
 1

A Component-based Framework and Reusability in Garment*

 Naixiao Zhang
 naixiao@pku.edu.cn

Department of Informatics, School of Mathematical Sciences, Peking University
Ying Liu

liuying@water.pku.edu.cn
Department of Informatics, School of Mathematical Sciences, Peking University

Abstract
Garment is a mechanism for abstraction and

encapsulation of languages. It aims to make the best support
on the definition and implementation of new languages,
especially DSLs (Domain Specification Languages).
Garment originally provided a unified framework for
defining languages and describing relations between
languages. The framework is very convenient for defining
and describing new languages. However it is not flexible
enough to design some similar DSLs.

We propose, in recent work, a component-based
framework for the design of DSL where software reuse is a
very important feature. In this paper, the component-based
framework will be briefly introduced. A conceptual analysis
of reusability in Garment is also made from the different
points of view and different levels here.

1. Introduction

Domain Specification Languages (DSLs) [2][6] are
also called task-specific, application-oriented, or
problem-oriented, such as HTML for web pages, Excel
macros for spreadsheet applications, VHDL for hardware
design and so on. In addition, so-called fourth-generation
languages (4GLs) are usually DSLs for database applications.
They have been used widely in many kinds of fields, and
more and more DSLs need to be designed. How to define
and implement new DSLs becomes very important. Though

* This paper was supported by the National Natural Science Foundation

of China under Grant. No. 69983001.

DSLs are similar to general-purpose programming
languages, such as Pascal, Fortran, and C, they are
different. DSLs are often simpler than general-purpose
languages in their purposes. Without thinking of the
domain knowledge, designing and implementing DSLs is
easier than that of general-purpose languages because they
are succinct. Then, it is possible to provide a uniform
mechanism for defining and implementing DSLs. In [7],
the authors had pointed out that domain-specific languages
are closely related to interface language of
domain-oriented software. Thus, the specification of such
software can be abstracted to specifications of language
systems. As a unified model to support software
development and research, a mechanism named Garment
for abstracting and encapsulating languages is proposed.

In [7], a systematic development method called
MOSAT(Model-Oriented Specific And Transformation) is
proposed. In MOSAT, the development of program,
software, and the environment is regarded as three
different levels. Where, the environment developers design
a unified software development environment on the basis
of software theory model. This environment includes a
software development language (SDL) and an interpreter
of this SDL. Software developers use SDL as a tool to
describe their software and its interface language, then
domain-specific abstract model can be built. The compiler
of the interface language is generated by SDL interpreter.
On the third level, the program developers (computational
scientists) focus on domain problems, build their
problem-solving models (programs) using the developed
language. These programs are translated into the
executable programs for solving of the problems by the

 2

compiler. To implement MOSAT method, it is crucial to
design an SDL for describing DSLs.

A framework of Garment had been discussed in [7].
Many experiments have showed that software developers
can easily describe a language with it. But, if a software
developer wants to develop two similar languages, he has to
repeatedly do some similar works, such as describing similar
tokens, statements, and expressions. The framework seems
not flexible. Therefore, a new component- based framework
in Garment, which makes full use of features of software
reuse, is proposed in this article.

The component-based framework in Garment is
used for the specifications of DSLs. Then a SDL is
defined for developing software or language system. In
SDL, the new component-based framework of Garment
is used to define new DSL with the beginning notation
 “garment”. If a DSL is described in SDL, the definition
of this DSL is called a garment. DSLs developers can
describe a DSL with many components, such as
token_component, declaration_component, expression_
component, statement_component, type_component,
and program_component. All components and garments can
be stored in a repository, which is called knowledge
repository. While defining a new DSL, the developer can
choose some components[3] even a garment from this
knowledge repository and reuse them in the new DSL. In
addition, language transformation is the means of
implementing DSLs in SDL. A DSL developer must choose a
target language for the new DSL. Transformation rules are
used to describe the transformation from the description of a
new DSL to the target language. The transformation rules
can also be reused while defining a new DSL using SDL if
the transformation is the same as before. Therefore, there are
three reuse levels in SDL: To reuse a whole garment is the
highest reuse level in SDL; To reuse some kinds of syntax
components is the second level; To reuse the concrete syntax,
for example, a special statement or type, is the lowest reuse
level in SDL.

A general source-to-source program transformation
system is used to implement a DSL in Garment.
Software reuse is one of the most important features of
transformation system. The reusability in this
transformation system will be described in this paper.

