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1. Introduction

1.1. Bayesian Inversion Rn

Consider the problem of finding u ∈ Rn from y ∈ RJ where u and y are related by the equation

y = G(u).

We refer to y as observed data and to u as the unknown. This problem may be difficult for a number of
reasons. We highlight two of these, both particularly relevant to our future developments.

1. The first difficulty, which may be illustrated in the case where n = J , concerns the fact that often the
equation is perturbed by noise and so we should really consider the equation

y = G(u) + η, (1.1)

where η ∈ RJ represents the observational noise which enters the observed data. It may then be the
case that, because of the noise, y is not in the image of G so that simply inverting G on the data y
will not be possible. Furthermore, the specific instance of η which enters the data may not be known
to us; typically, at best, only the statistical properties of a typical noise η are known. Thus we cannot
subtract η from the observed data y to obtain something in the image of G.

2. The second difficulty is manifest in the case where n > J so that the system is underdetermined: the
number of equations is smaller than the number of unknowns. How do we attach a sensible meaning
to the concept of solution in this case where, generically, there will be many solutions?

Thinking probabilistically enables us to overcome both of these difficulties. We will treat u, y and η as
random variables and define the “solution” of the inverse problem to be the probability distribution of u
given y, denoted u|y. This allows us to model the noise via its statistical properties, even if we do not know
the exact instance of the noise entering the given data. And it also allows us to specify a priori the form of
solutions that we believe to be more likely, thereby enabling us to attach weights to multiple solutions which
exaplain the data. This is the Bayesian approach to inverse problems.

To this end, we define a random variable (u, y) ∈ Rn × RJ as follows. We let u ∈ Rn be a random
variable with (Lebesgue) density ρ0(u). Assume that y|u (y given u) is defined via the formula (1.1) where
G : Rn → RJ is measurable, and η is independent of u (we sometimes write this as η ⊥ u) and has Lebesgue
density ρ(η). Then (u, y) ∈ Rn × RJ is a random variable with Lebesgue density ρ(y −G(u))ρ0(u).
The following theorem allows us to calculate the distribution of the random variable u|y:
Theorem 1.1. Bayes’ Theorem. Assume that

Z :=

∫

Rn

ρ
(

y −G(u)
)

ρ0(u)du > 0.

Then u|y is a random variable with Lebesgue density ρy(u) given by

ρy(u) =
1

Z
ρ
(

y −G(u)
)

ρ0(u).

Remarks 1.2. The following remarks establish the nomenclature of Bayesian statistics, and also frame the
previous theorem in a manner which generalizes to the infinite dimensional setting.

• ρ0(u) is the prior density.
• ρ

(

y −G(u)
)

is the likelihood.
• ρy(u) is the posterior density.
• It will be useful in what follows to define

Φ(u; y) = − log ρ
(

y −G(u)
)

.

We call Φ the potential. This is the negative log likelihood.

2



• Let µy be measure on Rn with density ρy and µ0 measure on Rn with density ρ0. Then the conclusion
of Theorem 1.1 may be written as:

dµy

dµ0
(u) =

1

Z
exp

(

− Φ(u; y)
)

,

Z =

∫

Rn

exp
(

− Φ(u; y)
)

µ0(du).

(1.2)

Thus the posterior is absolutely continuous with respect to the prior, and the Radon-Nikodym derivative
is proportional to the likelihood. The expression for the Radon-Nikodym derivative is to be interpreted
as the statement that, for all measurable f : Rn → R,

Eµy

f(u) = Eµ0

(dµy

dµ0
(u)f(u)

)

.

Alternatively we may write this in integral form as
∫

Rn

f(u)µy(du) =

∫

Rn

( 1

Z
exp

(

−Φ(u; y)
)

f(u)
)

µ0(du).

1.2. Inverse Heat Equation

This inverse problem illustrates the first difficulty, labelled 1. in the previous subsection, which motivates
the Bayesian approach to inverse problems. Let D ⊂ Rd be a bounded open set, with smooth boundary ∂D.
Then define the Hilbert space H and operator A as follows:

H =
(

L2(D), 〈·, ·〉, ‖ · ‖
)

;

A = −△, D(A) = H2(D) ∩H1
0 (D).

Lemma 1.3. The eigenvalue problem
Aϕj = αjϕj ,

has a countably infinite set of solutions, indexed by j ∈ Z+, and satisfying the L2−orthonormality condition

〈ϕj , ϕk〉 =
{

1, j = k
0, j 6= k.

Furthermore, the eigenvalues are positive and, if ordered to be increasing, satisfy αj ≍ j
2
d .

Consider the heat conduction equation on D, with Dirichlet boundary conditions, writing it as an ordinary
differential equation in H :

dv

dt
+Av = 0, v(0) = u. (1.3)

We have the following:

Lemma 1.4. For every u ∈ H there is a unique solution u of equation (1.3) in the space u ∈ C([0,∞);H).

Note that, if the initial condition is expanded in the eigenbasis as

u =

∞
∑

j=1

ujϕj , uj = 〈u, ϕj〉

then the solution of (1.3) has the form

v(t) =

∞
∑

j=1

uje
−αjtϕj .
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We will be interested in the inverse problem of finding u from y where

y = v(1) + η

= G(u) + η.

Here η ∈ H is noise and G(u) := v(1) = e−Au. Formally this looks like an infinite dimensional linear version
of the inverse problem (1.1), extended from finite dimensions to a Hilbert space setting. However the operator
eA : H → H is not continuous and so we need regularization to make sense of the problem. Thus, if the
noise η ∈ H , it will not be possible to simply apply G−1 to y, difficulty 1. from the preceding subsection.
We will apply a Bayesian approach and hence will need to put probability measures on the Hilbert space H ;
in particular we will want to study P(u), P(y|u) and P(u|y), all probability measures on H.

1.3. Elliptic Inverse Problem

One motivation for adopting the Bayesian approach to inverse problems is that prior modelling is a trans-
parent approach to dealing with under-determined inverse problems; it forms a rational approach to dealing
with the second difficulty, labelled 2. in the previous subsection. The elliptic inverse problem we now describe
is a concrete example of an under-determined inverse problem.

As in Section 1.2, D ⊂ Rd denotes a bounded open set, with smooth boundary ∂D. We define the Hilbert
spaces (Gelfand triple) V ⊂ H ⊂ V ∗ as follows:

H =
(

L2(D), 〈·, ·〉, ‖ · ‖
)

;

V = H1
0 (D) with norm ‖ · ‖V = ‖∇ · ‖;

V ∗ dual space;

‖ · ‖ ≤ Cp‖ · ‖V (Poincaré inequality).

Let κ ∈ X := L∞(D) satisfy
ess inf

x∈D
κ(x) = κmin > 0. (1.4)

Now consider the equation

−∇ · (κ∇p) = f, x ∈ D, (1.5a)

p = 0, x ∈ ∂D. (1.5b)

Lemma 1.5. Assume that f ∈ V ∗ and that κ satisfies (1.4). Then (1.5) has a unique weak solution p ∈ V .
This solution satisfies

‖p‖V ≤ ‖f‖V ∗/κmin

and, if f ∈ H,
‖p‖V ≤ Cp‖f‖/κmin.

We will be interested in the inverse problem of finding κ from y where

yj = lj(p) + ηj , j = 1, · · · , J. (1.6)

Here lj ∈ V ∗ is a continuous linear functional on V and ηj is a noise.
Notice that the unknown, κ ∈ L∞(D), is a function (infinite dimensional) whereas the data from which

we wish to determine κ is finite dimensional: y ∈ RJ . The problem is severely under-determined, illustrating
point 2. from the previous subsection. It is natural to treat such problems in the Bayesian framework, using
prior modeling to fill-in missing information. We will take the unknown function to be u where either u = κ
or u = log κ. In either case, we will define Gj(u) = lj(p) and then (1.6) may be written as

y = G(u) + η (1.7)
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where y, η ∈ RJ and G : X ′ ⊆ X → RJ . The set X ′ is introduced because G may not be defined on the
whole of X . In particular, the positivity constraint (1.4) is only satisfied on

X ′ :=
{

u ∈ X : ess inf
x∈D

u(x) > 0
}

⊂ X

in the case where κ = u. On the other hand if κ = exp(u) then the positivity constraint (1.4) is satisfied for
any u ∈ X.

Notice that we again need probability measures on function space, here the Banach spaceX = L∞(D). Fur-
thermore, these probability measures should charge only positive functions, in view of the desired inequality
(1.4).

2. Prior Modeling

2.1. General Setting

We let {φj}∞j=0 denote an infinite sequence in the Banach space
(

X, ‖ · ‖
)

of R−valued functions defined on

D ⊂ Rd, a bounded, open set with smooth boundary. (The extension to Rn−valued functions is straightfor-
ward, but omitted for brevity). We normalize these functions so that ‖φj‖ = 1 for j = 1, · · · ,∞; we do not
assume that φ0 is normalized. Define the function u by

u = φ0 +

∞
∑

j=1

ujφj . (2.1)

By randomizing u := {uj}∞j=1 we create random functions. To this end we define the deterministic sequence

γ = {γj}∞j=1 and the i.i.d. random sequence ξ = {ξj}∞j=1, and set uj = γjξj . We let
(

Ω,F ,P
)

denote

the probability space for the i.i.d. sequence ξ ∈ Ω = R∞, with E denoting expectation. In the next three
subsections we demonstrate how this general setting may be adapted to create a variety of useful prior
measures on function space. On occasion we will find it useful to consider the truncated random functions

uN = φ0 +

N
∑

j=1

ujφj , uj = γjξj . (2.2)

2.2. Uniform Priors

Choose X = L∞(D). Assume uj = γjξj with ξ = {ξj}∞j=1 an i.i.d. sequence with ξ1 ∼ U [−1, 1] and

γ = {γj}∞j=1 ∈ ℓ1. Assume further that there are finite, positive constants φmin, φmax, δ > 0 such that

ess inf
x∈D

φ0(x) ≥ φmin;

ess sup
x∈D

φ0(x) ≤ φmax;

‖γ‖ℓ1 =
δ

1 + δ
φmin.

Theorem 2.1. The following holds P−almost surely: the sequence of functions {uN}∞N=1 given by (2.2) is
Cauch in X and the limiting function u given by (2.1) satisfies

1

1 + δ
φmin ≤ u(x) ≤ φmax +

δ

1 + δ
φmin a.e. x ∈ D.
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Proof. Let N > M. Then, P−a.s.,

‖uN − uM‖∞ =
∥

∥

∥

N
∑

j=M+1

ujφj

∥

∥

∥

∞

≤
∥

∥

∥

N
∑

j=M+1

γjξjφj

∥

∥

∥

∞

≤
∞
∑

j=M+1

|γj ||ξj |‖φj‖∞

≤
∞
∑

j=M+1

|γj |.

The right hand side tends to zero asM → ∞ by the dominated convergence theorem and hence the sequence
is Cauchy in X .

We have P−a.s. and for a.e. x ∈ D,

u(x) ≥ φ0(x)−
∞
∑

j=1

|uj|‖φj‖∞

≥ ess inf
x∈D

φ0(x) −
∞
∑

j=1

|γj |

≥ φmin − ‖γ‖ℓ1

=
1

1 + δ
φmin.

Proof of the upper bound is similar. ✷

Example Consider the random function (2.1) as specified in this section. By Theorem 2.1 we have that,
P−a.s.,

u(x) ≥ 1

1 + δ
φmin > 0, a.e. x ∈ D. (2.3)

Set κ = u in the elliptic equation (1.4), so that the coefficient κ in the equation and the solution p are

random variables on
(

Ω,F ,P
)

. Since (2.3) holds P−a.s., Lemma 1.5 shows that, again P−a.s.,

‖p‖V ≤ (1 + δ)‖f‖V ∗/φmin.

