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WELL-POSEDNESS OF THE ERICKSEN-LESLIE SYSTEM

WEI WANG, PINGWEN ZHANG, AND ZHIFEI ZHANG

Abstract. In this paper, we prove the local well-posedness of the Ericksen-Leslie system, and
the global well-posednss for small initial data under the physical constrain condition on the Leslie
coefficients, which ensures that the energy of the system is dissipated. Instead of the Ginzburg-
Landau approximation, we construct an approximate system with the dissipated energy based on
a new formulation of the system.

1. Introduction

The hydrodynamic theory of liquid crystals was established by Ericksen [4, 5] and Leslie [9] in
the 1960’s. This theory treats the liquid crystal material as a continuum and completely ignores
molecular details. Moreover, this theory considers perturbations to a presumed oriented sample.
The configuration of the liquid crystals is described by a director field n(t,x) ∈ S

2,x ∈ R
3.

The general Ericksen-Leslie system takes the form





vt + v · ∇v = −∇p+
γ

Re
∆v +

1− γ

Re
∇ · σ,

∇ · v = 0,

n×
(
h− γ1N− γ2D · n

)
= 0,

(1.1)

where v is the velocity of the fluid, p is the pressure, Re is the Reynolds number and γ ∈ (0, 1).
The stress σ is modeled by the phenomenological constitutive relation

σ = σL + σE ,

where σL is the viscous (Leslie) stress

σL = α1(nn : D)nn+ α2nN+ α3Nn+ α4D+ α5nn ·D+ α6D · nn(1.2)

with D = 1
2 (κ

T + κ), κ = (∇v)T , and

N = nt + v · ∇n+Ω · n, Ω =
1

2
(κT − κ).

The six constants α1, · · · , α6 are called the Leslie coefficients. While, σE is the elastic (Ericksen)
stress

σE = − ∂EF

∂(∇n)
· (∇n)T ,(1.3)

where EF = EF (n,∇n) is the Oseen-Frank energy with the form

EF =
k1

2
(∇ · n)2 + k2

2
|n× (∇× n)|2 + k3

2
|n · (∇× n)|2.
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Here k1, k2, k3 are the elastic constant. For the simplicity, we will consider the case k1 = k2 = k3 =
1. In such case, EF = 1

2 |∇n|2, and the molecular field h is given by

h = −δEF

δn
= ∇ · ∂EF

∂(∇n)
− ∂EF

∂n
= −∆n,

(
σE

)
ij
= −

(
∇n⊙∇n

)
ij
= −∂ink∂jnk.

Finally, the Leslie coefficients and γ1, γ2 satisfy the following relations

α2 + α3 = α6 − α5,(1.4)

γ1 = α3 − α2, γ2 = α6 − α5,(1.5)

where (1.4) is called Parodi’s relation derived from the Onsager reciprocal relation [15]. These two
relations ensure that the system has a basic energy law.

As the general Ericksen-Leslie system is very complicated, most of earlier works treated the
simplified(or approximated) system of (1.1). Motivated by the work on the harmonic heat flow,
Lin and Liu [12] add the penality term 1

4ε2
(|n|2 − 1)2 in W in order to remove some higher-order

nonlinearities due to the constraint |n| = 1. In such case, the system becomes




vt + v · ∇v = −∇p+
γ

Re
∆v+

1− γ

Re
∇ · σ,

nt + v · ∇n+Ω · n− µ1∆n− µ2D · n− 1

ε2
(|n|2 − 1)n = 0.

(1.6)

This is so called the Ginzburg-Landau approximation. They proved the global existence of weak
solution and the local existence and uniqueness of strong solution of the system (1.6) under certain
strong constrains on the Leslie coefficients. We refer to [18] for a recent result about the role
of Parodi’s relation in the well-posedness and stability. However, whether the solution of (1.6)
converges to that of (1.1) as ε tends to zero is still a challenging question. When neglecting the
Leslie stress σL in (1.1), a simplest system preserving the basic energy law is the following

{
vt + v · ∇v −∆v+∇p = −∇ ·

(
∇n⊙∇n

)
,

nt + v · ∇n−∆n = |∇n|2n.
(1.7)

For this system, the local existence and uniqueness of strong solution can be proved by using the
standard energy method; see [16] for the well-posedness result with rough data. Huang and Wang
[7] give the following BKM type blow-up criterion: Let T ∗ be the maximal existence time of the
strong solution. If T ∗ < ∞, then it is necessary

∫ T ∗

0
‖∇ × v(t)‖L∞ + ‖∇n(t)‖2L∞dt = +∞.

In two dimensional case, the global existence of weak solution has been independently proved by
Lin, Lin and Wang [13] and Hong [6], where they construct a class of weak solution with at most a
finite number of singular times. The uniqueness of weak solution is proved by Lin-Wang [14] and
Xu-Zhang [19]. The global existence of weak solution of (1.7) is a challenging open problem in three
dimensional case. On the other hand, in the case when |∇n|2n in (1.7) is replaced by 1

ε2
(|n|2−1)n,

the global existence and partial regularity of weak solution were studied in [10, 11].
The purpose of this paper is to study the well-posedness of the general Ericksen-Leslie system.

The first step is to understand the complicated energy-dissipation law of the system arising from
the Leslie stress. Moreover, whether the energy defined in (2.1) is dissipated remains unknown in
physics, since the Leslie coefficients are difficult to determine by using experimental results. We
present a sufficient and necessary condition on the Leslie coefficients to ensure that the energy of
the system is dissipated. The next step is to construct an approximate system with the dissipated
energy under the physical condition on the Leslie coefficients. However, the Ginzburg-Landau
approximation does not satisfy our requirement. We introduce a new equivalent formulation of the
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system (1.1). Based on this formulation, we can construct an approximate system such that the
energy is still dissipated, although the key property |n| = 1 is destroyed.

Our main results are stated as follows.

Theorem 1.1. Let s ≥ 2 be an integer. Assume that the Leslie coefficients satisfy (2.6), and the
initial data ∇n0 ∈ H2s(R3),v0 ∈ H2s(R3). There exist T > 0 and a unique solution (v,n) of the
Ericksen-Leslie system (1.1) such that

v ∈ C([0, T ];H2s(R3)) ∩ L2(0, T ;H2s+1(R3)), ∇n ∈ C([0, T ];H2s(R3)).

