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Abstract
We analyse the structure of steady state solutions of the one-dimensional
Doi model for rod-like molecules. We prove that if the interaction strength
parameter U is less than 4, then the constant solution is the only possible steady
state solution. If U is larger than 4, then there is a new solution that corresponds
to the nematic phase. All other non-constant solutions are obtained from
this solution by translation. We prove further that the nematic solutions have
period π instead of 2π , a property that signifies the fact the rods are symmetric,
i.e. they have orientations but no directions.

Mathematics Subject Classification: 76B03, 65M12, 35Q35

1. Introduction

The Doi model for rod-like molecules has been very successful in describing the properties of
liquid crystal polymers in a solvent [3]. The basic object in the Doi model is the single molecule
position-orientation distribution function. Interactions between molecules are modelled by a
mean-field potential. Therefore, the Doi model can be regarded as a mean-field kinetic theory.
Besides interaction with other rods, the rods are also interacting with the flow and are subject to
Brownian force. If the interaction strength is sufficiently strong, compared with the Brownian
force, or if the rod concentration is sufficiently high, then the system prefers to be in a nematic
phase in which the rods tend to line up with each other. Otherwise the system is in an isotropic
phase in which the orientation of the rods is completely random.

The mathematical structure of the Doi model is also very interesting. In the general case,
the Doi model is a Fokker–Planck equation coupled with a Navier–Stokes-like equation for the
hydrodynamics. The Fokker–Planck equation describes the convection, rotation and diffusion
of the rods.

A basic feature of the Doi model is its ability to describe both the isotropic and nematic
phases [4–7], Constantin et al [2] gave the first rigorous proof of the transition to the nematic
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state as the intensity goes to infinity, and this is the property that we will concentrate on in
this paper. We will consider the structure of steady state solutions of the one-dimensional Doi
model in the absence of flow, in which case the model reduces to a non-local diffusion equation
on the circle:

ft = Dr [fθθ + (f Vθ )θ ], t ∈ R
+, θ ∈ R. (1.1)

Here f (θ, t) is the orientation (angle) distribution function, Dr is the rotational diffusivity,
which, without loss of generality, will be set to 1; V is the mean-field interaction potential, the
simplest of which is given by the Maier–Saupe potential [3, 8]:

V (f ) = U

∫ 2π

0
sin2(θ − θ ′)f (θ ′, t) dθ ′, (1.2)

where U is a parameter that measures the interaction strength. Equations (1.1) and (1.2) are
solved together with the normalization and boundary conditions:∫ 2π

0
f (θ, t) dθ = 1 for any t � 0, (1.3)

f (θ, t) = f (2π + θ, t). (1.4)

In physical terms, an isotropic phase corresponds to the case when f = 1/2π and a
nematic phase corresponds to the case when f is peaked at some particular angle.

Our main results are the following theorem.

Theorem 1.1. If U � 4, then the only steady state solution of (1.1) is the constant solution
f (θ) = 1/2π .

If U > 4, then besides the constant solution, all other steady state solutions are of the
form f (θ) = f ∗(θ + θ0), where θ0 is arbitrary and f ∗ is a periodic function with period π .

This result says that there is only one class of nematic solutions and the nematic solutions
are symmetric on the circle. A typical form of f ∗ is shown in figure 1.

In a related work, Constantin et al [1, 2] gave an upper bound on the number of steady
state solutions to the Doi equation with dimension up to 3. They also prove other interesting
results on the dynamical behaviour of the solutions. However, in this paper we will concentrate
on the structure of the one-dimensional steady state solutions.

Before ending this introduction, we mention an interesting fact regarding (1.1) and (1.2).
Define a free energy

A(f ) =
∫ 2π

0

[
f (θ) ln f (θ) +

1

2
f (θ)V (f (θ))

]
dθ (1.5)

and the chemical potential µ

µ = δA

δf
= ln f + V ; (1.6)

then (1.1) can be written as

ft + (f v)θ = 0, v = −Drµθ , (1.7)

which is in the usual form of Fick’s law. By definition, equilibrium solutions are steady state
solutions with constant chemical potential, µ = constant. In this case, the solutions can be
expressed in a Gibbs form:

f (θ) = 1

Z
e−V (θ). (1.8)

This is a nonlinear equation in f since V still depends on f .
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Figure 1. Numerically computed steady state function f (θ) when U = 20.