Since the r.h.s. is non-random we have that for all r ∈ Z+ the random variable p ∈ Lr
P
(Ω;V ):

E‖p‖rV <∞.

In fact E exp(α‖p‖rV ) <∞ for all r ∈ Z+ and α ∈ (0,∞). ✷

2.3. Besov Priors

Now we set φ0 = 0 and let {φj}∞j=1 be an orthonormal basis for X . Let

X := L̇2(Td) =
{

u
∣

∣

∣

∫

Td

|u(x)|2dx <∞,

∫

Td

u(x)dx = 0
}

for d ≤ 3 with inner-product and norm denoted by 〈·, ·〉 and ‖ · ‖ respectively. Then, for any u ∈ X , we have

u(x) =

∞
∑

j=1

ujφj , uj = 〈u, φj〉. (2.4)

6



Given a function written in this form, we define the Banach space Xt,q by

‖u‖Xt,q =
(

∞
∑

j=1

j(
tq
d + q

2−1)|uj|q
)

1
q

with q ≥ 1 and s > 0. If {φj} form the Fourier basis and q = 2 then Xt,2 is the Sobolev space Ḣt of
mean-zero periodic functions with t (possibly non-integer) square-integrable derivatives. On the other hand,
if the {φj} form certain wavelet bases, then Xt,q is the Besov space Bt

qq .
Now we set φ0 = 0 and let {φj}∞j=1 be an orthonormal basis for X and consider (2.1). As described above,

we assume that uj = γjξj where ξ = {ξj}∞j=1 is i.i.d. sequence and γ = {γj}∞j=1 is deterministic. Here we

assume that ξ1 is drawn from the centred measure on R with density proportional to exp
(

− 1
2 |x|q

)

for some
1 ≤ q <∞. Then for s > 0, δ > 0 we define

γj = j−( s
d+

1
2−

1
q )
(1

δ

)
1
q .

Then for functions of the form (2.1) we have

Theorem 2.2. The following are equivalent

i) ‖u‖Xt,q <∞ P−a.s.;
ii) E

(

exp(α‖u‖qXt,q )
)

<∞ for any α ∈ [0, δ2 );

iii) t < s− d
q .

Proof. We first note that, for the random function in question,

‖u‖qXt,q =

∞
∑

j=1

j(
tq
d + q

2−1)|uj |q =

∞
∑

j=1

δ−1j−
(s−t)q

d |ξj |q.

Now, for α < 1
2 ,

E exp
(

α|ξ1|q
)

=

∫

R

exp
(

−
(1

2
− α

)

|x|q
)

dx
/

∫

R

exp
(

− 1

2
|x|q

)

dx

= (1 − 2α)−
1
q .

iii) ⇒ ii).

E

(

exp(α‖u‖qXt,q )
)

= E
(

exp(α

∞
∑

j=1

δ−1j−
(s−t)q

d |ξj |q)
)

=

∞
∏

j=1

(

1− 2α

δ
j−

(s−t)q
d

)− 1
q

.

Since α < δ
2 the product converges if (s−t)q

d > 1 i.e. t < s− d
q as required.

ii) ⇒ i).

This is automatic since, for any random variable u, and any positive function f , Ef(u) <∞ ⇒ f(u) <∞
a.s.

i) ⇒ iii).

To show that (i) implies (iii) note that (i) implies that, almost surely,

∞
∑

j=1

j(t−s)q/d|ξj |q <∞.

7



Define ζj = j(t−s)q/d|ξj |q. Using the fact that the ζj are non-negative and independent we deduce from
Lemma 2.3 that

∞
∑

j=1

E
(

ζj ∧ 1
)

=

∞
∑

j=1

E

(

j(t−s)q/d|ξj |q ∧ 1
)

<∞.

This implies that t < s. We note that then

Eζj = E

(

j−(s−t)q/d|ξj |q
)

= E

(

j−(s−t)q/d|ξj |qI{|ξj |≤j(s−t)/d}

)

+ E

(

j−(s−t)q/d|ξj |qI{|ξj |>j(s−t)/d}

)

≤ E

(

(

ζj ∧ 1
)

I{|ξj |≤j(s−t)/d}

)

+ I

≤ E

(

ζj ∧ 1
)

+ I,

where

I ∝ j−(s−t)q/d

∫ ∞

j(s−t)/d

xqe−xq/2dx.

Noting that, since q ≥ 1, the function x 7→ xqe−xq/2 is bounded, up to a constant of proportionality, by the
function x 7→ e−αx for any α < 1

2 , we see that there is a positive constant K such that

I ≤ Kj−(s−t)q/d

∫ ∞

j(s−t)/d

e−αxdx

=
1

α
Kj−(s−t)q/d exp

(

− αj(s−t)/d
)

:= ιj .

Thus we have shown that

∞
∑

j=1

E

(

j−(s−t)q/d|ξj |q
)

≤
∞
∑

j=1

E

(

ζj ∧ 1
)

+
∞
∑

j=1

ιj <∞.

Since the ξj are i.i.d. this implies that
∞
∑

j=1

j(t−s)q/d <∞,

from which it follows that (s− t)q/d > 1 and (iii) follows. ✷

Lemma 2.3. Let {Ij}∞j=1 be an independent sequence of R+−valued random variable. Then

∞
∑

j=1

Ij <∞ a.s. ⇔
∞
∑

j=1

E(Ij ∧ 1) <∞.

2.4. Gaussian Priors

Let X be a Hilbert space H with inner-product and norm denoted by 〈·, ·〉 and ‖ · ‖ respectively. Assume
that {φj}∞j=1 is an orthonormal basis for H. Define

Ht =
{

u
∣

∣

∞
∑

j=1

j
2t
d |uj|2 <∞, uj = 〈u, φj〉

}

. (2.5)
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As in the Section 2.3, we consider the setting in which φ0 = 0 so that function u is given by (2.4). We
choose ξ1 ∼ N (0, 1) and γj ≍ j−

s
d . We are interested in convergence of the following series, found from (2.2)

with φ0 = 0:

uN =

N
∑

j=1

ujφj , uj = γjξj . (2.6)

To understand this sequence of functions, indexed by N , it is useful to introduce the following function space:

L2
P
(Ω;Ht) :=

{

v : Ω×D → R

∣

∣

∣
E‖v‖2Ht <∞

}

.

This is in fact a Hilbert space.

Theorem 2.4. The sequence of functions {uN}∞N=1 is Cauchy in the Hilbert space L2
P
(Ω;Ht), t < s − d

2 .
Thus the infinite series

u(x) =
∞
∑

j=1

ujφj(x), uj = γjξj (2.7)

exists as an L2−limit and takes values in Ht for t < s− d
2 .

Proof. For N > M ,

E‖uN − uM‖2Ht = E

N
∑

j=M+1

j
2t
d |uj|2

≍
N
∑

j=M+1

j
2(t−s)

d ≤
∞
∑

j=M+1

j
2(t−s)

d .

The sum on the right hand side tends to 0 as M → ∞, provided 2(t−s)
d < −1, by the dominated convergence

theorem. This completes the proof. ✷

Remarks 2.5. We make the following remarks concerning the Gaussian random functions constructed in
the preceding theorem.

• The preceding theorem shows that the sum (2.6) has an L2
P
limit in Ht when t < s − d/2. The same

methods used to prove Theorem 2.2 show that the sum also has an almost sure limit in Ht when
t < s− d/2. Indeed, for t < s− d

2 ,

E‖u‖2Ht =

∞
∑

j=1

j
2t
d E(γ2j ξ

2
j )

=

∞
∑

j=1

j
2t
d γ2j

≍
∞
∑

j=1

j
2(t−s)

d <∞.

Thus u ∈ H⊔ a.s., t < s− d
2 .

• From the preceding theorem we see that, provided s > d
2 , the random function in (2.7) generates a mean

zero Gaussian measure on H. The expression (2.7) is known as the Karhunen-Loéve expansion, and
the eigenfunctions {φj}∞j=1 as the Karhunen-Loéve basis.

9



• The following formal calculation gives an expression for the covariance operator:

C = Eu(x) ⊗ u(x)

= E

(

∞
∑

j=1

∞
∑

k=1

γjγkξjξkφj(x) ⊗ φk(x)
)

=
(

∞
∑

j=1

∞
∑

k=1

γjγkE(ξjξk)φj(x)⊗ φk(x)
)

=
(

∞
∑

j=1

∞
∑

k=1

γjγkδjkφj(x) ⊗ φk(x)
)

=
∞
∑

j=1

γ2jφj(x) ⊗ φj(x).

From this expression for the covariance, we may find eigenpairs explicitly:

Cφk =
(

∞
∑

j=1

γ2jφj(x) ⊗ φj(x)
)

φk

=
∞
∑

j=1

γ2j 〈φj , φk〉φj =
∞
∑

j=1

γ2j δjkφk = γ2kφk.

• The Gaussian measure is denoted N (0, C) and the eigenfunctions of C, {φj}∞j=1, are the Karhunen-

Loève basis for measure µ0. The γ
2
j are the eigenvalues associated with this eigenbasis, and thus γj is

the standard deviation of the Gaussian measure in the direction φj .

Example In the case where H = L̇2(Td) we are in the setting of Section 2.3. Furthermore, we now assume
that the {φj}∞j=1 constitute the Fourier basis. It then follows that Ht = Ḣt(Td), the Sobolev space of periodic

functions on [0, 1)d with mean zero and t (possibly negative or fractional) square integrable derivatives,
denoted by Ḣt. Thus u ∈ Ḣt a.s., t < s− d

2 .

A commonly arising choice of prior covariance operator is C = (A)−α with A = −△, D(A) = Ḣ2(Td).
It then follows, analogously to the result of Lemma 1.3 in the case of Dirichlet boundary conditions, that
γ2j ≍ j−

2α
d . Thus s = α and u ∈ Ḣt, t < α − d

2 . As a result, for any t < α − d
2 , it is possible to view the

resulting Gaussian measure as defined on the Hilbert space Ḣt. In fact, by use of the Kolmogorov continuity
theorem, the Gaussian measures may also be defined on Hölder spaces C0,t, for t < α − d

2 , if α− d
2 ∈ (0, 1)

and Cr,ǫ with r = ⌊α− d
2⌋, ǫ = α− d

2 − r ∈ (0, 1). ✷

The previous example illustrates the fact that, although we have constructed Gaussian measures in a
Hilbert space setting, they may also be defined on Banach spaces, such as the space of Hölder continuous
functions. The following theorem then applies.

Theorem 2.6. Fernique Theorem Let µ0 be a Gaussian measure on the separable Banach space X. Then
there exists βc ∈ (0,∞) such that, for all β ∈ (0, βc)

Eµ0 exp
(

β‖u‖2X
)

<∞.

Remark 2.7. Theorem 2.2 establishes this result in the case covered by the preceding example, for X =
Xt,s = Ḣt, if µ0 = N (0, A−α) and t < α− d

2 .

Example Consider the random function (2.1) in the case where H = L̇2(Td) and µ0 = N (0, A−α), α > d
2

as in the preceding example. Then we know that u ∈ C0,t, t < (α − d
2 ) ∧ 1. Set κ = eu in the elliptic PDE

10



(1.5) so that the coefficient κ and the solution p are random variables on the probability space
(

Ω,F ,P
)

.

Then κmin given in (1.3) satisfies
κmin ≥ exp

(

− ‖u‖∞
)

.