Let T ∗ be the maximal existence time of the solution. If T ∗ < +∞, then it is necessary
∫ T ∗

0
‖∇ × v(t)‖L∞ + ‖∇n(t)‖2L∞dt = +∞.

For small initial data, we prove the following global well-posedness.

Theorem 1.2. With the same assumptions as in Theorem 1.1, there exists an ε0 > 0 such that if

‖∇n0‖H2s + ‖v0‖H2s ≤ ε0,

then the solution obtained in Theorem 1.1 is global in time.

The other sections of this paper are organized as follows. In section 2, we derive the basic energy
law of the system and give the physical constrain condition on the Leslie coefficients. In section 3,
we introduce a new equivalent formulation. Section 4 is devoted to the proof of local well-posedness.
In section 5, we prove the global well-posedness of the system for small initial data.

2. Basic energy-dissipation law

We first derive the basic energy law of the system (1.1).

Proposition 2.1. If (v,n) is a smooth solution of (1.1), then it holds that

d

dt

∫

R3

Re

2(1 − γ)
|v|2 + EFdx = −

∫

R3

( γ

1− γ
|∇v|2 + (α1 +

γ22
γ1

)|D : nn|2 + α4D : D

+ (α5 + α6 −
γ22
γ1

)|D · n|2 + 1

γ1
|n× h|2

)
dx.(2.1)

Proof. Using the first equation of (1.1) and ∇ · v = 0, we get

d

dt

∫

R3

Re

2(1− γ)
|v|2 + EFdx

=

∫

R3

Re

1− γ
v · vtdx+

∫

R3

δEF

δn
· ntdx

= −
∫

R3

γ

1− γ
|∇v|2 + (σL + σE) : ∇vdx+

∫

R3

δEF

δn
· (ṅ− v · ∇n)dx,(2.2)

where ṅ = nt + v · ∇n. Using ∇ · v = 0 again, we have
∫

R3

σE : ∇v +
δEF

δn
· (v · ∇n)dx

=

∫

R3

(− ∂EF

∂(∇n)
· (∇n)T ) : ∇v−

(
∇ · ∂EF

∂(∇n)
− ∂EF

∂n

)
· (v · ∇n)dx

=

∫

R3

∂EF

∂(∇n)
: (v · ∇2n) +

∂EF

∂n
· (v · ∇n)dx

=

∫

R3

v · ∇EF (n,∇n)dx = 0.(2.3)



4 WEI WANG, PINGWEN ZHANG, AND ZHIFEI ZHANG

Due to (1.2), (1.4) and (1.5), we find
∫

R3

σL : ∇vdx

=

∫

R3

(
(α1(nn ·D)nn+ α2nN+ α3Nn+ α4D+ α5nn ·D+ α6D · nn) : (D+Ω)

)
dx

=

∫

R3

(
α1(nn : D)2 + α4D : D+ (α5 + α6)|D · n|2 + (α2 + α3)n · (D ·N)

+(α2 − α3)n · (Ω ·N)− (α5 − α6)(D · n) · (Ω · n)
)
dx

=

∫

R3

(
α1(nn : D)2 + α4D : D+ (α5 + α6)|D · n|2 + γ2n · (D ·N)

−γ1n · (Ω ·N) + γ2(D · n) · (Ω · n)
)
dx

=

∫

R3

(
α1(nn : D)2 + α4D : D+ (α5 + α6)|D · n|2 + γ2N · (D · n)

+γ1N · (Ω · n) + γ2(D · n) · (Ω · n)
)
dx,

and

−
∫

R3

δEF

δn
· ṅdx =

∫

R3

h · ṅdx =

∫

R3

h · (N−Ω · n)dx.

The third equation of (1.1) implies that
∫

R3

(Ω · n) ·
(
γ1N+ γ2(D · n)− h

)
dx = 0,

and direct calculations show that
∫

R3

(
γ2N · (D · n) + h ·N

)
dx =

∫

R3

(
n×N

)
·
(
n× h+ γ2n×D · n

)
dx

=

∫

R3

1

γ1

(
n× h− γ2n×D · n

)
·
(
n× h+ γ2n×D · n

)
dx

=

∫

R3

1

γ1
|n× h|2 − γ22

γ1
|D · n|2 + γ22

γ1
|n ·D · n|2dx.

Thus, we have
∫

R3

σL : ∇v− δEF

δn
· ṅdx

=

∫

R3

(
(α1 +

γ22
γ1

)|D : nn|2 + α4D : D+ (α5 + α6 −
γ22
γ1

)|D · n|2 + 1

γ1
|n× h|2

)
dx.(2.4)

Then the energy law (2.1) follows from (2.2)-(2.4). �

The following proposition presents a sufficient and necessary condition on the Leslie coefficients
to ensure that the energy is dissipated; see also [12] for the related discussions on the choice of the
Leslie coefficients. We denote

β1 = α1 +
γ22
γ1

, β2 = α4, β3 = α5 + α6 −
γ22
γ1

.

Proposition 2.2. The following dissipation relation holds

β1(nn : D)2 + β2D : D+ β3|D · n|2 ≥ 0(2.5)



THE ERICKSEN-LESLIE SYSTEM 5

for any symmetric trace free matrix D and unit vector n, if and only if

β2 ≥ 0, 2β2 + β3 ≥ 0,
3

2
β2 + β3 + β1 ≥ 0.(2.6)

Proof. By the rotation invariance, we may assume n = (0, 0, 1)T and D = (Dij)3×3 with D11 +
D22 +D33 = 0. It is easy to get

β1(nn : D)2 + β2D : D+ β3|D · n|2

= β1D
2
33 + β2(D

2
11 +D2

22 +D2
33 + 2D2

12 + 2D2
32 + 2D2

31) + β3(D
2
31 +D2

32 +D2
33)

= 2β2D
2
12 + (2β2 + β3)(D

2
31 +D2

32) + β2(D
2
11 +D2

22) + (β1 + β2 + β3)D
2
33

= 2β2D
2
12 + (2β2 + β3)(D

2
31 +D2

32) + β2(D
2
11 +D2

22) + (β1 + β2 + β3)(D11 +D22)
2.