2. Proof of the theorem

We begin by translating the steady state equations,

fθθ + (f Vθ )θ = 0, (2.1)

f (0) = f (2π), fθ (0) = fθ (2π) (2.2)

into a Fourier form. Writing

f (θ) = 1

2π
+

∞∑
k=1

[ak cos kθ + bk sin kθ ], (2.3)

then (2.1) changes to

−k2ak + 1
2kπU(a2ak−2 − b2bk−2 − b2bk+2 − a2ak+2) = 0, k � 3,

−k2bk + 1
2kπU(a2bk−2 + b2ak−2 + b2ak+2 − a2bk+2) = 0, k � 3,

(U − 4)a2 + πU(−b2b4 − a2a4) = 0,

(U − 4)b2 + πU(b2a4 − a2b4) = 0,

−a1 + 1
2πU(−b2b3 − a2a3 + b2b1 + a2a1) = 0,

−b1 + 1
2πU(b2a3 − a2b3 + b2a1 − a2b1) = 0.

(2.4)

We first show that ak = 0, bk = 0 if k is odd. To prove this observe that if f = f (θ)

is a steady state solution, then f̃ (θ) = f (θ + θ0) is also a steady state solution for any θ0.
Furthermore, if

f̃ (θ) = 1

2π
+

∞∑
k=1

[ãk cos kθ + b̃k sin kθ ], (2.5)
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then (
ãk

b̃k

)
=

(
cos(kθ0) sin(kθ0)

− sin(kθ0) cos(kθ0)

) (
ak

bk

)
. (2.6)

Therefore, without loss of generality we can assume that (a2, b2) is of the form (−r2, 0), where

r2 =
√

a2
2 + b2

2 � 0. Then (2.4) can be written as

ak+2 = 2k

r2πU
ak + ak−2, k � 3,

bk+2 = 2k

r2πU
bk + bk−2, k � 3,

a4 = 4 − U

r2πU
a2, a2 = −r2,

b4 = 4 − U

r2πU
b2, b2 = 0,

a3 =
( 2

r2πU
+ 1

)
a1,

b3 =
( 2

r2πU
+ 1

)
b1

(2.7)

and it is easy to see b2m = 0 for all m.
Consider first the case for k odd. In this case, (2/r2πU) + 1 > 0. If a1 > 0 (<0), we see

that a2m+1 > 0 (<0) for all m. Therefore, we have

a2m+3 >
2(2m + 1)

r2πU
a2m+1,

(
a2m+3 <

2(2m + 1)

r2πU
a2m+1

)
.

Hence |a2m+1| goes to infinity. The same argument can be used for b2m+1. Thus, in this case,
the only solution is for a2m+1 = 0, b2m+1 = 0.

As a consequence, we have shown that steady state solutions of (2.1) are periodic with
period π .

Now we can express (2.4) in the form

a2m+2 = 4m

r2πU
a2m + a2m−2, m > 1,

a4 = 4 − U

r2πU
a2, a2 = −r2.

(2.8)

The recursion relation for the coefficients is described also in [2]. We define ãm = a2m, now
ãm satisfies the following recursion formula:

ãm+1 = λmãm + ãm−1, m > 1,

ã2 = σ ã1, ã1 = −r2,
(2.9)

where λ = 4/r2πU, σ = (4 − U)/r2πU .
Consider first the case when U < 4. In this case σ = (4 − U)/πr2U > 0. Since ã1 < 0

and λ > 0, we see that ãm < 0 for all m. Therefore, we have

ãm+1 < λmãm.

Hence |ãm| goes to infinity. Thus in this case, there are no solutions with r2 > 0. The only
solution is for r2 = 0 and this is the constant solution.

The same argument also holds for the case when U = 4, even though in this case σ = 0
and ã2 = 0.
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Now let us consider the case when U > 4. In this case σ < 0, ã1 < 0, ã2 > 0.
We first show that if f is a solution to (2.1), then ãm has to have alternating signs. Suppose

this is not the case and ãl and ãl+1 have the same sign for some l, then it can easily be seen
from the recursion relation that ãm also has the same sign for all m > l + 1. We can then use
the same argument as above to show that |ãm| goes to infinity and hence such a solution does
not exist.