By Lemma 1.5 we obtain
‖p‖V ≤ exp

(

‖u‖∞
)

‖f‖V ∗ .

Since C0,t ⊂ L∞(Td), t ∈ (0, 1), we deduce that,

‖u‖L∞ ≤ K1‖u‖Ct.

Furthermore, for any ǫ > 0, there is constant K2 = K2(ǫ) such that exp(K1rx) ≤ K2 exp(ǫx
2) for all x ≥ 0.

Thus

‖p‖rV ≤ exp
(

K1r‖u‖Ct

)

‖f‖rV ∗

≤ K2 exp
(

ǫ‖u‖2Ct

)

‖f‖rV ∗ .

Hence, by Theorem 2.6, we deduce that

E‖p‖rV <∞, i.e. p ∈ Lr
P
(Ω;V ) ∀ r ∈ Z+.

Thus, when the coefficient of the elliptic PDE is log-normal, that is κ is the exponential of a Gaussian
function, moments of all orders exist for the random variable p. However, unlike the case of the uniform
prior, we cannot obtain exponential moments on E exp(α‖p‖rV ) for any (r, α) ∈ Z+ × (0,∞). This is because
the coefficient, whilst positive a.s., does not satisfy a uniform positive lower bound across the probability
space. ✷

2.5. Summary

In the preceding three subsections we have shown how to create random functions by randomizing the
coefficients of a series of functions. We have also studied the regularity properties of the resulting functions.
For the uniform prior we have shown that the random functions all live in a subset of X = L∞ characterized
by the upper and lower bounds given in Theorem 2.1; denote this subset by X ′. For the Besov priors we have
shown in Theorem 2.2 that the random functions live in the Banach spaces Xt,q for all t < s− d/q; denote
any one of these Banach spaces by X ′. And finally for the Gaussian priors we have shown in Theorem 2.4
that the random function exists as an L2−limit in any of the Hilbert spaces Ht for t < s−d/2. Furthermore,
we have indicated that, by use of the Kolmogorov test, we can also show that the Gaussian random functions
lie in certain Hölder spaces; denote any of the Hlbert or Banach spaces where the Gaussian random function
lies by X ′. Thus, in all of these examples, we have created a probability measure µ0 which is the pushforward
of the measure P on the i.i.d. sequence ξ under the map which takes the sequence into the random function.
This measure lives on X ′, and we will often write µ0(X

′) = 1 to denote this fact. This is shorthand for saying
that functions drawn from µ are in X ′ almost surely.

3. Posterior Distribution

3.1. Conditioned Random Variables

Key to the development of Bayes’s Theorem, and the posterior distribution, is the notion of conditional
random variables. In this section we develop an important theorem concerning conditioning.

Let (X,A) and (Y,B) denote a pair of measurable spaces and let ν and π be probability measures on
X × Y . We assume that ν ≪ π. Thus there exists π−measurable φ : X × Y → R with φ ∈ L1

π and

dν

dπ
(x, y) = φ(x, y). (3.1)

11



That is, for (x, y) ∈ X × Y ,
Eνf(x, y) = Eπ

(

φ(x, y)f(x, y)
)

,

or, equivalently,
∫

X×Y

f(x, y)ν(dx, dy) =

∫

X×Y

φ(x, y)f(x, y)π(dx, dy).

Theorem 3.1. Assume that the conditional random variable x|y exists under π with probability distribution
denoted πy(dx). Then the conditional random variable x|y under ν exists, with probability distribution denoted
by νy(dx). Furthermore, νy ≪ πy and

dνy

dπy
(x) =

{ 1
c(y)φ(x, y), if c(y) > 0

1, otherwise

with c(y) =
∫

X φ(x, y)dπy(x).

Example Let X = C
(

[0, 1];R
)

, Y = R. Let π denote the measure on X×Y induced by the random variable
(

w(·), w(1)
)

, where w is a draw from standard unit Wiener measure on R, starting from w(0) = z.
Let πy denote measure on X found by conditioning Brownian motion to satisfy w(1) = y, thus πy is a

Brownian bridge measure with w(0) = z, w(1) = y.
Assume that ν ≪ π with

dν

dπ
(x, y) = exp

(

− Φ(x, y)
)

.

(Such a formula arises from the Girsanov theorem, for example, in the theory of stochastic differential
equations – SDEs.) Assume further that

sup
x∈S

Φ(x, y) = Φ+(η), inf
x∈S

Φ(x, y) = Φ−(η)

and Φ−,Φ+ ∈ (0,∞) for every y ∈ R. Then

c(y) =

∫

R

exp
(

− Φ(x, y)
)

dνy(x) > exp
(

− Φ+(y)
)

> 0.

Thus νy(dx) exists and
dνy

dπy
(x) =

1

c(y)
exp

(

− Φ(x, y)
)

. ✷

The following lemma is useful for checking measurability.

Lemma 3.2. Let (Z,C) be a measurable space and assume that G ∈ C(Z;R) and that π(Z) = 1 for some
probability measure π on Z. Then G is a π−measurable function.

3.2. Bayes’ Theorem for Inverse Problems

Let X , Y be separable Banach spaces, and G : X → Y a measurable mapping. We wish to solve the inverse
problem of finding u from y where

y = G(u) + η (3.2)

and η ∈ Y denotes noise. We employ a Bayesian approach to this problem in which we let (u, y) ∈ X × Y
be a random variable and compute u|y. We specify the random variable (u, y) as follows:

• Prior: u ∼ µ0 measure on X .
• Noise: η ∼ Q0 measure on Y , and η ⊥ u.

12



The random variable y|u is then distributed according to the measure Qu, the translate of Q0 by G(u).
We assume throughout the following that Qu ≪ Q0 for u µ0− a.s. Thus, for some potential Φ : X×Y → R,

dQu

dQ0
(y) = exp

(

− Φ(u; y)
)

. (3.3)

For given instance of the data y, Φ(u; y) is the negative log likelihood. Define ν0 to be the product measure
defined by

ν0(du, dy) = Q0(dy)µ0(du). (3.4)

We also assume in what follows that Φ(·, ·) is ν0 measurable. Then the random variable (u, y) ∈ X × Y is
distributed according to measure ν(du, dy) where

dν

dν0
(u, y) = exp

(

− Φ(u; y)
)

.

We have the following infinite dimensional analogue of Theorem 1.1.

Theorem 3.3. Bayes Theorem Assume that Φ : X × Y → R is ν0 measurable and that, for y Q0−a.s.,

Z :=

∫

X

exp
(

− Φ(u; y)
)

µ0(du) > 0. (3.5)

Then the conditional distribution of u|y exists under ν, and is denoted µy. Furthermore µy ≪ µ0 and, for y
ν−a.s.,

dµy

dµ0
(u) =

1

Z
exp

(

− Φ(u; y)
)

. (3.6)

Proof. First note that the positivity of Z holds for y ν0 almost surely, and hence by absolute continuity of ν
with respect to ν0, for y ν almost surely. The proof is an application of Theorem 3.1 with π replaced by ν0,
φ(x, y) = exp

(

−Φ(x, y)
)

and (x, y) → (u, y). Since ν0(du, dy) has product form, the conditional distribution
of u|y under ν0 is simply µ0. The result follows. ✷

Remarks 3.4. In order to implement the derivation of Bayes’ formula (3.6) four essential steps are required:

• Define a suitable prior measure µ0 and noise measure Q0 whose independent product form the reference
measure ν0.

• Determine the potential Φ such that formula (3.3) holds.
• Show that Φ is ν0 measurable.
• Show that the normalization constant Z given by (3.5) is positive almost surely with respect to y ∼ Q0.

Remark 3.5. In formula (3.6) we can shift Φ(u, y) by any constant c(y), independent of u, provided the con-
stant is finite Q0−a.s. and hence ν−a.s. Such a shift can be absorbed into a redefinition of the normalization
constant Z.

3.3. Heat Equation

We apply Bayesian inversion to the heat equation from Section 1.2. Recall that for G(u) = e−Au, we have
the relationship

y = G(u) + η,

which we wish to invert. Let X = H and define Ht = D(A
t
2 ). Then, for u =

∑

ujϕj ,

Ht =
{

u
∣

∣

∣

∑

αt
ju

2
j <∞, uj = 〈u, ϕj〉

}

.

Recall from Lemma 1.3 that αj ≍ j
2
d so this agrees with Ht as defined in subsection 2.4. Furthermore, we

observe that
Ht = D(At/2) =

{

w
∣

∣w = A−t/2w0, w0 ∈ H
}

.
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We choose the prior µ0 = N(0, A−α), α > d
2 . Thus µ0(X) = µ0(H) = 1. Indeed the analysis in subsection

2.4 shows that µ0(Ht) = 1, t < α − d
2 . For the likelihood we assume that η ⊥ u with η ∼ Q0 = N(0, A−β),

and β ∈ R. This measure satisfies Q0(Ht) = 1 for t < β− d
2 and we thus choose Y = Ht′ for some t′ < β− d

2 .
Notice that our analysis includes the case of white observational noise, for which β = 0. The Cameron-Martin
Theorem, together with the fact that e−λA commutes with arbitrary fractional powers of A, can be used to
show that y|u ∼ Qu := N(G(u), A−β) where Qu ≪ Q0 with

dQu

dQ0
(y) = exp

(

− Φ(u; y)
)

,

Φ(u; y) =
1

2
‖Aβ

2 e−Au‖2 − 〈Aβ
2 e−

A
2 y,A

β
2 e−

A
2 u〉.

In the following we repeatedly use the fact that Aγe−λA, λ > 0, is a bounded linear operator from Ha to Hb,
any a, b, γ ∈ R. Recall that ν0(du, dy) = µ0(du)Q0(dy). Note that ν0(H ×Ht′) = 1. Using the boundedness
of Aγe−λA it may be shown that

Φ : H ×Ht′ → R

is continuous, and hence ν0−measurable by Lemma 3.2.
Theorem 3.3 shows that the posterior is given by µy where

dµy

dµ0
(u) =

1

Z
exp

(

− Φ(u; y)
)

,

Z =

∫

H

exp
(

− Φ(u; y)
)

µ0(du),

provided that Z > 0 for y Q0−a.s. Since y ∈ Ht for any t < β − d
2 , Q0−a.s., we have that y = A−t′/2w0 for

some w0 ∈ H and t′ < β − d
2 . Thus we may write

Φ(u; y) =
1

2
‖Aβ

2 e−Au‖2 − 〈Aβ−t′

2 e−
A
2 w0, A

β
2 e−

A
2 u〉. (3.7)

Then, using the boundedness of Aγe−λA, λ > 0, together with (3.7), we have

Φ(u; y) ≤ C(‖u‖2 + ‖w0‖2)

where ‖w0‖ is finite Q0−a.s. Thus

Z ≥
∫

‖u‖2≤1

exp
(

− C(1 + ‖w0‖2)
)

µ0(du)

and, since µ0(‖u‖2 ≤ 1) > 0 (all balls have positive measure for Gaussians on a separable Banach space) the
result follows.

3.4. Elliptic Inverse Problem

We consider the elliptic inverse problem from Section 1.3 from the Bayesian perspective. We consider the
use of both uniform and Gaussian priors. Before studying the inverse problem, however, it is important to
derive some continuiuty properties of the forward problem. Consider equation (1.5) and, define

X+ =
{

v ∈ L∞(D)
∣

∣

∣
ess inf

x∈D
v(x) > 0

}

and define the map R : X+ → V by R(κ) = p. This map is well-defined by Lemma 1.5.
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Lemma 3.6. For i = 1, 2, let

−∇ · (κi∇pi) = f, x ∈ D,

pi = 0, x ∈ ∂D.