The inequality holds

2β2D
2
12 + (2β2 + β3)(D

2
31 +D2

32) ≥ 0

for all D12,D31, and D32, if and only if β2 ≥ 0, and 2β2 + β3 ≥ 0.
As D2

11 +D2
22 ≥ 1

2(D11 +D22)
2, the inequality holds

β2(D
2
11 +D2

22) + (β1 + β2 + β3)(D11 +D22)
2 ≥ 0

for all D11 and D22, if and only if 3
2β2 + β3 + β1 ≥ 0. �

In [17], we show that if the Ericksen-Leslie system is derived from the Doi-Onsager equation,
then the energy (2.1) is indeed dissipated. Let us make it precise. The nondimensional Doi-Onsager
equation takes as follows





∂f ε

∂t
+ vε · ∇f ε =

1

ε
R · (Rf ε + f εRUεf

ε)−R · (m× κε ·mf ε),

∂vε

∂t
+ vε · ∇vε = −∇pε +

γ

Re
∆vε +

1− γ

2Re
∇ ·

(
Dε : 〈mmmm〉fε

)

+
1− γ

εRe
(∇ · τ eε + Fe

ε),

(2.7)

where ε is the Deborah number, κε = (∇vε)T ,Dε = 1
2

(
κε + (κε)T

)
, and

τ eε = −〈mm×Rµε〉fε , Fe
ε = −〈∇µε〉fε , µε = ln f ε + Uεf,

Uεf = α

∫

R3

∫

S2

|m×m′|2 1
√
ε
3 g

(x− x′

√
ε

)
f(x′,m′, t)dm′dx′.

When ε is small, the solution (f ε,vε) of the system (2.7) has the expansion

f ε = f0(m · n) + εf1 + · · · ,
vε = v0 + εv1 + · · · ,

where (v0,n) is determined by (1.1) with the Leslie coefficients given by

α1 = −S4

2
, α2 = −1

2

(
1 +

1

λ

)
S2, α3 = −1

2

(
1− 1

λ

)
S2,

α4 =
4

15
− 5

21
S2 −

1

35
S4, α5 =

1

7
S4 +

6

7
S2, α6 =

1

7
S4 −

1

7
S2.

(2.8)

Here S2 = 〈P2(m · n)〉hη1,n
, S4 = 〈P4(m · n)〉hη1,n

with Pk(x) the k-th Legendre polynomial and

hη1,n(m) =
eη1(m·n)2

∫
S2

eη1(m·n)2dm
.

Here η1 and λ are constants depending only on α. When the Leslie coefficients are given by (2.8),
we show that the dissipation relation (2.5) holds; see [17, 8, 3] for the details.
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3. A New formulation of the Ericksen-Leslie system

Set µ1 =
1
γ1
, µ2 = −γ2

γ1
. The third equation of (1.1) is equivalent to

nt + v · ∇n+Ω · n− (I − nn) · (µ1h+ µ2D · n) = 0,

which can be written as

nt + v · ∇n+ n×
(
(Ω · n− µ1h− µ2D · n)× n

)
= 0.(3.1)

Substituting them into (1.2), we get

σL =β1(nn : D)nn− 1

2
(1 + µ2)n(I− nn) · h+

1

2
(1− µ2)(I − nn) · hn

+ β2D+
β3

2
(nD · n+D · nn)

=β1(nn : D)nn− 1

2
(1 + µ2)nn× (h× n) +

1

2
(1− µ2)n× (h× n)n

+ β2D+
β3

2
(nD · n+D · nn).(3.2)

With the new formulation (3.1) and (3.2), we can derive the same energy law (2.1) without using
the constrain |n| = 1. To see it, we need the following important cancelation relations.

Lemma 3.1. It holds that
(
− 1

2
nn× (h× n) +

1

2
n× (h× n)n

)
: (D+Ω)−

(
(Ω · n)× n

)
·
(
h× n

)
= 0,

−
(1
2
nn× (h× n) +

1

2
n× (h× n)n

)
: (D+Ω) + (h× n) ·

(
(D · n)× n

)
= 0.

Proof. Direct calculations show that

(
− 1

2
nn× (h× n) +

1

2
n× (h× n)n

)
: (D+Ω)−

(
(Ω · n)× n

)
·
(
h× n

)

=
(
n× (h× n)n

)
: Ω−

(
(Ω · n)× n

)
·
(
h× n

)

=
(
n× (h× n)

)
· (Ω · n)−

(
(Ω · n)× n

)
·
(
h× n

)
= 0,

and

−
(1
2
nn× (h× n) +

1

2
n× (h× n)n

)
: (D+Ω) + (h× n) ·

(
(D · n)× n

)

= −
(
n× (h× n)n

)
: D+

(
(D · n)× n

)
· (h× n)

= −
(
n× (h× n)

)
· (D · n) +

(
(D · n)× n

)
· (h× n) = 0.

The proof is finished. �

Now we derive the energy law (2.1) by using (3.1) and (3.2), since the derivation will be helpful
to understand the energy estimates in the next section. Thanks to (1.1) and (3.1), we have

− 1

2

d

dt

∫

R3

Re

1− γ
|v|2 + |∇n|2dx = −

∫

R3

Re

1− γ
v · vt −∆n · ntdx

=

∫

R3

γ

1− γ
|∇v|2 + (σL + σE) : ∇v− (v · ∇n) · h

+
(
n×

(
(µ1h+ µ2D · n−Ω · n)× n

))
· hdx

=

∫

R3

γ

1− γ
|∇v|2 + µ1|h× n|2 + σE : ∇v− (v · ∇n) · h

+ σL : ∇v −
(
(Ω · n)× n

)
·
(
h× n

)
+ µ2(h× n) ·

(
(D · n)× n

)
dx.
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For the Ericksen stress term, we have

∫

R3

σE : ∇v − (v · ∇n) · hdx =

∫

R3

−∂ink∂jnk∂ivj − vj∂jnk∂iinkdx

=

∫

R3

vj∂j∂ink∂ink − ∂i(vj∂jnk∂ink)dx = 0,

while for the Leslie stress term, we get by (3.2) and Lemma 3.1 that

∫

R3

σL : ∇v −
(
(Ω · n)× n

)
·
(
h× n

)
+ µ2(h× n) ·

(
(D · n)× n

)
dx

=

∫

R3

(
β1(nn : D)nn+

1

2
(−1− µ2)nn× (h× n) +

1

2
(1− µ2)n× (h× n)n+ β2D

+
β3

2
(nD · n+D · nn)

)
: (D+Ω)−

(
(Ω · n)× n

)
·
(
h× n

)
+ µ2(h× n) ·

(
(D · n)× n

)
dx

=

∫

R3

β1(nn : D)2 + β2D : D+ β3|D · n|2 −
(
(Ω · n)× n

)
·
(
h× n

)
+ µ2(h× n) ·

(
(D · n)× n

)

+
(1
2
(−1− µ2)nn× (h× n) +

1

2
(1− µ2)n× (h× n)n

)
: (D+Ω)dx

=

∫

R3

β1(nn : D)2 + β2D : D+ β3|D · n|2dx.