DSLs developers need to develop DSLs with SDL.
Then an environment which implements a SDL

interpreter must be provided for DSLs developers. Of
course, this environment should include some other
auxiliary functions for developing new DSLs
conveniently. This environment is called Garden.
Because any new DSL can be developed with Garden,
Garden can be regarded as a DSLs generator. Once a
DSL is developed with Garden, computation scientists
can describe application systems with it. This kind of
DSLs can also be regarded as application generators.
Software reuse is also one of the most important
features of application generators. In this paper, the
reusability in the application generators is also
discussed succinctly.

This article is organized as follows: The new
component-base framework in Garment is discussed in
Section 2. In Section 3 we make a conceptual analysis
of reusability in Garment. Conclusion and final remarks
are given in Section 4.

2.Component-based framework of Garment

While developing a new DSL, analyzing this

application domain at the beginning is necessary. After
finishing analyzing, the next step is to define the DSL. The
definition of a DSL includes several components, such as
token_component, decl_component, expr_component,
stmt_component, type_component, and prog_
component. Afterward, how to describe the DSL using a
high-level specification language is one of the most
important tasks. The following step is to implement the
specification, i.e. to generate the DSL’s processor. We can
adopt the method to generate target codes directly. But in
order to improve the productivity and reuse existing software,
DSLs can be implemented as a source-to-source translator
composed with a processor for another language [6].
 According to above steps of developing DSLs, SDL
provides a component-based framework for the specification
of a DSL. The SDL’s processor is used to produce a DSL
processor from its specification. Source-to-source
transformation system is used to support the implementation
of DSLs. We use a set of transformation rules to translate a
DSL program into the program in target language.
 First, we discuss how to define a new DSL in SDL.
Here, a garment encapsulates a whole definition of a DSL
including its syntax and semantic. Syntatically, a garment

 3

begin with keyword  garment, with its components
indicated by token_component, decl_component,
expr_component, stmt_component, type_component, and
prog_component respectively. Every component includes the
syntax of DSL, which includes abstract syntax, concrete
syntax, and some transformation rules. Finally, a garment
ends with keywords  end garment;.

The syntax of garment is given bellow. Boldface words
are keywords of the SDL.
 garment ::= garment id1 [extend id2]

 [token_component]
 [decl_component]
 [expr_component]
 [stmt_component]
 [type_component]
 [prog_component]
 end garment;
id1 is the name of the new DSL, id2 is regarded as id1’s
parent language. The definition of a new DSL is
correlative with its parent language.

The definition of a DSL is composed of several
components. Token_component is used to define all lexical
elements of a DSL, such as identifiers, digitals, and strings.
Decl_component is used to define all kinds of declarations of
a DSL, such as constant, variables, functions, and procedures.
Expr_component is used to define the format of expressions.
Stmt_component is used to define the format of statements,
such as assign, procedure calling, and condition statements.
These components’ grammar structures are different, but they
are similiar. In this paper, we will mainly introduce the
syntax of token_component. The differences among these
components will be pointed out when they appear. In addition,
Type_component is a kind of compound component, it define
all the types of systems of a DSL including the format of all
types and operations with respect to them. Because of its
particularity, it also will be introduces in detail.
• token_component
The syntax of token_component is given bellow. For
convenience, BNF is extended: The notation {}-s is used to
describe a non-empty list of element separated by s.
token_component:: =
token_component [include token_component_name]:
 {token_rule}-@
end [token_component] ;
token_component_name denotes an existing token

component. It may be an independent component. It may also
be the name of an existing DSL. If token_component_name is
the name of an existing DSL, the token component of this
DSL can be reused here. Token_rule is the most important
part of token_component. The specification of token_rule
takes the form:
token_rule ::=
[aux][rule_name][token_local] in syntax [==> trans]
aux is the modifier of this rule, and this modifier can be
removed. When there is not any modifiers in a rule, this rule
is called interface rule which can be used anywhere of any
component in the garment. On the contrary, a rule is called
auxiliary rule which only can be used inner the component
when the rule have a modifier  aux. Rule_name is a rule’s
name, of course, a rule may have no name, then, rule_name
is removed. Token_local makes comments of this rule’s local
lexical, they describe all syntax compositions and their
properties which are used in the concrete syntax. Then syntax
is the left part of a rule, it defines the concrete syntax of the
DSL. The right part of this rule, trans, defines the semantics
of the structure by means of its target language. Each rule in
the definition plays a role of a transformation rule, in which,
syntax describes the match pattern and match conditions, and
trans describes the substitution form of target language.