For solutions with alternating signs, let cm = (−1)mãm, then cm > 0. The recursion
formula for cm is

c2 = −σc1, cm+1 = −λmcm + cm−1, m � 2. (2.10)

Let �m = cm/cm−1, m � 2, then

�2 = −σ, �m+1 = −λm +
1

�m

, m � 2,

i.e.

�m = 1

λm + �m+1
, m � 2.

We write �2 in a compact form:

�2 = [2λ, 3λ, 4λ, . . .] = g(λ). (2.11)

Our problem now reduces to solving the equation

g(λ) = −σ.

To study the properties of g(λ), let us define:

gm(λ) = [2λ, 3λ, 4λ, . . . , mλ], g(λ) = lim
m→∞ gm(λ),

where

[2λ, 3λ, . . . , mλ] = 1

2λ +
1

3λ +
1

· · · +
1

mλ

.

Lemma 2.1. For any given λ0 > 0, the sequence {gm(λ)} is uniformly convergent for λ > λ0,
and so the limiting function {g(λ)} is continuous for λ > 0.

Proof. Let

gm,σ (λ) = [2λ, 3λ, . . . , mλ + ε],

where ε > 0. Simple calculation yields

|gm(λ) − gm,σ (λ)| <
ε

(m!λm−1)2
.

So ∀p ∈ N

|gm(λ) − gm+p(λ)| <
1

(m!λm−1)2

1

(m + 1)λ
. (2.12)

Thus, the sequence {gm(λ)} is uniformly convergent for λ > λ0 and so the limiting function
{g(λ)} is continuous for λ > 0. �

A picture of g(λ) is shown in figure 2. Figure 2 suggests the following lemma.
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Figure 2. g(λ).
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Figure 3. g(λ) and −σ as a function of r2 when U = 10.

Lemma 2.2.

(1) g(λ) is a non-increasing continuous function;
(2) limλ→0+g(λ) > 0;
(3) limλ→∞ g(λ) = 0.

A rigorous proof of these properties can be found in the appendix. We now prove (see
figure 3)
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Lemma 2.3. For any given U > 4, there is a unique r2 > 0 such that

g(λ) = −σ.

Proof. For any given U > 4, from lemma 2.2 g(λ) is a non-decreasing continuous function
of r2. It is obvious that the right-hand side is a strictly decreasing continuous function of r2.
Furthermore, when r2 varies from 0 to ∞, the left-hand side varies from 0 to a positive constant
and the right-hand side varies from +∞ to 0. Hence, there is a unique solution to g(λ) = −σ .

�
Denote this particular value of r2 by r2 = r2(U). A figure of r2 is shown in figure 4.
To prove that the Fourier series converges in this case, observe that we always have

�m � 1

λm
.

This implies that

�m � 1
2

if m is sufficiently large. Therefore, ãm decreases faster than exponential. Hence, the Fourier
series must converge to an analytic function.

So far we have identified a unique value of r2 = r2(U) for the steady state solutions of
the Doi equation. We next consider how these solutions are related to each other.

Lemma 2.4. Let f and f̃ be two solutions of (2.1). Then there exists a θ0 such that

f̃ (θ) = f (θ + θ0)

for all θ .

Proof. Let {ak, bk} and {ãk, b̃k} be the Fourier coefficients of f and f̃ , respectively. From the
argument above, we must have

a2
2 + b2

2 = ã2
2 + b̃2

2.
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Therefore, there exists a θ0 such that(
ãk

b̃k

)
=

(
cos(2θ0) sin(2θ0)

− sin(2θ0) cos(2θ0)

) (
ak

bk

)
. (2.13)

Using (2.4) for k = 2m, we have(
ã2m

b̃2m

)
=

(
cos(2mθ0) sin(2mθ0)

− sin(2mθ0) cos(2mθ0)

) (
a2m

b2m

)
(2.14)

for all m. Since we already know that ak = 0, bk = 0 and ãk = 0, b̃k = 0 if k is odd, we thus
conclude that

f̃ (θ) = f (θ + θ0). �

3. Conclusion

In this paper, we have completely classified the steady state solutions of the one-dimensional
Doi equation. We have shown that there are only isotropic solutions for U � 4 and there is
only one class of nematic solutions for U > 4. We further prove that the nematic solutions are
symmetric when considered on the circle. This is the mathematical statement that the director
fields in nematic liquid crystals do not really have directions, i.e. n is equivalent to −n.