Then the energy law (2.1) follows from the above identities.
Although the energy law can be derived without using the property |n| = 1, this property is vital

for the dissipation relation (2.5) under the condition (2.6). Hence, it is important to construct an
approximate system preserving the energy law and |n| = 1 in order to prove the local well-posedness
of (1.1). It is usually difficult. For this, we introduce a modified stress tensor so that the energy is
still dissipated for the modified system under the condition (2.6). The modified Leslie stress tensor
takes the form

σ̃L =β1(nn : D)nn+
1

2
(−1− µ2)nn× (h× n) +

1

2
(1− µ2)n× (h× n)n

+ β2|n|4D+
β3

2
|n|2(nD · n+D · nn).

It is obvious that σ̃L = σL if |n| = 1. An important fact is that for any traceless symmetric D and
vector n (not necessary unit), it still holds

〈
β1(nn : D)nn+ β2|n|4D+

β3

2
|n|2(nD · n+D · nn),D

〉
≥ 0(3.3)

under the condition (2.6). We denote

σ1(v,n) = β1(nn : D)nn+ β2|n|4D+
β3

2
|n|2(nD · n+D · nn),

σ2(n) =
1

2
(−1− µ2)nn× (h× n) +

1

2
(1− µ2)n× (h× n)n.

The reformulated new system takes

{
vt + v · ∇v = −∇p+ ν∆v+∇ ·

(
σ1(v,n) + σ2(n) + σE

)
,

nt + v · ∇n+ n×
(
(Ω · n− µ1h− µ2D · n)× n

)
= 0.

(3.4)
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Here we set ν = γ
Re

and take 1−γ
Re

= 1. Similar to Proposition 2.1, we can show that the system
(3.4) obeys the following energy-dissipation law:

1

2

d

dt

∫

R3

|v|2 + |∇n|2dx = −
∫

R3

(
ν|∇v|2 + β1|D : nn|2 + β2|n|4D : D

+ β3|n|2|D · n|2 + µ1|n× h|2
)
dx,(3.5)

which is dissipated under the condition (2.6) by (3.3).

4. Local well-posedness and blow-up criterion

This section is devoted to proving the local well-posedness of the system (1.1). The following
lemma will frequently used.

Lemma 4.1. For any α, β ∈ N
3, it hods that

‖Dα(fg)‖L2 ≤ C
∑

|γ|=|α|

(
‖f‖L∞‖Dγg‖L2 + ‖g‖L∞‖Dγf‖L2

)
,

∥∥[Dα, f ]Dβg
∥∥
L2 ≤ C

( ∑

|γ|=|α|+|β|

‖Dγf‖L2‖g‖L∞ +
∑

|γ|=|α|+|β|−1

‖∇f‖L∞‖Dγg‖L2

)
.

This lemma can be easily proved by using Bony’s decomposition; see [1] for example. The proof
of Theorem 1.1 is split into several steps.

Step 1. Construction of the approximate solutions
The construction is based on the classical Friedrich’s method. Define the smoothing operator

Jεf = F−1(1|ξ|≤ 1

ε
Ff),(4.6)

where F is the usual Fourier transform. Let P be the operator which projects a vector field to its
solenoidal part. We introduce the following approximate system of (3.4):




∂vε

∂t
+ JεP(Jεvε · ∇Jεvε) = ν∆Jεvε +∇ · JεP

(
σ1(Jεvε,Jεnε) + σ2(Jεnε) + σE(Jεnε)

)
,

∂nε

∂t
+ Jε

(
Jεvε · ∇Jεnε + Jεnε ×

[
(JεΩε · Jεnε − µ1Jεhε − µ2JεDε · Jεnε)× Jεnε

])
= 0,

(vε,nε)|t=0 = (Jεv0,Jεn0).

The above system can be viewed as an ODE system on L2(R3). Then we know by the Cauchy-
Lipschitz theorem that there exist a strictly maximal time Tε and a unique solution (vε,nε) which
is continuous in time with value in Hk(R3) for any k ≥ 0. As J 2

ε = Jε, we know that (Jεvε,Jεnε)
is also a solution. Therefore, (vε,nε) = (Jεvε,Jεnε). Thus, (vε,nε) satisfies the following system





∂vε

∂t
+ JεP(vε · ∇vε) = ν∆vε +∇ · JεP

(
σ1(vε,nε) + σ2(nε) + σE(nε)

)
,

∂nε

∂t
+ Jε

(
vε · ∇nε + nε ×

[
(Ωε · nε − µ1hε − µ2Dε · nε)× nε

])
= 0,

(vε,nε)|t=0 = (Jεv0,Jεn0).

(4.7)

Step 2. Uniform energy estimates
We define

Es(v,n)
def
= ‖n− n0‖2L2 + ‖∇n‖2L2 + ‖∇∆sn‖2L2 + ‖v‖2L2 + ‖∆sv‖2L2 .
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First of all, we get by the second equation of (4.7) that

d

dt
‖nε − n0‖2L2 = 2

〈
∂tnε,nε − n0

〉

=
〈
vε · ∇nε + nε ×

[
(Ωε · nε − µ1hε − µ2Dε · nε)× nε

]
,Jε(nε − n0)

〉

=
〈
vε · ∇n0 + nε ×

[
(Ωε · nε − µ1hε − µ2Dε · nε)× nε

]
,Jε(nε − n0)

〉

≤ C
[
‖∇n0‖L∞‖vε‖L2 + ‖nε‖2L∞

(
‖nε‖L∞‖∇vε‖L2 + ‖∆nε‖L2

)]
‖nε − n0‖L2

≤ C
(
‖∇n0‖L∞ + ‖nε‖2L∞ + ‖nε‖3L∞

)
Es(vε,nε).(4.8)

The following energy law still holds for the approximate system (4.7):

1

2

d

dt

∫

R3

|vε|2 + |∇nε|2dx =−
∫

R3

(
ν|∇vε|2 + β1|Dε : nεnε|2 + β2|nε|4Dε : Dε

+ β3|nε|2|Dε · nε|2 + µ1|nε × hε|2
)
dx.(4.9)

Now we turn to the estimate of the higher order derivative for nε.