Then

‖p1 − p2‖V ≤ 1

κ2min

‖f‖V ∗‖κ1 − κ2‖L∞

where we assume that
κmin := ess inf

x∈D
κ1(x) ∧ ess inf

x∈D
κ2(x) > 0.

Thus the function R : X+ → V is locally Lipschitz.

Proof. Let e = κ1 − κ2, d = p1 − p2. Then

−∇ · (κ1∇d) = ∇ ·
(

(κ1 − κ2)∇p2
)

, x ∈ D

d = 0, x ∈ ∂D.

By Lemma 1.5 (applied twice) and the Cauchy-Schwarz inequality on L2 we have

‖d‖V ≤ ‖(κ2 − κ1)∇p2‖/κmin

≤ ‖κ2 − κ1‖L∞‖p2‖V /κmin

≤ 1

κ2min

‖f‖V ∗‖e‖L∞.

✷

We now study the inverse problem of finding κ from a finite set of continuous linear functionals {lj}Jj=1

on V , representing measurements of p; thus lj ∈ V ∗. We study both the use of uniform priors, and the use
of Gaussian priors. We start with the uniform case, taking κ = u, and we define G : X+ → RJ by

Gj(u) = lj
(

R(u)
)

, j = 1, . . . , J.

Then G(u) =
(

G1(u), · · · , GJ(u)
)

. We set X = L∞(D;R), Y = RJ and consider the inverse problem of
finding u from y where

y = G(u) + η

and η is the noise.
Define X ′ ⊂ X+ by

X ′ =
{

v ∈ X
∣

∣

∣

1

1 + δ
φmin ≤ v(x) ≤ φmax +

δ

1 + δ
φmin a.e. x ∈ D

}

.

The measure µ0 on functions from subsection 2.2, (found as the pushforward of the measure P on i.i.d.
sequences, see subsection 2.5) is, by Theorem 2.1, a measure on X ; furthermore µ0(X

′) = 1. We take µ0 as
the prior.

The likelihood is defined as follows. We assume η ∼ N(0,Γ), for positive symmetric Γ ∈ RJ×J . Thus
Q0 = N(0,Γ), Qu = N

(

G(u),Γ
)

and

dQu

dQ0
(y) = exp

(

− Φ(u; y)
)

,

Φ(u; y) =
1

2

∣

∣Γ− 1
2 (y −G(u))

∣

∣

2 − 1

2

∣

∣Γ− 1
2 y

∣

∣

2
.

15



Recall that ν0(dy, du) = Q0(dy)µ0(du). G : X ′ → RJ is Lipschitz by Lemma 3.6 (in fact we only use that it
is locally Lipschitz) and hence Lemma 3.2 implies that Φ : X ′ × Y → R is ν0−measurable. Thus Theorem
3.3 shows that u|y ∼ µy where

dµy

dµ0
(u) =

1

Z
exp

(

− Φ(u; y)
)

Z =

∫

X

exp
(

− Φ(u; y)
)

µ0(du),

provided Z > 0 for y Q0 almost surely. To see that Z > 0 note that

Z =

∫

X′

exp
(

− Φ(u; y)
)

µ0(du),

since µ0(X
′) = 1. On X ′ we have that R(·) is bounded in V , and hence G is bounded in RJ . Furthermore y

is finite Q0 almost surely. Thus Φ(u; y) is bounded by M =M(y) <∞ on X ′, Q0 almost surely. Hence

Z ≥
∫

X′

exp(−M)µ0(du) = exp(−M) > 0.

and the result is proved.
We may use Remark 3.5 to shift Φ by 1

2 |Γ− 1
2 y|2, since this is almost surely finite under Q0 and hence

under ν(du, dy) = Qu(dy)µ0(du). We then obtain the equivalent form for the posterior distribution µy:

dµy

dµ0
(u) =

1

Z
exp

(

− 1

2

∣

∣Γ− 1
2

(

y −G(u)
)∣

∣

2
)

, (3.8a)

Z =

∫

X

exp
(

− 1

2
|Γ− 1

2

(

y −G(u)
)
∣

∣

2
)

µ0(du). (3.8b)

We conclude this subsection by discussing the same inverse problem, but using Gaussian priors from
subsection 2.4. We again set X = L∞(D;R), Y = RJ and, for simplicity, take D = [0, 1]d. We now take
κ = exp(u), and define G : X → RJ by

Gj(u) = lj

(

R
(

exp(u)
)

)

, j = 1, . . . , J.

We take as prior on u the measure N(0, A−α), from the example preceding the Fernique Theorem 2.6, with
α > d/2. The measure µ0 then satisfies µ(X ′) = 1 with X ′ = C(D;R). The likelihood is unchanged by the
prior, since it concerns y given u, and is hence identical to that in the case of the uniform prior, although
the mean shift from Q0 by Qu by G(u) now has a different interpretation. Thus we again obtain (3.8) for
the posterior distribution (albeit with a different definition of G(u)) provided that we can establish that

Z =

∫

X

exp
(

− 1

2

∣

∣Γ− 1
2

(

y −G(u)
)∣

∣

2
)

µ0(du) > 0.

To this end we use the fact that the unit ball in X ′, denoted B, has positive measure, and that on this ball
R
(

exp(u)
)

is bounded in V by e−1‖f‖V ∗ , by Lemma 1.5, since the infimum of κ = exp(u) is e−1 on this ball
B. Thus G is bounded on B and, noting that y is Q0−a.s. finite, we have for some M =M(y) <∞,

sup
u∈B

(1

2

∣

∣Γ− 1
2

(

y −G(u)
)∣

∣

2 − 1

2

∣

∣Γ− 1
2 y|2

)

< M.

Hence

Z ≥
∫

B

exp(−R)µ0(du) = exp(−R)µ0(B) > 0.

Thusc we again obtain (3.6) for the posterior measure, now with the new definition of G, and hence Φ.
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4. Common Structure

In this section we discuss various common features of the posterior distribution arising from the Bayesian
approach to inverse problems. We start, in subsection 4.1, by studying the continuity properties of the
posterior with respect to changes in data, proving a form of well-posedness; indeed we show that the posterior
is Lipschitz in the data with respect to the Hellinger metric. In subsection 4.2 we use similar ideas to study
the effect of approximation on the posterior distribution, showing that small changes in the potential Φ lead
to small changes in the posterior distribution, again the Hellinger metric; this work may be used to translate
error analysis pertaining to the forward problem into estimates on errors in the posterior distribution. In
the remaining two subsections we work entirely in the case of Gaussian prior measure µ0. Subsection 4.3 is
concerned with derivation and study of a Langevin equation which is invariant with respect to the posterior
µ, and subsection 4.4 concerns MCMC methods, also invariant with respect to µ, which exploit the structure
of a target measure defined via density with respect to a Gaussian; in particular, the idea of using proposals
which preserve the prior is introduced and benefits of doing so are explained.

4.1. Well-Posedness

In many classical inverse problems small changes in the data can induce arbitrarily large changes in the
solution, and some form of regularization is needed to counteract this ill-posedness. We illustrate this effect
with the inverse heat equation example. We then proceed to show that the Bayesian approach to inversion
has the property that small changes in the data lead to small changes in the posterior distribution. Thus
working with probability measures on the solution space, and adopting suitable priors, provides a form of
regularization.
Example Consider the heat equation introduced in subsection 1.2. Let y = e−Au and consider data y′ =
e−Au + η where η = ǫϕj represents noise. Thus ‖η‖ = ǫ. It is natural to apply the inverse of e−A to y and
to y′ to understand the effect of the noise. This yields the following:

‖eAy − eAy′‖ = ‖eA(y − y′)‖
= ‖eAη‖
= ǫ‖eAϕj‖
= ǫeαj .

Recall that, by Lemma 1.3, αj ≍ j2/d. Thus, for large enough j we can ensure that αj = (a+1) log(ǫ−1) for
some a > 0 so that ‖y − y′‖ = O(ǫ) whilst ‖eAy − eAy′‖ = O(ǫ−a); the degree of ill-posedness can be made
arbitrarily bad by choice of a arbitrarily large. ✷

Our aim in this section is to show that this ill-posedness effect does not occur in the Bayesian posterior
distribution: small changes in the data y lead to small changes in the measure µy. Let X,Y be separable
Banach spaces, and µ0 a measure on X . Assume that µy ≪ µ0 and that, for some Φ : X × Y → R,

dµy

dµ0
(u) =

1

Z(y)
exp

(

− Φ(u; y)
)

, (4.1a)

Z(y) =

∫

X

exp
(

− Φ(u; y)
)

µ0(du). (4.1b)

We make the following assumptions concerning Φ :

Assumptions 4.1. Let X ′ ⊆ X and assume that Φ ∈ C(X ′ × Y ;R) is Lipschitz on bounded sets. Assume
further that there are functions Mi : R

+ × R+ → R+, i = 1, 2, monotonic non-decreasing seperately in each
argument, and with M2 strictly positive, such that for all u ∈ X ′, y, y1, y2 ∈ BY (0, r),

Φ(u; y) ≥ −M1(r, ‖u‖X),

|Φ(u; y1)− Φ(u; y2)| ≤M2(r, ‖u‖X)‖y1 − y2‖Y .
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In order to measure the effect of changes in y on the measure µy we need a metric on measures. We use
the Hellinger distance defined as follows: given two measures µ and µ′ on X , both absolutely continuous
with respect to a common reference measure ν, the Hellinger distance is

dHell(µ, µ
′) =

√

(1

2

∫

X

(

√

dµ

dν
−
√

dµ′

dν

)2

dν
)

.

In particular, if µ′ is absolutely continuous with respect to µ then

dHell(µ, µ
′) =

√

√

√

√

1

2

∫

X

(

1−
√

dµ′

dµ

)2

dµ.

Theorem 4.2. Let Assumptions 4.1 hold. Assume that µ0(X
′) = 1 and that µ0(X

′ ∩ B) > 0 for some
bounded set B in X. Then, for every y ∈ Y , Z(y) given by (4.1b) is positive and probability measure µy

given by (4.1a) is well-defined.

Proof. Since u ∼ µ0 satisfies u ∈ X ′ a.s., we have

Z(y) =

∫

X′

exp
(

− Φ(u; y)
)

µ0(du).

Note that B′ = X ′ ∩B is bounded in X . Define

R1 := sup
u∈B′

‖u‖X <∞.

Since Φ : X ′ × Y → R is continuous it is finite at every point in B′ × {y}. Thus, by the continuity of Φ(·; ·)
implied by Assumptions 4.1, we see that

sup
(u,y)∈B′×BY (0,r)

Φ(u; y) = R2 <∞.

Hence

Z(y) ≥
∫

B′

exp(−R2)µ0(du) = exp(−R2)µ0(B
′).

Since µ0(B
′) is assumed positive and R2 is finite we deduce that Z(y) > 0. ✷

Theorem 4.3. Let Assumptions 4.1 hold. Assume that µ0(X
′) = 1 and that µ0(X

′ ∩ B) > 0 for some
bounded set B in X. Assume additionally that, for every fixed r > 0,

exp
(

M1(r, ‖u‖X)
)

M2
2 (r, ‖u‖X) ∈ L1

µ0
(X ;R).

Then there is C = C(r) > 0 such that, for all y, y′ ∈ BY (0, r)

dHell(µ
y, µy′

) ≤ C‖y − y′‖Y .