Extending these results to the sphere seems to be of considerable challenge. There one
expects the nematic solutions to be axisymmetric. But a proof of this statement is yet to be
found.
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Appendix. Proof of the properties of g(λ)

Let

Gn(λ) = 2λ + [3λ, . . . , (n + 2)λ] � Pn(λ)

Qn(λ)
, (A.1)

where Pn(λ) and Qn(λ) are polynomials of λ with integer coefficients. We will prove g(λ) is
a non-increasing function. Since G2m(λ) converge to G(λ) = limm→∞G2m(λ) uniformly and
g(λ) is the inverse of G(λ), it is sufficient to prove G2m(λ) is a strictly increasing function of λ.

It can be easily verified that Pn(λ) and Qn(λ) satisfy the following recursion relation
(n � 1):

Pn(λ) = (n + 2)λPn−1 + Pn−2, Qn(λ) = (n + 2)λQn−1 + Qn−2, (A.2)

where P−2 = 0, P−1 = 1, Q−2 = 1, Q−1 = 0.

Lemma A.1. Let

An(λ) = P
′
n(λ)Qn(λ) − Pn(λ)Q

′
n(λ), (A.3)

Bn(λ) = P
′
n−1(λ)Qn(λ) − Pn(λ)Q

′
n−1(λ). (A.4)
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Then

An(λ) = (n + 2)(−1)n + An
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From (A.9) and (A.10), we get, respectively,

(2k + 4)α2k+1 − (2k + 3)α2k = 3k2 + 9k + 6, (A.14)

ek − ek−1 = 3k2 + 9k + 6. (A.15)

Therefore, (A.13) and (A.12) follow.
From (A.5) of lemma A.1, the induction assumption and (A.12), we have

A2k+2 � (2k + 4)(2k + 4)!λ4k+4 + (2k + 4) + α2k + (2k + 4)λ2(−β2k+2 + β2k+1). (A.16)

From (A.9), we have

αn = αn−2 + (n + 2). (A.17)

This implies

α2k+2 � (2k + 4) + α2k. (A.18)

Thus, from (A.16), (A.18) and (A.10) we obtain

A2k+2 � (2k + 4)!λ4k+4 + α2k+2. (A.19)

From (A.6) of lemma A.1, the induction assumption and (A.19), we have

B2k+3 � (2k + 5)!λ4k+5 + (2k + 5)λα2k+2 − (2k + 4)λα2k+1 + β2k+1λ. (A.20)

Therefore, we have

B2k+3 � {(2k + 5)!λ4k+4 + β2k+3}λ (A.21)

if we prove

ek+1 � ek + (2k + 5)α2k+2 − (2k + 4)α2k+1. (A.22)

From (A.9) and (A.10), we have

(2k + 5)α2k+2 − (2k + 4)α2k+1 = 3(k + 1)2 + 9(k + 1) + 6, (A.23)

ek+1 − ek = 3(k + 1)2 + 9(k + 1) + 6. (A.24)

Hence, (A.22) and (A.21) follow.
Similarly, from (A.5) of lemma A.1, the induction assumption, (A.12) and (A.21), we

have

A2k+3 � (2k + 5)(2k + 5)!λ4k+6 − (2k + 5) − α2k+1 + (2k + 5)λ2(β2k+3 − β2k+2). (A.25)

To prove

A2k+3 � (2k + 5)!λ4k+6 − α2k+3 (A.26)

it suffices to prove

α2k+3 � α2k+1 + (2k + 5). (A.27)

Equation (A.27) is obviously true according to (A.17) for n = 2k + 3. Thus, (A.26) is true.
In summary, (A.7) and (A.8) are also true for the cases n = 2k + 2 and n = 2k + 3. We

have completed the proof of this lemma. �
Now we can easily show that G2m(λ) is a strictly increasing function of λ since the

derivative

G′
2m(λ) = P ′

2mQ2m − P2mQ′
2m

Q2
2m

= A2m(λ)

Q2
2m

> 0.

From the properties of G2m(λ) and lemma 2.1, lemma 2.2 follows.
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