1

2

d

dt

〈
∇∆snε,∇∆snε

〉
=

〈
∆s(vε · ∇nε),∆

s+1nε

〉
+

〈
∆s

[
nε ×

(
(Ωε · nε)× nε

)]
,∆s+1nε

〉

− µ2

〈
∆s

[
nε ×

(
(Dε · nε)× nε

)]
,∆s+1nε

〉
− µ1

〈
∆s

[
nε ×

(
∆nε × nε

)]
,∆s+1nε

〉

= I1 + I2 + I3 + I4.(4.10)

As ∇ · vε = 0, we get by Lemma 4.1 that

I1 = −
〈
∇∆s(vε · ∇nε),∇∆snε

〉
+

〈
vε · ∇(∇∆snε),∇∆snε

〉

= −
〈
[∇∆s,vε] · ∇nε,∇∆snε

〉

≤ ‖[∇∆s,vε] · ∇nε‖L2‖∇∆snε‖L2

≤ C
(
‖∇nε‖H2s‖∇vε‖L∞ + ‖∇vε‖H2s‖∇nε‖L∞

)
‖∇∆snε‖L2

≤ Cδ

(
‖∇vε‖L∞ + ‖∇nε‖2L∞

)
‖∇nε‖2H2s + δ‖∇vε‖2H2s .(4.11)

Here and in what follows, δ denotes a positive constant to be determined later. We rewrite I2 as

I2 =
〈
nε ×

(
(∆sΩε · nε)× nε

)
,∆s+1nε

〉

−
〈
∇∆s

[
nε ×

(
(Ωε · nε)× nε

)]
,∇∆snε

〉
+

〈
nε ×

(
(∇∆sΩε · nε)× nε

)
,∇∆snε

〉

+
〈
(∇nε)×

(
(∆sΩε · nε)× nε

)
,∇∆snε

〉
+

〈
nε ×

(
(∆sΩε · (∇nε))× nε

)
,∇∆snε

〉

+
〈
nε ×

(
(∆sΩε · nε)× (∇nε)

)
,∇∆snε

〉
,

from which and Lemma 4.1, it follows that

I2 ≤
〈
nε ×

(
(∆sΩε · nε)× nε

)
,∆s+1nε

〉

+ Cδ

(
‖nε‖2L∞‖∇vε‖L∞ + ‖nε‖4L∞‖∇nε‖2L∞

)
‖∇nε‖2H2s + δ‖∇vε‖2H2s .(4.12)

Similarly, we have

I3 ≤− µ2

〈
nε ×

(
(∆sDε · nε)× nε

)
,∆s+1nε

〉

+ Cδ

(
‖nε‖2L∞‖∇vε‖L∞ + ‖nε‖4L∞‖∇nε‖2L∞

)
‖∇nε‖2H2s + δ‖∇vε‖2H2s .(4.13)
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For I4, we have

I4 =− µ1

〈
nε ×

(
∆s+1nε × nε

)
,∆s+1nε

〉

−
[
µ1

〈
∆s

[
nε ×

(
∆nε × nε

)]
,∆s+1nε

〉
− µ1

〈
nε ×∆s

(
∆nε × nε

)
,∆s+1nε

〉]

−
[
µ1

〈
nε ×∆s

(
∆nε × nε

)
,∆s+1nε

〉
− µ1

〈
nε ×

(
∆s+1nε × nε

)
,∆s+1nε

〉]

=µ1

〈
∆s+1nε × nε,∆

s+1nε × nε

〉
+ I41 + I42.

We get by Lemma 4.1 that

I42 ≤ C‖∇nε‖L∞‖∇nε‖H2s‖∆s+1nε × nε‖L2

≤ Cδ‖∇nε‖2L∞‖∇nε‖2H2s + δ‖∆s+1nε × nε‖2L2 ,

and

I41 =µ1

[〈
∆s

[
∇nε ×

(
∆nε × nε

)]
,∇∆snε

〉
−

〈
(∇nε)×∆s

(
∆nε × nε

)
,∇∆snε

〉]

µ1

[〈
∆s

[
nε ×∇

(
∆nε × nε

)]
,∇∆snε

〉
−

〈
nε ×∇∆s

(
∆nε × nε

)
,∇∆snε

〉]

≤C
(
‖∇nε‖L∞‖∆s

(
∆nε × nε

)
‖L2 + ‖∇nε‖H2s‖∆nε × nε‖L∞

)
‖∇nε‖H2s

≤C
{
‖∇nε‖L∞(‖∆s+1nε × nε‖L2 + ‖∇nε‖L∞‖∇nε‖H2s)

+ ‖∇nε‖H2s‖∆nε‖L∞‖nε‖L∞

}
‖∇nε‖H2s ,

which imply that

I4 ≤− µ1

〈
∆s+1nε × nε,∆

s+1nε × nε

〉

+Cδ

(
‖∇nε‖2L∞ + ‖∆nε‖L∞‖nε‖L∞

)
‖∇nε‖2H2s + δ‖∆s+1nε × nε‖2L2 .(4.14)

Substituting (4.11)-(4.14) into (4.10), we infer that

1

2

d

dt

〈
∇∆snε,∇∆snε

〉
+ µ1

〈
∆s+1nε × nε,∆

s+1nε × nε

〉

≤
〈
nε ×

(
(∆sΩε · nε)× nε

)
,∆s+1nε

〉
− µ2

〈
nε ×

(
(∆sDε · nε)× nε

)
,∆s+1nε

〉

+Cδ

(
‖∇vε‖L∞ + ‖∇nε‖2L∞ + ‖∆nε‖L∞‖nε‖L∞

)
‖∇nε‖2H2s

+ δ
(
‖∇vε‖2H2s + ‖∆s+1nε × nε‖2L2

)
.(4.15)

Next we consider the estimate of the higher order derivative for vε.