Proof. Throughout this proof we use C to denote a constant independent of u, but possibly depending
on the fixed value of r; it may change from occurence to occurence. We use the fact that, since M2(r, ·) is
monotonic non-decreasing and since it is strictly positive on [0,∞), there is constant C > 0 such that

exp
(

M1(r, ‖u‖X)
)

M2(r, ‖u‖X) ≤ C exp
(

M1(r, ‖u‖X)
)

M2(r, ‖u‖X)2, (4.2a)

exp
(

M1(r, ‖u‖X)
)

≤ C exp
(

M1(r, ‖u‖X)
)

M2(r, ‖u‖X)2. (4.2b)

Let Z = Z(y) and Z ′ = Z(y′) denote the normalization constants for µy and µy′

so that, by Theorem 4.2,

Z =

∫

X′

exp
(

−Φ(u; y)
)

µ0(du) > 0,

Z ′ =

∫

X′

exp
(

−Φ(u; y′)
)

µ0(du) > 0.
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Then, using the local Lipschitz property of the exponential and the assumed Lipschitz continuity of Φ(·; r),
together with (4.2a), we have

|Z − Z ′| ≤
∫

X′

| exp
(

− Φ(u; y)
)

− exp
(

− Φ(u; y′)
)

|µ0(du)

≤
∫

X′

exp
(

M1(r, ‖u‖X)
)

|Φ(u; y)− Φ(u; y′)|µ0(du)

≤
(

∫

X′

exp
(

M1(r, ‖u‖X)M2(r, ‖u‖X)µ0(du)
)

)

‖y − y′‖Y

≤ C
(

∫

X′

exp
(

M1(r, ‖u‖X)M2(r, ‖u‖X)2µ0(du)
)

)

‖y − y′‖Y

≤ C‖y − y′‖Y .

The last line follows because the integrand is in L1
µ0

by assumption. From the definition of Hellinger distance
we have

(

dHell(µ
y, µy′

)
)2

≤ I1 + I2,

where

I1 =
1

Z

∫

X′

(

exp
(

−1

2
Φ(u; y)

)

− exp(−1

2
Φ(u; y′)

)

)2

µ0(du),

I2 =
∣

∣Z− 1
2 − (Z ′)−

1
2

∣

∣

2
∫

X′

exp(−Φ(u; y′)
)

µ0(du).

Note that, again using similar Lipschitz calculations to those above, using the fact that Z > 0 and Assump-
tions 4.1,

I1 ≤ 1

Z

∫

X′

exp
(

M1(r, ‖u‖X)
)

|Φ(u; y)− Φ(u; y′)|2µ0(du)

≤ 1

Z

(

∫

X′

exp
(

M1(r, ‖u‖X)
)

M2(r, ‖u‖X)2µ0(du)
)

‖y − y′‖2Y
≤ C‖y − y′‖2Y .

Also, using Assumptions 4.1, together with (4.2b),
∫

X′

exp
(

− Φ(u; y′)
)

µ0(du) ≤
∫

X′

exp
(

M1(r, ‖u‖X)
)

µ0(du)

≤ C

∫

X′

exp
(

M1(r, ‖u‖X)
)

M2(r, ‖u‖X)2µ0(du)

<∞.

Hence

I2 ≤ C
(

Z−3 ∨ (Z ′)−3
)

|Z − Z ′|2 ≤ C‖y − y′‖2Y .

The result is complete. ✷

Remark 4.4. The Hellinger metric has the very desirable property that it translates directly into bounds on
expectations. For functions f which are in L2

µy (X ;R) and L2
µy′ (X ;R) the closeness of the Hellinger metric

implies closeness of expectations of f . To be precise, for y, y′ ∈ BY (0, r) and C = C(r), we have

|Eµy

f(u)− Eµy′

f(u)| ≤ CdHell(µ
y, µy′

)

so that then
|Eµy

f(u)− Eµy′

f(u)| ≤ C‖y − y′‖.
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4.2. Approximation

In this section we concentrate on continuity properties of the posterior measure with respect to approximation
of the potential Φ. The methods used are very similar to those in the previous subsection, and we establish
a continuity property of the posterior distribution, in the Hellinger metric, with respect to small changes in
the potential Φ.

Because the data y plays no explicit role in this discussion, we drop explicit reference to it. Let X be a
Banach space and µ0 a measure on X . Assume that µ and µN are both absolutely continuous with respect
to µ0 and given by

dµ

dµ0
(u) =

1

Z
exp

(

− Φ(u)
)

, (4.3a)

Z =

∫

X′

exp
(

− Φ(u)
)

µ0(du) (4.3b)

and

dµN

dµ0
(u) =

1

ZN
exp

(

− ΦN (u)
)

, (4.4a)

ZN =

∫

X′

exp
(

− ΦN (u)
)

µ0(du) (4.4b)

respectively. The measure µN might arise, for example, through an approximation of the forward map G
underlying an inverse problem of the form (3.2). It is natural to ask whether closeness of the forward map
and its approximation imply closeness of the posterior measures. We now address this question.

Assumptions 4.5. Let X ′ ⊆ X and assume that Φ ∈ C(X ′;R) is Lipschitz on bounded sets. Assume further
that there are functions Mi : R

+ → R+, i = 1, 2, independent of N and monotonic non-decreasing seperately
in each argument, and with M2 strictly positive, such that for all u ∈ X ′,

Φ(u; y) ≥ −M1(‖u‖X),

|Φ(u)− ΦN (u)| ≤M2(‖u‖X)ψ(N),

where ψ(N) → 0 as N → ∞.

The following two theorems are very similar to Theorems 4.2, 4.3 and the proofs are adapted to estimate
changes in the posterior caused by changes in the potential Φ, rather than the data y.

Theorem 4.6. Let Assumptions 4.5 hold. Assume that µ0(X
′) = 1 and that µ0(X

′ ∩ B) > 0 for some
bounded set B in X. Then Z given by (4.3b) is positive and probability measure µ given by (4.3a) is well-
defined. Furthermore, for sufficiently large N , ZN given by (4.4b) is bounded below by a positive constant
independent of N , and probability measure µN given by (4.4a) is well-defined.

Proof. Since u ∼ µ0 satisfies u ∈ X ′ a.s., we have

Z =

∫

X′

exp
(

− Φ(u)
)

µ0(du).

Note that B′ = X ′ ∩B is bounded in X . Thus

R1 := sup
u∈B′

‖u‖X <∞.

Since Φ : X ′ → R is continuous it is finite at every point in B′. Thus, by the continuity of Φ(·) implied by
Assumptions 4.5, we see that

sup
u∈B′

Φ(u) = R2 <∞.
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Hence

Z ≥
∫

B′

exp(−R2)µ0(du) = exp(−R2)µ0(B
′).

Since µ0(B
′) is assumed positive and R2 is finite we deduce that Z(y) > 0. By Assumptions 4.5 we may

choose N large enough so that
sup
u∈B′

|Φ(u)− ΦN (u)| ≤ R2

so that
sup
u∈B′

ΦN (u) = 2R2 <∞.

Hence

ZN ≥
∫

B′

exp(−2R2)µ0(du) = exp(−2R2)µ0(B
′).

Since µ0(B
′) is assumed positive and R2 is finite we deduce that ZN > 0. Furthermore, the lower bound is

independent of N , as required. ✷

Theorem 4.7. Let Assumptions 4.1 hold. Assume that µ0(X
′) = 1 and that µ0(X

′ ∩ B) > 0 for some
bounded set B in X. Assume additionally that

exp
(

M1(‖u‖X)
)

M2
2 (‖u‖X) ∈ L1

µ0
(X ;R).

Then there is C > 0 such that, for all N sufficiently large,

dHell(µ, µ
N ) ≤ Cψ(N).

Proof. Throughout this proof we use C to denote a constant independent of u, and N ; it may change from
occurence to occurence. We use the fact that, since M2(·) is monotonic non-decreasing and since it is strictly
positive on [0,∞), there is constant C > 0 such that

exp
(

M1(‖u‖X)
)

M2(‖u‖X) ≤ C exp
(

M1(‖u‖X)
)

M2(‖u‖X)2, (4.5a)

exp
(

M1(‖u‖X)
)

≤ C exp
(

M1(‖u‖X)
)

M2(‖u‖X)2. (4.5b)

Let Z and ZN denote the normalization constants for µ and µN so that for all N sufficiently small, by
Theorem 4.6,

Z =

∫

X′

exp
(

−Φ(u)
)

µ0(du) > 0,

ZN =

∫

X′

exp
(

−ΦN(u)
)

µ0(du) > 0,

with lower bounds independent of N . Then, using the local Lipschitz property of the exponential and the
assumed Lipschitz continuity of Φ(·), together with (4.5a), we have

|Z − ZN | ≤
∫

X′

| exp
(

− Φ(u)
)

− exp
(

− ΦN (u)
)

|µ0(du)

≤
∫

X′

exp
(

M1(‖u‖X)
)

|Φ(u)− ΦN (u)|µ0(du)

≤
(

∫

X′

exp
(

M1(‖u‖X)
)

M2(‖u‖X)µ0(du)
)

)

ψ(N)

≤ C
(

∫

X′

exp
(

M1(‖u‖X)
)

M2(‖u‖X)2µ0(du)
)

)

ψ(N)

≤ Cψ(N).
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The last line follows because the integrand is in L1
µ0

by assumption. From the definition of Hellinger distance
we have

(

dHell(µ
y, µy′

)
)2

≤ I1 + I2,

where

I1 =
1

Z

∫

X′

(

exp
(

−1

2
Φ(u)

)

− exp(−1

2
ΦN (u)

)

)2

µ0(du),

I2 =
∣

∣Z− 1
2 − (Z ′)−

1
2

∣

∣

2
∫

X′

exp(−ΦN(u)
)

µ0(du).

Note that, again using similar Lipschitz calculations to those above, using the fact (Theorem 4.6) that
Z,ZN > 0 uniformly in N → ∞, and Assumptions 4.5,

I1 ≤ 1

Z

∫

X′

exp
(

M1(‖u‖X
)

|Φ(u)− ΦN (u)|2µ0(du)

≤ 1

Z

(

∫

X′

exp
(

M1(‖u‖X)
)

M2(‖u‖X)2µ0(du)
)

ψ(N)2

≤ Cψ(N)2.

Also, using Assumptions 4.5, together with (4.5b),
∫

X′

exp
(

− ΦN (u)
)

µ0(du) ≤
∫

X′

exp
(

M1(‖u‖X)
)

µ0(du)

≤ C

∫

X′

exp
(

M1(‖u‖X)
)

M2(‖u‖X)2µ0(du)

<∞,

and the upper bound is independent of N . Hence

I2 ≤ C
(

Z−3 ∨ (ZN )−3
)

|Z − ZN |2 ≤ Cψ(N)2.

The result is complete. ✷

Remark 4.8. Using the ideas underlying Remark 4.4, this result enables us to translate errors arising
from approximation of the forward problem into errors in the Bayesian solution of the inverse problem.
Furthermore, the errors in the forward and inverse problems scale the same way with respect to N . For
functions f which are in L2

µ and L2
µN , uniformly with respect to N , the closeness of the Hellinger metric

implies closeness of expectations of f :

|Eµf(u)− EµN

f(u)| ≤ Cψ(N).

4.3. Measure Preserving Dynamics

The aim of this section is to exhibit a Hilbert space valued stochastic differential equation (SDE), which in
many applicstions has an interpretation as a stochastic partial differential equation (SPDE), and which is
invariant with respect to the posterior measure µy constructed in subsection 3.2. We restrict outselves to
the case of Gaussian priors µ0. The data y plays no role in what follows and indeed the theory applies to a
wide range of measures µ which have density with respect to a Gaussian prior µ0 including, but not limited
to, Bayesian inverse problems; we work in this general setting.