Token_local takes the following form:
token_local::= {(rule_name | char_set) item_name }-,
char_set ::= {char_list} |

char_set+char_set |
char_set-char_set |
char_set * char_set

char_list ::= { obs_char }- | obs_char .. obs_char
item_name ::= id

We have mentioned that there are some differences
among these components. Now let us study the following
syntaxes of decl_rule, expr_rule and stmt_rule:
decl_rule::=[aux][rule_name] local in syntax [==> trans]
expr_rule::=[aux][rule_name] local in syntax return type

[==> trans]
stmt_rule::=[aux] [rule_name] local in syntax [==> trans]

Obviously, they are different to token_rule. Firstly, the
defining of local variables is not same. The above three rules
have the same syntax in defining their rules’ local variables:

local ::= {item_decl}-,
item_decl ::= kind item_name [: type]

kind ::= decl | expr | stmt | type | rule_name

 4

In addition, the concrete syntax of expr_rule makes it
clear that the concrete syntax of any expression should have
return type.
• type_component
Type_component is more complex than other components. It
is used to define all types of a DSL. The syntax of it is given
as follows:
type_component::=
type_component [include type_component_name] :
 {type_def}-%
end [type_component] ;
Every type_def define a type, include its syntax and some
operations relative to it. A type_def includes the definitions
of literals, operators, expressions, functions, and procedures.
The definition of type_rule is given as following:
type_def::=
type type_name repr rep_type [with impl_mod_name]
 [comment]

[literals: token_rules]
[operatiors: op_rules]
[expressions: expr_rules]
[functions: func_rules]
[procedures: proc_rules]

end [abs_type_name]
In the above definition, abs_type_name is the name of a type.
It is defined by type_def, and rep_type is the representation of
this type in the target language. In addition, there must be
some relationship between abs_type_name and rep_type, and
it is illustrated by the invariant, which is included in the
comment. The other parts of type_def, such as toke_rules,
op_rules, expr_rules, func_rules, and proc_rules are similar
to that of the other components. There is another composition
after with, impl_mod_name, in type_def. Impl_mod_name is
the name of an existing module, which has been
implemented in the target language. This module can be a
package that is implemented by Ada, a class implemented by
C++, or a file implemented by C. Any function that was
defined in this module can be used in the compositions of
type_def directly. A type that is defined in a type_component
is similar to a class. So that it is very convenient to be
inherited and extend an existing type.
 While developing a domain application system, the
development process is divided into two separate stages. At
the first stage, the application domain is analyzed. And the
corresponding DSL is designed and defined using the SDL.
The DSL processor can be produced automatically. At the

second stage, the application system is developed using the
DSL. This approach is efficient for the application domains if
there are many application systems to be developed with low
cost. Obviously, once a suitable DSL is implemented, the
second stage will become considerable easy.

3. Reusability in Garment

Software reuse [1] is regarded as a potential powerful
means to improve the practicability of software engineer.
Garment as a new mechanism of abstraction and
encapsulation for languages is provided mainly because of
software reuse. Just because of the reusability in Garment, it
is very convenient and flexible to design domain application
system.
 On the one hand, SDL provides a new component-based
framework. This component-based framework provides
language or software developers with several kinds of
software reuse levels. On the other hand, garments that were
defined in SDL are implemented on the basis of
transformational system. However, transformational system
is one of the most important application cases of software
technique reuse. Thereby we will discuss the reuse ability in
Garment mainly because of the above two aspects. We have
implemented a Garden that can be regarded as a kind of
application generator. Application generator is also one of
common application cases of applying the technique of
software reuse. A conceptual analysis of reusability in
Garment is the main topic of this section.

3.1 Reusability in Defining DSLs

Software reuse is an important target in software

engineering. Rickard[6] had pointed out that abstraction was
regarded as an important part of software reuse. Therefore,
how to improve the abstraction level while defining a
garment is one of the most important targets. SDL provides a
component-based framework for defining DSLs. This
component-based framework allows users to define DSLs in
a high abstract. While defining new DSLs, some features of
existing garments can be inherited. Then heavy work to
define a new DSL from scratch can be avoided.

There are three reuse levels while defining a new DSL.
The first level is to reuse a whole garment. It means that
DSLs developers can reuse all features of a garment. Then
the reused language is the new DSLs’ parent-language. This
level can be regarded as the highest reuse level. The second
level is to reuse some components of a garment or some
independent components. Because some DSLs may have