1

2

d

dt
〈∆svε,∆

svε〉+ ν〈∇∆svε,∇∆svε〉

= −
〈
∆s(vε · ∇vε),∆

svε

〉
+

〈
∆s(∇nε ⊙∇nε),∆

s∇vε

〉

−
〈
∆s

(
β1(nεnε : Dε)nεnε + β2|nε|4Dε +

β3

2
|nε|2(nεDε · nε +Dε · nεnε)

− 1

2
(1 + µ2)nεnε × (hε × nε) +

1

2
(1− µ2)nε × (hε × nε)nε

)
,∆s∇vε

〉

= −〈∆s(vε · ∇vε),∆
svε〉+ 〈∆s(∇nε ⊙∇nε),∆

s∇vε〉

−
〈
∆s

(
β1(nεnε : Dε)nεnε + β2|nε|4Dε +

β3

2
|nε|2(nεDε · nε +Dε · nεnε)

)
,∆sDε

〉

+ µ2

〈
∆s

(
nε × (hε × nε)nε

)
,∆sDε

〉
−
〈
∆s(nε × (hε × nε)nε),∆

sΩε

〉

= II1 + II2 + II3 + II4 + II5.

It follows from Lemma 4.1 that

II1 =
〈
[∆s,vε] · ∇vε,∆

svε

〉
≤ C‖∇vε‖L∞‖vε‖2H2s ,

II2 ≤ Cδ‖∇nε‖2L∞‖∇nε‖2H2s + δ‖∇vε‖2H2s ,
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and

II4 ≤µ2

〈
nε × (∆s+1nε × nε),∆

sDε · nε

〉

+ Cδ‖∇nε‖2L∞‖nε‖4L∞‖∇nε‖2H2s + δ‖∇vε‖2H2s ,

II5 ≤−
〈
nε × (∆s+1nε × nε),∆

sΩε · nε

〉

+ Cδ‖∇nε‖2L∞‖nε‖4L∞‖∇nε‖2H2s + δ‖∇vε‖2H2s ,

and by (3.3),

II3 ≤−
〈(

β1(nεnε : ∆
sDε)nεnε + β2|nε|4∆sDε +

β3

2
|nε|2(nε∆

sDε · nε +∆sDε · nεnε)
)
,∆sDε

〉

+ Cδ‖∇nε‖2L∞‖nε‖6L∞‖vε‖2H2s + Cδ‖vε‖2L∞‖nε‖6L∞‖∇nε‖2H2s + δ‖∇vε‖2H2s

≤Cδ‖nε‖6L∞

(
‖∇nε‖2L∞ + ‖vε‖2L∞

)(
‖vε‖2H2s + ‖∇nε‖2H2s

)
+ δ‖∇vε‖2H2s .

Summing up, we conclude that

1

2

d

dt
〈∆svε,∆

svε〉+ ν〈∇∆svε,∇∆svε〉

≤ µ2

〈
nε × (∆s+1nε × nε),∆

sDε · nε

〉
−

〈
nε × (∆s+1nε × nε),∆

sΩε · nε

〉

+Cδ

(
1 + ‖nε‖6L∞

)(
‖∇nε‖2L∞ + ‖∇vε‖L∞ + ‖vε‖2L∞

)
Es(vε,nε) + δ‖∇vε‖2H2s .(4.16)

Summing up (4.8), (4.9), (4.15) and (4.16), then taking δ small enough, we get

1

2

d

dt
Es(vε,nε) +

ν

2
〈∇vε,∇vε〉+

ν

2
〈∇∆svε,∇∆svε〉

≤ C
(
1 + ‖∇n0‖L∞ + ‖nε‖6L∞

)(
1 + ‖∇nε‖2L∞ + ‖∇vε‖L∞ + ‖vε‖2L∞

)
Es(vε,nε).(4.17)

Step 3. Existence of the solution
As s ≥ 2, we deduced from Sobolev embedding and (4.17) that

d

dt
Es(vε,nε) + ν〈∇vε,∇vε〉+ ν〈∇∆svε,∇∆svε〉 ≤ F(Es(vε,nε)),

where F is an increasing function with F(0) = 0. This implies that there exists T > 0 depending
only on Es(v0,n0) such that for any t ∈ [0,min(T, Tε)],

Es(vε,nε) + ν〈∇vε,∇vε〉+ ν〈∇∆svε,∇∆svε〉 ≤ 2Es(v0,n0),

which in turn ensures that Tε ≥ T by a continuous argument. Thus, we obtain an uniform estimate
for the approximate solution on [0, T ]. Then the existence of the solution can be deduced by a
standard compactness argument.

Step 4. Uniqueness of the solution
Let (v1,n1) and (v1,n1) be two solutions of the system (1.1) with the same initial data. We

denote

δv = v1 − v2, δn = n1 − n2, δh = h1 − h2, δD = D1 −D2, δΩ = Ω1 −Ω2.

Then (δv, δn) satisfies

∂δv

∂t
+ v1 · ∇δv + δv · ∇v2 = −∇p+ ν∆δv +∇ ·

(
σ1(v1,n1)− σ1(v2,n2)

+ σ2(n1)− σ(n2) + σE(n1)− σE(n2)
)
,

∂δn

∂t
+ v1 · ∇δn + δv · ∇n2 = −n1 ×

(
(Ω1 · n1 − µ1h1 − µ2D1 · n1)× n1

)

+ n2 ×
(
(Ω2 · n2 − µ1h2 − µ2D2 · n2)× n2

)
.
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We make L2 energy estimate for δv to get

1

2

d

dt
‖δv‖2L2 + ν‖∇δv‖2L2 = −

〈
δv · ∇v2, δv

〉
+

〈
∇ · (σ1(v1,n1)− σ1(v2,n2)), δv

〉

+
〈
∇ ·

(
σ2(n1)− σ2(n2)

)
, δv

〉
+

〈
∇ ·

(
σE(n1)− σE(n2)

)
, δv

〉

= R1 +R2 +R3 +R4,

and make H1 energy estimate for δn to get

1

2

d

dt
‖∇δn‖2L2 =

〈
v1 · ∇δn + δv · ∇n2,∆δn

〉

+
〈
n1 ×

(
(Ω1 · n1 − µ1h1 − µ2D1 · n1)× n1

)

− n2 ×
(
(Ω2 · n2 − µ1h2 − µ2D2 · n2)× n2

)
,∆δn

〉

=S1 + S2.