Let µ0 = N(0, C) be a Gaussian measure on Hilbert space (H, 〈·, ·〉, ‖ · ‖). We assume that µ≪ µ0 is given
by

dµ

dµ0
(u) =

1

Z
exp

(

− Φ(u)
)

, (4.6a)

Z =

∫

H

exp
(

− Φ(u)
)

µ0(du) (4.6b)
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where Z ∈ (0,∞).We assume that Φ : X → R where X ⊆ H satisfies µ0(X) = 1. We now specify X , thereby
linking the properties of the reference measure µ0 and the potential Φ.

We assume that C has eigendecomposition

Cφj = γ2jφj (4.7)

where {φj}∞j=1 forms an orthonormal basis for H, and where γj ≍ j−s. Necessarily s > 1
2 since C must be

trace-class to be a covariance on H. We define the following scale of Hilbert subspaces, defined for r > 0, by

X r = {u ∈ H
∣

∣

∞
∑

j=1

j2r|〈u, φj〉|2 <∞}

and then extend to superspaces r < 0 by duality. We use ‖ · ‖r to denote the norm induced by the inner-
product

〈u, v〉r =

∞
∑

j=1

j2rujvj

for uj = 〈u, φj〉 and vj = 〈v, φj〉. Application of Theorem 2.2 with d = q = 1 shows that µ0(X r) = 1 for all
r ∈ [0, s− 1

2 ). In what follows we will take X = X for some fixed t ∈ [0, s− 1
2 ).

Notice that we have not assumed that the underlying Hilbert space is comprised of L2 functions mapping
D ⊂ Rd into R, and hence we have not introduced the dimension d of an underlying physical space Rd into
either the decay assumptions on the γj or the spaces X r. However, note that the spaces Ht introduced in
subsection 2.4 are, in the case where H = L2(D;R), the same as the spaces X t/d.

The aim of this section is to show that the equation

du

dt
= −u− CDΦ(u) +

√
2
dW

dt
, u(0) = u0, (4.8)

preserves the measure µ, where W is a C−Wiener process, defined below. Precisely we show that u0 ∼ µ
then Eϕ

(

u(t)
)

= Eϕ(u0) for all t > 0 for continuous bounded ϕ defined on an appropriately chosen subspace
X of H, under boundedness conditions on Φ and its derivatives.

In subsection 4.3.1 we introduce a family of Langevin equations which are invariant with respect to a given
measure with smooth Lebesgue density. Using this, in subsection 4.3.2, we motivate equation (4.8) showing
that, in finite dimensions, it corresponds to a particular choice of Langevin equation. In subsection 4.3.3
we describe the precise assumptions under which we will prove invariance of measure µ under the dynamics
(4.8). Subsection 4.3.4 describes the elements of the finite dimensional approximation of (4.8) which will
underly our proof of invariance. Finally, subsection 4.3.5 contains statement of the measure invariance result
as Theorem 4.19, together with its’ proof; this is preceded by Theorem 4.17 which establishes existence and
uniqueness of a solution to (4.8), as well as continuous dependence of the solution on the initial condition
and Brownian forcing. Theorems 4.11 and 4.9 are the finite dimensional analogues of Theorems 4.19 and
4.17 respectively and play a useful role in motivating the infinite dimensional theory.

4.3.1. Finite Dimensional Case

Before setting up the (rather involved) technical assumptions enquired for our proof of measure invariance,
we give some finite-dimensional intuition. Recall that | · | denotes the Euclidean norm on Rn and we also use
this notation for the induced matrix norm on Rn. We assume that

I ∈ C2(Rn,R+),

∫

Rn

e−I(u)du = 1.

Thus ρ(u) = e−I(u) is the Lebesgue density corresponding to a random variable on Rn. Let µ be the
corresponding measure.
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Let W denote standard Wiener measure on Rn. Thus B ∼ W is a standard Brownian motion in
C([0,∞);Rn). Let u ∈ C([0,∞);Rn) satisfy the SDE

du

dt
= −ADI(u) +

√
2A

dB

dt
, u(0) = u0 (4.9)

where A ∈ Rn×n is symmetric and strictly positive definite and DI ∈ C1(Rn,Rn) is the gradient of I.
Assume that ∃M > 0 : ∀u ∈ Rn, the Hessian of I satisfies

|D2I(u)| ≤M.

We refer to equations of the form (4.9) as Langevin equations, and the matrix A as a preconditioner.

Theorem 4.9. For every u0 ∈ Rn and W−a.s., equation (4.9) has a unique global in time solution u ∈
C([0,∞);Rn).

Proof. A solution of the SDE is a solution of the integral equation

u(t) = u0 −
∫ t

0

ADI
(

u(s)
)

ds+
√
2AB(t). (4.10)

Define X = C([0, T ];Rn) and F : X → X by

(Fv)(t) = u0 −
∫ t

0

ADI
(

v(s)
)

ds+
√
2AB(t). (4.11)

Thus u ∈ X solving (4.10) is a fixed point of F . We show that F has a unique fixed point, for T sufficiently
small. To this end we study a contraction property of F :

‖(Fv1)− (Fv2)‖X = sup
0≤t≤T

∣

∣

∣

∫ t

0

(

ADI
(

v1(s)
)

−ADI
(

v2(s)
)

)

ds
∣

∣

∣

≤
∫ T

0

∣

∣

∣
ADI

(

v1(s)
)

−ADI
(

v2(s)
)

∣

∣

∣
ds

≤
∫ T

0

|A|M |v1(s)− v2(s)|ds

≤ T |A|M‖v1 − v2‖X .
Choosing T : T |A|M < 1 shows that F is a contraction on X . This argument may be repeated on succesive
intervals [T, 2T ], [2T, 3T ], . . . to obtain a unique global solution in C([0,∞);Rn).

Remark 4.10. Note that, since A is postive-definite symmetric, its eigenvectors ej form an orthonormal
basis for Rn. We write Aej = α2

jej. Thus

B(t) =
n
∑

j=1

βj(t)ej

where the {βj}nj=1 are an i.i.d. collection of standard unit Brownian motions on R. Thus we obtain

√
AB(t) =

n
∑

j=1

αjβjej :=W (t).

We refer to W as an A-Wiener process. Such a process is Gaussian with mean zero and correlation structure

EW (t)⊗W (s) = A(t ∧ s).
The equation (4.9) may be written as

du

dt
= −ADI(u) +

√
2
dW

dt
, u(0) = u0. (4.12)
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Theorem 4.11. If u0 ∼ µ then u(t) ∼ µ for all t > 0. More precisely, for all ϕ : Rn → R+ bounded and
continuous, u0 ∼ µ implies

Eϕ
(

u(t)
)

= Eϕ(u0), ∀t > 0.

Proof. Consider the additive noise SDE, for additive noise with strictly positive-definite diffusion matrix Σ,

du

dt
= f(u) +

√
2Σ

dW

dt
, u(0) = u0 ∼ ν0.

If ν0 has pdf ρ0, then the Fokker-Planck equation for this SDE is

∂ρ

∂t
= ∇ · (−fρ+Σ∇ρ), (u, t) ∈ Rn × R+,

ρ|t=0 = ρ0.

At time t > 0 the solution of the SDE is distributed according to measure ν(t) with density ρ(u, t) solving
the Fokker-Planck equation. Thus the initial measure ν0 is preserved if

∇ · (−fρ0 +Σ∇ρ0) = 0

and then ρ(·, t) = ρ0, ∀t ≥ 0.
We apply this Fokker-Planck equation to show that µ is invariant for equation (4.10). We need to show

that
∇ ·

(

ADI(u)ρ+A∇ρ
)

= 0

if ρ = e−I(u). But then
∇ρ = −DI(u)e−I(u) = −DI(u)ρ.

Thus
ADI(u)ρ+A∇ρ = ADI(u)ρ−ADI(u)ρ = 0,

so that
∇ ·

(

ADI(u)ρ+A∇ρ
)

= ∇ · (0) = 0.

Hence the proof is complete.

4.3.2. Motivation for Equation (4.8)

Using the preceding finite dimensional development, we now motivate the form of equation (4.8). For (4.6)
we have, if H is Rn,

µ(du) = ρ(u)du,

ρ(u) = exp
(

− I(u)
)

,

I(u) =
1

2
|C− 1

2u|2 +Φ(u) + lnZ.

Thus
DI(u) = C−1u+DΦ(u)

and equation (4.9), which preserves µ, is

du

dt
= −A

(

C−1u+DΦ(u)
)

+
√
2A

dB

dt
.

Choosing the preconditioner A = C gives

du

dt
= −u− CDΦ(u) +

√
2C dB

dt
.
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This is exactly (4.8) provided W =
√
CB, where B is a Brownian motion with covariance I. Then W is a

Brownian motion with covariance C.
We provide further detail on the construction of W , using the discussion in Remark 4.10 to guide us. In

the infinite dimensional case we define a cylindrical Wiener process by

B(t) =
∞
∑

j=1

βjφj

where {βj}∞j=1 is an i.i.d. family of Brownian motions on R with βj ∈ C([0,∞);R). Since
√
Cφj = γjφj , the

C−Wiener process W =
√
CB is then

W (t) =

∞
∑

j=1

γjβj(t)φj . (4.13)

The following formal calculation gives insight into the properties of W :

EW (t) ⊗W (s) = E

(

∞
∑

j=1

∞
∑

k=1

γjγkβj(t)βk(s)φj ⊗ φk

)

=
(

∞
∑

j=1

∞
∑

k=1

γjγkE
(

βj(t)βk(t)
)

φj ⊗ φk

)

=
(

∞
∑

j=1

∞
∑

k=1

γjγkδjk(t ∧ s)φj ⊗ φk

)

=
∞
∑

j=1

(

γ2jφj ⊗ φj

)

t ∧ s

= C (t ∧ s).

Thus the process has the covaraince structure of Brownian motionin time, and covariance operator C in
space. Hence the name C−Wiener process.

In order to make sense of this infinite sum we follow an approach similar to that used in Theorem 2.4 to
make sense of Gaussian random sums. To this end, consider the finite sum

WN (t) =

N
∑

j=1

γjβj(t)φj .

Let (Ω,F ,P) denote the probability space underlying the i.i.d. sequence of unit Brownian motions used to
construct W .

Theorem 4.12. The sequence of functions {WN}∞N=1 is Cauchy in the Banach space L2
P

(

Ω;C([0, T ];Ht)
)

,

t < s− d
2 . Thus the infinite series exists (4.13) as an L2−limit and takes values in C([0, T ];Ht) for t < s− d

2 .

We are now in a position to prove Theorems 4.17 and 4.19 which are the infinite dimensional analogues
of Theorems 4.9 and 4.11.

4.3.3. Assumptions on Change of Measure

Recall that µ0(X r) = 1 for all r ∈ [0, s− 1
2 ). The functional Φ(·) is assumed to be defined on X t for some

t ∈ [0, s− 1
2 ), and indeed we will assume appropriate bounds on the first and second derivatives, building on

this assumption. These regularity assumptions on Φ(·) that ensure that the probability distribution µ is not
too different from µ0, when projected into directions associated with φj for j large.
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For each x ∈ X t the derivative DΦ(u) is an element of the dual (X t)∗ of X t comprising continuous linear
functionals on X t. However, we may identify (X t)∗ with X−t and view DΦ(u) as an element of X−t for each
x ∈ X t. With this identification, the following identity holds

‖DΦ(u)‖L(X t,R) = ‖DΦ(u)‖−t

and the second derivative D2Φ(u) can be identified as an element of L(X t,X−t). To avoid technicalities
we assume that Φ(·) is quadratically bounded, with first derivative linearly bounded and second derivative
globally bounded. Weaker assumptions could be dealt with by use of stopping time arguments.

