that the Hermitian K-theory spectrum KQ satisfies aboslute purity
- Similar to the Chern character, the **Borel character** (defined by Déglise-Fasel) induces a decomposition of $\mathbf{KQ}_{\mathbb{Q}}$, where $\mathbb{1}_{-,\mathbb{Q}}$ can be identified as a direct summand
- This proves the absolute purity of $\mathbb{1}_{\mathbb{Q}}$ when 2 is invertible on the base scheme, since **KQ** is only well-defined in this case

ullet For every scheme X, denote by $u_X:X_{\mathbb Q}=X imes_{\mathbb Z}{\mathbb Q} o X$

- ullet For every scheme X, denote by $u_X: X_{\mathbb Q} = X imes_{\mathbb Z} \mathbb Q o X$
- Key lemma: the functor $\nu_X^*: \mathbf{SH}(X_{\mathbb{Q}})_{-,\mathbb{Q}} \to \mathbf{SH}(X)_{-,\mathbb{Q}}$ is an equivalence of categories

- For every scheme X, denote by $\nu_X: X_{\mathbb{Q}} = X \times_{\mathbb{Z}} \mathbb{Q} \to X$
- Key lemma: the functor $\nu_X^*: \mathbf{SH}(X_{\mathbb{Q}})_{-,\mathbb{Q}} \to \mathbf{SH}(X)_{-,\mathbb{Q}}$ is an equivalence of categories
- We may assume that X is the spectrum of a field, because the family of functors i_x^1 for i_x : Spec $(k(x)) \to X$ for all points x of X is jointly conservative, i.e. reflects isomorphisms

- ullet For every scheme X, denote by $u_X: X_{\mathbb Q} = X imes_{\mathbb Z} \mathbb Q o X$
- Key lemma: the functor $\nu_X^*: \mathbf{SH}(X_{\mathbb Q})_{-,\mathbb Q} \to \mathbf{SH}(X)_{-,\mathbb Q}$ is an equivalence of categories
- We may assume that X is the spectrum of a field, because the family of functors i_x^1 for i_x : Spec $(k(x)) \to X$ for all points x of X is jointly conservative, i.e. reflects isomorphisms
- For X a field of characteristic zero, ν_X is automatically an isomorphism; for X a field of positive characteristic,
 SH(X)_{-,0} vanishes by a theorem of Morel/Bachmann

- For every scheme X, denote by $\nu_X: X_{\mathbb{Q}} = X \times_{\mathbb{Z}} \mathbb{Q} \to X$
- Key lemma: the functor $\nu_X^*: \mathbf{SH}(X_{\mathbb{Q}})_{-,\mathbb{Q}} \to \mathbf{SH}(X)_{-,\mathbb{Q}}$ is an equivalence of categories
- We may assume that X is the spectrum of a field, because the family of functors $i_x^!$ for i_x : Spec $(k(x)) \to X$ for all points x of X is jointly conservative, i.e. reflects isomorphisms
- For X a field of characteristic zero, ν_X is automatically an isomorphism; for X a field of positive characteristic,
 SH(X)_{-,0} vanishes by a theorem of Morel/Bachmann
- The key lemma then reduces the absolute purity of 1_{-,Q} in mixed characteristic to the case of Q-schemes, which can be proved using Popescu's theorem: a closed immersion of affine regular schemes over a perfect field is a limit of closed immersions of smooth schemes

- Our method can be used to deduce the following new results in mixed characteristic:
 - The six functors preserve constructible objects in the rational stable motivic homotopy category $\mathbf{SH}(\cdot,\mathbb{Q})$
 - ullet The Grothendieck-Verdier duality holds for $\mathbf{SH}(\cdot,\mathbb{Q})$
 - The homotopy *t*-structure on $\mathbf{SH}(\cdot,\mathbb{Q})$ behaves as expected

- Our method can be used to deduce the following new results in mixed characteristic:
 - The six functors preserve constructible objects in the rational stable motivic homotopy category $\mathbf{SH}(\cdot,\mathbb{Q})$
 - ullet The Grothendieck-Verdier duality holds for $\mathbf{SH}(\cdot,\mathbb{Q})$
 - ullet The homotopy t-structure on $\mathbf{SH}(\cdot,\mathbb{Q})$ behaves as expected
- The rational stable motivic homotopy category has a (unique) SL-orientation, that is, the Thom space of a vector bundle only depends on its rank and its determinant

- Our method can be used to deduce the following new results in mixed characteristic:
 - The six functors preserve constructible objects in the rational stable motivic homotopy category $\mathbf{SH}(\cdot,\mathbb{Q})$
 - ullet The Grothendieck-Verdier duality holds for $\mathbf{SH}(\cdot,\mathbb{Q})$
 - The homotopy *t*-structure on $\mathbf{SH}(\cdot,\mathbb{Q})$ behaves as expected
- The rational stable motivic homotopy category has a (unique) SL-orientation, that is, the Thom space of a vector bundle only depends on its rank and its determinant
- The rational bivariant groups $H_0^{\mathbb{A}^1}(X/S,v)_{\mathbb{Q}}$ agree with the rational Chow-Witt groups, and can be computed by the Gersten complex associated to Milnor-Witt K-theory

- Our method can be used to deduce the following new results in mixed characteristic:
 - The six functors preserve constructible objects in the rational stable motivic homotopy category $\mathbf{SH}(\cdot,\mathbb{Q})$
 - ullet The Grothendieck-Verdier duality holds for $\mathbf{SH}(\cdot,\mathbb{Q})$
 - ullet The homotopy t-structure on $\mathbf{SH}(\cdot,\mathbb{Q})$ behaves as expected
- The rational stable motivic homotopy category has a (unique) SL-orientation, that is, the Thom space of a vector bundle only depends on its rank and its determinant
- The rational bivariant groups $H_0^{\mathbb{A}^1}(X/S,v)_{\mathbb{Q}}$ agree with the rational Chow-Witt groups, and can be computed by the Gersten complex associated to Milnor-Witt K-theory
- Related work: absolute purity of the sphere spectrum over a Dedekind domain (Frankland-Nguyen-Spitzweck, work in progress)

Grothendieck's absolute purity conjecture Motivic homotopy theory The fundamental class Absolute purity in motivic homotopy theory

Thank you!