Now we estimate R1, · · · , R4. It is easy to see that

R1 ≤ ‖∇v2‖L∞‖δv‖2L2 ,

R4 ≤ C
(
‖∇n1‖L∞ + ‖∇n2‖L∞

)
‖∇δn‖L2‖∇δv‖L2 .

By (3.3), we have

R2 = −
〈
σ1(δv,n1),∇δv

〉
−

〈
σ1(v2,n1)− σ1(v2,n2),∇δv

〉

≤ C‖∇v2‖L3‖∇δn‖L2‖∇δv‖L2 .

For R3, we have

R3 =µ2

〈
n1 × (h1 × n1)n1 − n2 × (h2 × n2)n2, δD

〉

+
〈
n1 × (h1 × n1)n1 − n2 × (h2 × n2)n2, δΩ

〉

= µ2

〈
n1 × (δh × n1)n1, δD

〉
+

〈
n1 × (δh × n1)n1, δΩ〉

+ µ2

〈
n1 × (h2 × n1)n1 − n2 × (h2 × n2)n2, δD

〉

+
〈
n1 × (h2 × n1)n1 − n2 × (h2 × n2)n2, δΩ

〉

≤ µ2

〈
n1 × (δh × n1)n1, δD〉+

〈
n1 × (δh × n1)n1, δΩ

〉

+ C‖∆n2‖L3‖∇δn‖L2‖∇δv‖L2 .

Let us turn to estimate S1 and S2. It is easy to see that

S1 ≤ ‖∇v1‖L∞‖∇δn‖2L2 + C
(
‖∇n2‖L∞ + ‖∆n2‖L3

)
‖∇δv‖L2‖∇δn‖L2 ,

and for S2, we have

S2 =
〈
n1 ×

(
(δΩ · n1 − µ1δh − µ2δD · n1)× n1

)
,∆δn

〉

+
〈
n1 ×

(
(Ω2 · n1 − µ1h2 − µ2D2 · n1)× n1

)

− n2 ×
(
(Ω2 · n2 − µ1h2 − µ2D2 · n2)× n2

)
,∆δn

〉

≤
〈
n1 ×

(
(δΩ · n1 − µ1δh − µ2δD · n1)× n1

)
,∆δn

〉

+ C
(
‖∇v2‖L∞ + ‖∆v2‖L3 + ‖∆n2‖L2 + ‖∇∆n2‖L3

)
‖∇δn‖2L2 .

Summing up all the above estimates, we obtain

d

dt

(
‖δv‖2L2 + ‖∇δn‖2L2

)
≤ C

(
‖δv‖2L2 + ‖∇δn‖2L2

)
,

which implies that δv(t) = 0 and δn(t) = 0 on [0, T ].

Step 5. Blow-up criterion
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First of all, the solution of (1.1) satisfies |n| = 1 if |n0| = 1. Thus, it holds that

n× (∆n× n) = ∆n+ |∇n|2n.(4.18)

Hence, I4 in (4.10) can be written as

I4 =− µ1

〈
∆s+1n+∆s(|∇n|2n),∆s+1n

〉

=− µ1

〈
∆s+1n,∆s+1n

〉
+ µ1

〈
∆s

(
∇(|∇n|2)n

)
+∆s(|∇n|2∇n),∇∆sn

〉
,

which along with Lemma 4.1 gives

I4 ≤− µ1

〈
∆s+1n,∆s+1n

〉
+ C‖∇n‖L∞‖∇n‖H2s‖∆s+1n‖L2

+ C‖∇n‖2L∞‖∇n‖2H2s .

On the other hand, we can bound II3 as

II3 ≤ C
(
‖∇n‖2L∞ + ‖∇v‖L∞

)(
‖∇n‖2H2s + ‖v‖2H2s

)
+ δ‖∇∆sv‖2L2

by using the commutator estimate like

‖∇[∆s, f ]∇g‖L2 ≤ C
(
‖∆s∇f‖L2‖∇g‖L∞ + ‖∇f‖L∞‖∆s∇g‖L2

)
.

From the proof in Step 2, we can deduce that

d

dt
Es(v,n) ≤ C

(
1 + ‖∇n‖2L∞ + ‖∇v‖L∞

)
Es(v,n).

Recall the following Logarithmic Sobolev inequality from[2]:

‖∇v‖L∞ ≤ C
(
1 + ‖∇v‖L2 + ‖∇ × v‖L∞) log(2 + ‖v‖Hk )

for any k ≥ 3. Thus, we have

d

dt
Es(v,n) ≤ C

(
1 + ‖∇v‖L2 + ‖∇n‖2L∞ + ‖∇ × v‖L∞

)
log

(
2 + Es(v,n)

)
Es(v,n).

Applying Gronwall’s inequality twice, we infer that

Es(v,n) ≤ Es(v0,n0) exp exp
(
C

∫ t

0

(
1 + ‖∇v‖L2 + ‖∇n‖2L∞ + ‖∇ × v‖L∞

)
dτ

)

for any t ∈ [0, T ∗). Especially, if T ∗ < +∞ and
∫ T ∗

0

(
‖∇n‖2L∞ + ‖∇ × v‖L∞

)
dt < +∞,

then Es(v,n)(t) ≤ C for any t ∈ [0, T ∗). Thus, the solution can be extended after t = T ∗, which
contradicts the definition of T ∗. The blow-up criterion follows.

5. Global well-posedness for small initial data

This section is devoted to the proof of Theorem 1.2. Assume that (v,n) is the solution of the
system (1.1) on [0, T ] obtained in Theorem 1.1. We define

Es(v,n)
def
= ‖∇n‖2L2 + ‖∇∆sn‖2L2 + ‖v‖2L2 + ‖∆sv‖2L2 ,

Ds(v,n)
def
= µ1‖∆n‖2L2 + µ1‖∆s+1n‖2L2 + ν‖∇v‖2L2 + ν‖∆s∇v‖2L2 .