Assumptions 4.13. There exist constants Mi ∈ R, i ≤ 4 and t ∈ [0, s− 1/2) such that, for all u ∈ X t, the
functional Φ : X t → R satisfies

−M1 ≤ Φ(u) ≤ M2

(

1 + ‖u‖2t
)

;

‖DΦ(u)‖−t ≤ M3

(

1 + ‖u‖t
)

;

‖D2Φ(u)‖L(X t,X−t) ≤ M4.

Example The functional Φ(u) = 1
2‖u‖2t satisfies Assumptions 4.13. It is defined on X t and its derivative

at x ∈ X t is given by DΦ(u) =
∑

j≥0 j
2tujφj ∈ X−t with ‖DΦ(u)‖−t = ‖u‖t. The second derivative

D2Φ(u) ∈ L(X t,X−t) is the linear operator that maps u ∈ X t to
∑

j≥1 j
2t〈u, φj〉φj ∈ X t: its norm satisfies

‖D2Φ(u)‖L(X t,X−t) = 1 for any x ∈ X t. ✷

Since the eigenvalues γ2j of C decrease as γj ≍ j−s, the operator C has a smoothing effect: Cαh gains 2αs

orders of regularity in the sense that the X β-norm of Cαh is controlled by the X β−2αs-norm of h ∈ H. Indeed
we have the following:

Lemma 4.14. Under Assumptions 4.13, the following estimates hold:

1. The operator C satisfies
‖Cαh‖β ≍ ‖h‖β−2αs.

2. The function CDΦ : X t → X t is globally Lipschitz on X t: there exists a constant M5 > 0 such that

‖CDΦ(u)− CDΦ(v)‖t ≤M5 ‖u− v‖t ∀u, v ∈ X t.

3. The function F : X t → X t defined by

F (u) = −u− CDΦ(u) (4.14)

is globally Lipschitz on X t.
4. The functional Φ(·) : X t → R satisfies a second order Taylor formula1. There exists a constant M6 > 0

such that

Φ(v)−
(

Φ(u) + 〈DΦ(u), v − u〉
)

≤M6 ‖u− v‖2t ∀u, v ∈ X t. (4.15)

4.3.4. Finite Dimensional Approximation

Our analysis now proceeds as follows. First we introduce an approximation of the measure µ, denoted by
µN . To this end we let PN denote orthogonal projection in H onto XN := span{φ1, · · · , φN} and denote by
QN orthogonal projection in H onto X⊥ := span{φN+1, φN+2, · · · }. Thus QN = I − PN . Then define the
measure µN by

dµN

dµ0
(u) =

1

ZN
exp

(

− Φ(PNu)
)

, (4.16a)

ZN =

∫

X′

exp
(

− Φ(PNu)
)

µ0(du). (4.16b)

1We extend 〈·, ·〉 from an inner-product on X to the dual pairing between X−t and X t.
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This is a specific example of the approximating family in (4.4) if we define

ΦN = Φ ◦ PN . (4.17)

Indeed if we take X = X τ for any τ ∈ (t, s− 1
2 ) we see that ‖PN‖L(X,X) = 1 and that, for any u ∈ X ,

‖Φ(u)− ΦN (u)‖ = ‖Φ(u)− Φ(PNu)‖
≤M3(1 + ‖u‖t)‖(I − PN)u‖t
≤ CM3(1 + ‖u‖τ)‖u‖τN−(τ−t).

Since Φ, and hence ΦN , are bounded below by −M1, and since the function 1 + ‖u‖2τ is integrable by
the Fernique Theorem 2.6, the approximation Theorem 4.7 applies. We deduce that the Hellinger distance
between µ and µN is bounded above by O(N−r) for any r < s− 1

2 − t since τ − t ∈ (0, s− 1
2 − t).

We will not use this explicit convergence rate in what follows, but we will use the idea that µN converges
to µ in order to prove invariance of the measure µ under the SDE (4.8). The measure µN has a product
structure that we will exploit in the following. We note that any element u ∈ H is uniquely decomposed as
u = p+ q where p ∈ XN and q ∈ X⊥. Thus we will write µN (du) = µN (dp, dq), and similar expressions for
µ0 and so forth, in what follows.

Lemma 4.15. Define CN = PNCPN and C⊥ = QNCQN . Then µ0 factors as the independent product of
measures µ0,P = N(0, CN) and µ0,Q = N(0, C⊥) on XN and X⊥ respectively. Furthermore µ itself also
factors as an independent product on these two spaces: µN (dp, dq) = µP (dp)µQ(dq) with µQ = µ0,Q and

dµP

dµ0,P
(u) ∝ exp

(

− Φ(p)
)

.

Proof. Because PN and QN commute with C, and because PNQN = QNPN = 0, the factorization of the
reference measure µ0 follows automatically. The factorization of the measure µ follows from the fact that
ΦN (u) = Φ(p) and hence does not depend on q.

To facilitate the proof of the desired measure preservation property, we introduce the equation

duN

dt
= −uN − CDPNΦN (uN ) +

√
2
dW

dt
. (4.18)

By using well-known properties of finite dimensional SDEs, we will show that, if uN(0) ∼ µN , then uN (t) ∼
µN for any t > 0. By passing to the limit N = ∞ we will deduce that for (4.8), if u(0) ∼ µ, then u(t) ∼ µ
for any t > 0.

The next lemma gathers various regularity estimates on the functional ΦN (·) that are repeatedly used in
the sequel; the follow from the analogous properties of Φ by using the structure ΦN = Φ ◦ PN .

Lemma 4.16. Under Assumptions 4.13, the following estimates hold with all constants uniform in N

1. The estimates of Assumptions 4.13 hold with Φ replaced by ΦN .
2. The function CDΦN : X t → X t is globally Lipschitz on X t: there exists a constant M5 > 0 such that

‖CDΦN(u)− CDΦN (v)‖t ≤M5 ‖u− v‖t ∀u, v ∈ X t.

3. The function FN : X t → X t defined by

FN (u) = −u− CPNDΦN (u) (4.19)

is globally Lipschitz on X t.
4. The functional ΦN (·) : X t → R satisfies a second order Taylor formula2. There exists a constant

M6 > 0 such that

ΦN (v)−
(

ΦN (u) + 〈DΦN (u), v − u〉
)

≤M6 ‖u− v‖2t ∀u, v ∈ X t. (4.20)

2We extend 〈·, ·〉 from an inner-product on X to the dual pairing between X−t and X t.
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4.3.5. Main Theorem and Proof

We define a solution of (4.8) to be a function u ∈ C([0, T ];X t) satisfying the integral equation

u(τ) = u0 +

∫ τ

0

F
(

u(s)
)

ds+
√
2W (τ) ∀τ ∈ [0, T ]. (4.21)

The solution is said to be global if T > 0 is arbitrary. Similarly a solution of (4.18) is a function u ∈
C([0, T ];X t) satisfying the integral equation

uN (τ) = u0 +

∫ τ

0

FN
(

uN (s)
)

ds+
√
2W (τ) ∀t ∈ [0, T ]. (4.22)

The following establishes basic existence, uniqueness, continuity and approximation properties of the
solutions of (4.21) and (4.22).

Theorem 4.17. For every u0 ∈ X t and for almost every C−Wiener process W , equation (4.21) (respectively
(4.22)) has a unique global solution. For any pair (u0,W ) ∈ X t × C([0, T ];X t) we define the Itô map

Θ: X t × C([0, T ];X t) → C([0, T ];X t)

which maps (u0,W ) to the unique solution u (resp. uN for (4.22)) of the integral equation (4.21) (resp. ΘN for
(4.22)). The map Θ (resp. ΘN ) is globally Lipschitz continuous. Finally we have that ΘN (u0,W ) → Θ(u0,W )
for every pair (u0,W ) ∈ X t × C([0, T ];X t).

Proof. The existence and uniqueness of local solutions to the integral equation (4.21) is a simple application
of the contraction mapping principle, following arguments similar to those employed when studying the Itó
map below. Extension to a global solution may be achieved by repeating the local argument on succesive
intervals.

Now let u(i) solve

u(i) = u
(i)
0 +

∫ τ

0

F (u(i))(s)ds +
√
2W (i)(τ), τ ∈ [0, T ],

for i = 1, 2. Subtracting and using the Lipschitz property of F shows that e = u(1) − u(2) satisfies

‖e(τ)‖t ≤ ‖u(1)0 − u
(2)
0 ‖t + L

∫ τ

0

‖e(s)‖tds+
√
2‖W (1)(τ) −W (2)(τ)‖t

≤ ‖u(1)0 − u
(2)
0 ‖t + L

∫ τ

0

‖e(s)‖tds+
√
2 sup
0≤s≤T

‖W (1)(s)−W (2)(s)‖t.

By application of the Gronwall inequality we find that

sup
0≤τ≤T

‖e(τ)|t ≤ C(T )
(

‖u(1)0 − u
(2)
0 ‖t + sup

0≤s≤T
‖W (1)(s)−W (2)(s)‖t

)

and the desired continuity is established.
Now we prove pointwise convergence of ΘN to Θ. Let e = u − uN where u and uN solve (4.21), (4.22)

respectively. The pointwise convergence of ΘN to Θ is established by proving that e → 0 in C([0, T ];X t).
Note that

F (u)− FN(uN ) =
(

FN (u)− FN (uN)
)

+
(

F (u)− FN (u)
)

.

Also, by Lemma 4.16, ‖FN (u)− FN (uN )‖t ≤ L‖e‖t. Thus we have

‖e‖t ≤ L

∫ τ

0

‖e(s)‖tds+
∫ τ

0

‖F
(

u(s)
)

− FN
(

u(s)
)

‖tds.

Thus, by Gronwall, it suffices to show that

δN := sup
0≤s≤T

‖F
(

u(s)
)

− FN
(

u(s)
)

‖t
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tends to zero as N → ∞. Note that

F (u)− FN (u) = CDΦ(u)− CPNDΦ(PNu)

= (I − PN)CDΦ(u) + PN
(

CDΦ(u)− CDΦ(PNu)
)

.

Thus, since CDΦ is globally Lipschitz on X t, by Lemma 4.14, and PN has norm one as a mapping from X t

into itself,
‖F (u)− FN (u)‖t ≤ ‖(I − PN )CDΦ(u)‖t + C‖(I − PN )u‖t.

By dominated convergence ‖(I − PN )a‖t → 0 for any fixed element a ∈ X t. Thus, because CDΦ is globally
Lipschitz, by Lemma 4.14, because u ∈ C([0, T ];X t), we deduce that it suffices to bound sup0≤s≤T ‖u(s)‖t.
But such a bound is a consequence of the existence Theorem 4.17. ✷

The following is a straightforward corollary of the preceding theorem:

Corollary 4.18. For any pair (u0,W ) ∈ X t × C([0, T ];X t) we define the point Itô map

Θt : X t × C([0, T ];X t) → X t

which maps (u0,W ) to the unique solution u(t) of the integral equation (4.21) (resp. uN(t) for (4.22)) at
time t (resp. ΘN

t for (4.22)). The map Θt (resp. Θ
N
t ) is globally Lipschitz continuous. Finally we have that

ΘN
t (u0,W ) → Θt(u0,W ) for every pair (u0,W ) ∈ X t × C([0, T ];X t).

Theorem 4.19. Let Assumptions 4.13 hold. Then the measure µ given by (4.3) is invariant for (4.8): for
all continuous bounded functions ϕ : X t → R it follows that, if E denotes expectation with respect to the
product measure found from initial condition u0 ∼ µ and W ∼ W, the C−Wiener measure on X t, then
Eϕ

(

u(t)
)

= Eϕ(u0).