By the interpolation, there exist c0 > 0 and C0 > 0 such that

c0
(
‖∇n‖2H2s + ‖v‖2H2s

)
≤ Es(v,n) ≤ C0

(
‖∇n‖2H2s + ‖v‖2H2s

)
,

c0
(
‖∆n‖2H2s + ‖∇v‖2H2s

)
≤ Ds(v,n) ≤ C0

(
‖∆n‖2H2s + ‖∇v‖2H2s

)
.
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The basic energy-dissipation law tells us that

1

2

d

dt

∫

R3

|v|2 + |∇n|2dx+

∫

R3

(
ν|∇v|2 + µ1|n× h|2

)
dx ≤ 0,

which along with (4.18) implies that

1

2

d

dt

∫

R3

|v|2 + |∇n|2dx+

∫

R3

(
ν|∇v|2 + µ1|∆n|2

)
dx

≤ µ1

∫

R3

|∇n|4dx ≤ C‖∇n‖L2‖∆n‖3L2 ≤ CEs(v,n)Ds(v,n).(5.19)

Similar to (4.10), we have

1

2

d

dt

〈
∇∆sn,∇∆sn

〉
=

〈
∆s(v · ∇n),∆s+1n

〉
+

〈
∆s

[
n×

(
(Ω · n)× n

)]
,∆s+1n

〉

− µ2

〈
∆s

[
n×

(
(D · n)× n

)]
,∆s+1n

〉
− µ1

〈
∆s

[
n×

(
∆n× n

)]
,∆s+1n

〉

= I1 + I2 + I3 + I4.(5.20)

We get by Lemma 4.1 and Sobolev embedding that

I1 ≤‖∆s(v · ∇v)‖L2‖∆s+1n‖L2

≤C‖v‖L∞‖∆s∇v‖L2‖∆s+1n‖L2 ≤ CEs(v,n)
1

2Ds(v,n);(5.21)

and

I2 =
〈
n×

(
(∆sΩ · n)× n

)
,∆s+1n

〉

+
〈
∆s

[
n×

(
(Ω · n)× n

)]
,∆s+1n

〉
−
〈
n×

(
(∆sΩ · n)× n

)
,∆s+1n

〉

≤
〈
n×

(
(∆sΩ · n)× n

)
,∆s+1n

〉

+ C
(
‖∇n‖L∞‖∇v‖H2s−1 + ‖∆sn‖L2‖∇v‖L∞

)
‖∆s+1n‖L2

≤
〈
n×

(
(∆sΩ · n)× n

)
,∆s+1n

〉
+ CEs(v,n)

1

2Ds(v,n);(5.22)

I3 ≤− µ2

〈
n×

(
(∆sD · n)× n

)
,∆s+1n

〉
+ CEs(v,n)

1

2Ds(v,n);(5.23)

Similar to Step 4 in Section 4, we have

I4 ≤− µ1

〈
∆s+1n,∆s+1n

〉
+ C

(
‖∇n‖L∞ + ‖∇n‖2L∞

)
‖∆sn‖H1‖∆s+1n‖L2

≤− µ1

〈
∆s+1n,∆s+1n

〉
+ C

(
Es(v,n)

1

2 + Es(v,n)
)
Ds(v,n).(5.24)

Summing up (5.20)-(5.24), we obtain

1

2

d

dt

〈
∇∆sn,∇∆sn

〉
+ µ1

〈
∆s+1n,∆s+1n

〉

≤
〈
n×

(
(∆sΩ · n)× n

)
,∆s+1n

〉
− µ2

〈
n×

(
(∆sD · n)× n

)
,∆s+1n

〉

+ C
(
Es(v,n)

1

2 + Es(v,n)
)
Ds(v,n).(5.25)

Now we consider the estimate for the velocity. By Step 2 in Section 4, we have

1

2

d

dt
〈∆sv,∆sv〉 + ν〈∇∆sv,∇∆sv〉

= −〈∆s(v · ∇v),∆sv〉 + 〈∆s(∇n⊙∇n),∆s∇v〉

−
〈
∆s

(
β1(nn : D)nn+ β2D+

β3

2
(nD · n+D · nn)

)
,∆sD

〉

+ µ2

〈
∆s

(
n× (h× n)n

)
,∆sD

〉
−

〈
∆s(n× (h× n)n),∆sΩ

〉

= II1 + II2 + II3 + II4 + II5.(5.26)
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We get by Lemma 4.1 and Sobolev embedding that

II1 ≤ C‖v‖L∞‖∆sv‖L2‖∆s∇v‖L2 ≤ CEs(v,n)
1

2Ds(v,n);(5.27)

II2 ≤ C‖∇n‖L∞‖∆s∇n‖L2‖∆s∇v‖L2 ≤ CEs(v,n)
1

2Ds(v,n);(5.28)

and by Proposition 2.2,

II3 ≤−
〈(

β1(nn : ∆sD)nn+ β2∆
sD+

β3

2
(n∆sD · n+∆sD · nn)

)
,∆sD

〉

+ C
(
‖∇v‖L∞‖∆sn‖L2 + ‖∇n‖L∞‖∇v‖H2s−1

)
‖∆s∇v‖L2

≤CEs(v,n)
1

2Ds(v,n);(5.29)

Similarly, we have

II4 + II5 ≤µ2

〈
n× (∆s+1n× n),∆sD · n

〉
−

〈
n× (∆s+1 × n),∆sΩ · n

〉

+ CEs(v,n)
1

2Ds(v,n).(5.30)

Summing up (5.26)-(5.30), we obtain

1

2

d

dt
〈∆sv,∆sv〉 + ν〈∇∆sv,∇∆sv〉

≤ µ2

〈
n× (∆s+1n× n),∆sD · n

〉
−
〈
n× (∆s+1 × n),∆sΩ · n

〉

+ CEs(v,n)
1

2Ds(v,n).(5.31)

It follows from (5.19), (5.25) and (5.31) that

1

2

d

dt
Es(v,n) +Ds(v,n) ≤ C

(
Es(v,n)

1

2 + Es(v,n)
)
Ds(v,n).

This implies that there exists an ε0 > 0 such that if Es(v0,n0) ≤ ε0, then

Es(v,n)(t) ≤ Es(v0,n0) for any t ∈ [0, T ].

Thus, the solution is global in time by blow-up criterion in Theorem 1.1.
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