Proof. We have that

Eϕ
(

u(t)
)

=

∫

ϕ
(

Θt(u0,W )
)

µ(du0)W(dW ), (4.23)

Eϕ(u0) =

∫

ϕ(u0)µ(du0). (4.24)

If we solve equation (4.18) with u0 ∼ µN then, using EN with the obvious notation,

ENϕ
(

uN (t)
)

=

∫

ϕ
(

ΘN
t (u0,W )

)

µN (du0)W(dW ), (4.25)

ENϕ(u0) =

∫

ϕ(u0)µ
N (du0). (4.26)

Lemma 4.20 below shows that, in fact,

ENϕ
(

uN(t)
)

= ENϕ(u0).

Thus it suffices to show that
ENϕ

(

uN (t)
)

→ Eϕ
(

u(t)
)

(4.27)

and
ENϕ(u0) → Eϕ(u0). (4.28)

Both of these facts follow from the dominated convergence theorem as we now show. First note that

ENϕ(u0) =

∫

ϕ(u0)e
−Φ(PNu0)µ0(du0).

Since ϕ(·)e−Φ◦PN

is bounded independently of N , by (supϕ)eM1 , and since (Φ◦PN)(u) converges pointwise
to Φ(u) on X t, we deduce that

ENϕ(u0) →
∫

ϕ(u0)e
−Φ(u0)µ0(du0) = Eϕ(u0)

30



so that (4.28) holds. The convergence in (4.27) holds by a similar argument. From (4.29) we have

ENϕ
(

uN (t)
)

=

∫

ϕ
(

ΘN
t (u0,W )

)

e−Φ(PNu0)µ0(du0)W(dW ). (4.29)

The integrand is again dominated by (supϕ)eM1 . Using the pointwise convergence of ΘN
t to Θt on X t ×

C([0, T ];X t), as proved in Corollary 4.18, as well as the pointwise convergence of (Φ ◦ PN)(u) to Φ(u), the
desired result follows from dominated convergence: we find that

ENϕ
(

uN(t)
)

→
∫

ϕ
(

Θt(u0,W )
)

e−Φ(u0)µ0(du0)W(dW ) = Eϕ
(

u(t)
)

.

The desired result follows. ✷

Lemma 4.20. Let Assumptions 4.13 hold. Then the measure µN given by (4.16) is invariant for (4.18):
for all continuous bounded functions ϕ : X t → R it follows that, if EN denotes expectation with respect to
the product measure found from initial condition u0 ∼ µN and W ∼ W, the C−Wiener measure on X t, then
ENϕ

(

uN(t)
)

= ENϕ(u0).

Proof. Recall from Lemma 4.15 that measure µN given by (4.16) factors as the independent product of two
measures on µP on XN and µQ on X⊥. On X⊥ the measure is simply the Gaussian µQ = N (0, C⊥), whilst
XN the measure µP is finite dimensional with density proportional to

exp
(

− Φ(p)− 1

2
‖(CN)−

1
2 p‖2

)

. (4.30)

The equation (4.18) also decouples on the spaces XN and X⊥. On X⊥ it is simply

dq

dt
= −q +

√
2QN dW

dt
(4.31)

whilst on XN it is
dp

dt
= −p− CNDΦ(p) +

√
2PN dW

dt
. (4.32)

Measure µQ is preserved by (4.31), because (4.31) simply gives an Ornstein-Uhlenbeck process with desired
Gaussian invariant measure. On the other hand, equation (4.32) is simply a Langevin equation for measure on
RN with density (4.30) and a calculation with the Fokker-Planck equation, as in Theorem 4.11, demonstrates
the required invariance of µP . ✷

4.4. MCMC Methods

The perspective that we have described on inverse problems leads to new sampling methods which are
specifically tailored to the infinite dimensional setting, and its approximation by finite dimensional measures.
In particular it leads naturally to the design of algorithms which perform well under refinement of the finite
dimensionalization. To illustrate this idea we consider the setting of Section 4.4 and study random walk type
algorithms.

First of all we describe the standard Random Walk Metropolis (RWM) algorithm, designed to sample
a measure on RN . To this end we notice that the measure µN given by (4.16) factors as the product of
two independent measures on XN and H\XN . The measure on H\XN is given by the prior and is easily
sampled. Thus it remains to sample the measure on XN . This space is isomorphic to RN . We define

I(u) = Φ(u) +
1

2
‖C−1

2 u‖2. (4.33)

Then, for u ∈ XN , the measure of interest has Lebesgue density

πN (u) ∝ exp
(

−I(u)
)

.

This standard RWM algorithm defines a Markov chain {uk} on XN as follows.
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• Set k = 0 and Pick u(0) ∈ XN .
• Propose v(k) = u(k) + βPNξ(k), ξ(k) ∼ N(0, C).
• Set u(k+1) = v(k) with proability a(u(k), v(k)), independently of u(k), ξ(k).
• Set u(k+1) = u(k) otherwise.
• k → k + 1.

Here
a(u, v) = min{1, exp

(

I(u)− I(v)
)

}.
This Markov chain leaves the density πN as defined above invariant. It is, however, badly behaved in the
limit N → ∞. This is because

lim
N→∞

I(PNu) = ∞

almost surely for u ∼ µ.
To overcome this issue we introduce a new RWM algorithm which is defined on the whole of H, not just

on finite truncations. The algorithm is defined as follows, when applied on XN :

• Set k = 0 and Pick u(0) ∈ XN .
• Propose v(k) =

√

(1− β2)u(k) + βPNξ(k), ξ(k) ∼ N(0, C).
• Set u(k+1) = v(k) with proability a(u(k), v(k)), independently of u(k) and ξ(k).
• Set u(k+1) = u(k) otherwise.
• k → k + 1.

Here
a(u, v) = min{1, exp

(

Φ(u)− Φ(v)
)

}.
Notice that the small change in proposal, when compared with the standard RWN, results in an acceptance
probability defined via differences of Φ and not I. Because Φ is a.s. finite with respect to µ, whilst I is
not, this leads to a considerably improved algorithm which has desirable N−independent properties when
implemented on a sequence of approximating problems with N → ∞.

To quantify this it is useful to introduce the concept of spectral gap. Define the spaces

L2
µ = {f : X → R : ‖f‖22 := Eµ|f(u)|2 <∞},
L2
0 = {f ∈ L2

µ : µ(f) = 0.}

Define the Markov kernel
(Pf)(u) = E

(

f
(

u(1)
)

|u(0) = u
)

.

Then set

‖P‖L2
0→L2

0
:= sup

f∈L2
0

‖Pf‖22
‖f‖22

.

We have L2
µ−spectral gap γ if ‖P‖L2

0→L2
0
< 1 − γ. Clearly γ ∈ (0, 1). Furthermore, the bigger γ the better

the performance of the algorithm.
The following theorem quantifies the benefits of the new RWM algorithm over the standard one.

Theorem 4.21. For the standard RWM algorithm:

• If β = N−a with a ∈ [0, 1) then the spectral gap is bounded above by CpN
−p for any positive integer p.

• If β = N−a with a ∈ [1,∞) then the spectral gap is bounded above by CN− a
2 .

Hence spectral gap is bounded above by CN− 1
2 . For the new RWM algorithm the spectral gap is bounded

below independently of N . Hence we have a central limit theorem and, for u(0) ∼ µ and C independent of N ,

Eν
∣

∣

∣

1

K

K
∑

k=1

f(u(k))− EµN

f
∣

∣

∣

2

≤ CK−1.
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to determine the appropriate complete generalization of the Fernique Theorem to Besov measures.

• Subsection 2.4. The general theory of Gaussian measures on Banach spaces is contained in [Lif95,
Bog98]. The text [DZ92], concerning the theory of stochastic PDEs, also has a useful overview of
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periodic setting may be found in [Hai09] and [Stu10, Chapter 6]. For further reading on Gaussian
measures see [DP06].

• Subsection 3.1. Theorem 3.1 is taken from [HSVW05]where it is used to compute expressions for the
meausure induced by various conditionings applied to SDEs. The Example following Theorem 3.1,
concerning end-point conditioning of measures defined via a density with respect to Wiener measure,
finds application to problems from molecular dynamics in [PS10, NST]. Further material concern-
ing the equivalence of posterior with respect to the prior may be found in [Stu10, Chapters 3 and
6], [ALS12], [ASZ12]. The equivalence of Gaussian measures is studied via the Feldman-Hajek theorem;
see [DPZ92] and [DZ92].

• Subsection 3.2. General development of Bayes’ Theorems for inverse problems on function space, along
the lines described here, may be found in [CDRS09, Stu10]. The reader is also directed to the papers
[Las02, Las07] for earlier related material, and to [Las11, Las12a, Las12b] for recent developments.

• Subsection 3.3. The inverse problem for the heat equation was one of the first infinite dimensional
inverse problems to receive Bayesian treatment; see [Fra70]. The problem is worked through in detail
in [Stu10]. To fully understand the details the reader will need to study the Cameron-Martin theorem
(concerning shifts in the mean of Gaussian measures) and the Feldman-Hajek theorem (concerning
equivalence of Gaussian measures); both of these may be found in [DZ92, Lif95, Bog98] and are also
discussed in [Stu10].

• Subsection 3.4. The elliptic inverse problem with the uniform prior is studied in [SS12]. A Gaussian
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prior is adopted in [DS11], and a Besov prior in [DHS12].
• Subsection 4.1. Relationships between the Hellinger distance on probability measures, and the Total
Variation distance and Kullback-Leibler divergence may be found in [GS02], [Pol].

• Subsection 4.2. The relationship between expectations and Hellinger distance, as used in Remark 4.8,
is discussed in [Stu10].

• Subsection 4.3 concerns measure preserving continuous time dynamics. The finite dimensional aspects
of this subsection, which we introduce for motivation, are covered in the texts [Oks03] and [Gar85]; the
first of these books is an excellent introduction to the basisc existence and uniqueness theory, outlined in
a simple case in Theorem 4.9, whilst the second provides an in depth treatment of the subject from the
viewpoint of the Fokker-Planck equation, as used in Theorem 4.11. This subject has a long history which
is overviewed in the paper [HSV07] where the idea is applied to fiding SPDEs which are invariant with
respect to the measure generated by a conditioned diffusion process. This idea is generalized to certain
conditioned hypoelliptic diffusions in [HSV11b]. It is also possible to study deterministic Hamiltonian
dynamics which preserves the same measure. This idea is described in [BPSSS11] in the same set-up
as employed here; that paper also contains references to the wider literature. Lemma 4.14 is proved in
[MPS12]. Lemma 4.20 requires knowledge of the invariance of Ornstein-Uhlenbeck processes together
with invariance of finite dimensional first order Langevin equations with the form of gradient dynamics
subject to additive noise. The invariance of the Ornstein-Uhlenbeck process is covered in [DPZ96] and
invariance of finite dimensional SDEs using the Fokker-Planck equation is discussed in [Gar85]. The
C−Wiener process, and its properties, are described in [DZ92].

• Subsection 4.4 concerns The standard RWM was introduced in [MRTT53] and led, via the paper
[Has70], to the development of the more general class of Metropolis-Hastings methods. MCMC meth-
ods which are invariant with respect to the target measure µ. The paper [CRSW12] overviews this
subject area, including the new RWM method. The specific idea of the new RWM is contained in
the unpublished paper [Nea98], equation (15). The paper [Tie98] is a key reference which provides a
framework for the study of Metropolis-Hastings methods on general state spaces, and may be used
to establish that the new RWM method is well-defined on the Hilbert space H. Theorem 4.21 is a
summary of the results in the paper [HSV11a].
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