 5

same parts, but these DSLs usually are not completely same.
Then it is not necessary to rewrite all the components of new
DSL. The developers can only inherited one or more
components of a garment. DSLs developers also can reuse
some independent components, which do not belong to any
garment. The third level is to reuse some concrete
composition of a component, for example, some rules in a
component can be reused while defining the same component
or other similiar components. This level is regarded as the
lowest reuse level.
• To reuse a whole garment
To reuse a whole garment is the highest reuse level in three
levels. After a garment is defined, it is stored in knowledge
repository. When a user wants to define a new DSL, he can
search for an existing garment that the new DSL could be
defined on the basis of it from the knowledge repository. If
there is an existing garment that can be reused, the user can
reuse the whole garment. So, the language that the garment
has defined will be regarded as the new DSL’s
parent-language. So the new DSL is regarded as the
parent-language’s child-language. In the definition of
garment in the section 2, id2, which locates behind “extend”,
is the name of the language, which will be reused by the id1.
So id2 is id1’s parent-language. Reusing a garment means
reusing all the components of this garment. A small example
about it is given as follows.
garment CALCULATOR_1 extend CALCULATOR
 type_component:

 type cal_1 repr Float
 leterals:
cal_1_literal num wh, num frac, sign s in [s] wh “.” frac
 operators:

“/” i:cal, j:cal return cal_1
==> “Float(“ i “)” “/” “Float(“ j “)”

 @ ……
 …..
 end

end type_component;
 prog_component:
 program_1 expr r:cal_1 in “go” r ==> ……
 end prog_component
end garment;
A new language CALCULATOR_1 is defined, and it inherits
all features from its parent-language — CALCULATOR,
which had been defined and existed in the knowledge

repository. Then CALCULATOR_1 includes all components
of its parent-language besides some new defined type, cal_1,
in its type_component and new prog_rule, program_1, in its
prog_component.
• To reuse some components
If a garment can be reused by a new garment, the task of
defining a new DSL becomes easy. However, some DSLs are
not same completely. It is not necessary to reuse all the
components of a garment. Then the component-based
framework of SDL permits DSLs developers to reuse some
components of a garment or some independent components.
To reuse some components is the second reuse level, and
component is another reusable unit.

 There are some garments and independent components
in the knowledge repository. While defining a new DSL, the
developer can search for the new DSL’s parent-language
from the knowledge repository firstly. If the parent-language
does not exist, he can search for a garment which includes
components that can be reused by the new DSL. If the new
garment reuses some of the components of a garment, the
developer only needs to add the garment’s name behind of a
keyword  include, at the beginning of the definition of the
new defined component.

DSLs developers also can search for some independent
components from the knowledge repository, which can be
reused by the new garment. If an independent component is
reused, the independent component’s name is added behind
of the keyword  include, at the beginning of the definition
of the new defined component.

The following example is about how to reuse a
component of a garment.
garment CALCULATOR_1

type_component include CALCULATOR:
 type cal_1 repr Float
 leterals:

cal_1_literal num wh, num frac, sign s in [s] wh “.” frac
 operators:

“/” i:cal, j:cal return cal_1
==> “Float(“ i “)” “/” “Float(“ j “)”

 @ ……
 …..
 end
 end type_component;
 ……
end garment;

 6

CALCULATOR_1 only reuse CALCULATOR’s type_
component not the whole garment. This reuse level of
components makes it more flexible to define a new DSL
because we usually only need to reuse some of the
components of a garment not the whole garment.
• To reuse some concrete compositions of a component
To reuse some concrete compositions of a component is the
lowest reuse level. Sometimes it is not necessary to reuse the
whole component. Then the component-based framework
supports to reuse some concrete compositions of a
component mainly referring to some rules. The following
example is about type_componet.
type_component:
 type rational repr “type ration_number is”
 “record”
 “num, denom: integer;”
 “end record;”

 literals:
 ……
 operatiors:
 “+” x: rational, y: rational return rational ==>

“(“ x ”.num” “*” y ”.denom” ”+” y ”.num” “*”
 x ”.denom” ”)” ”/” ”(“ x ”.denom” ”*” y ”.denom” ”)”

@ ……
 expressions:

id_expr id r: rational in r return rational ==> r
@ neg_expr expr r: rational in “-“ r return rational

 ==> “-“ r
@ ……

 end
end;
expr and id both have been defined in token_component and
expr_component. In this definition of type, they are reused
directly not defined repeatedly.

While developing new DSLs using Garment, developers
only need to concentrate on how to describe the new DSL
using SDL not the detailed implementation, which will
definitely improve the productivity of new DSL. [1] have
pointed out that software is developed in two phases with
transformational system: Software developers describe the
semantic behavior of a software system using a high-level
specification language; Software developers then apply
transformations to the high-level specifications. At the first
phase, software developers create an executable system in a
language that has relatively small cognitive distance from the
developer’s informal requirements for the system. SDL is a
specification language for the first phase of the

transformational system. The reusability of SDL will
definitly improve the productivity of DSLs.

3.2 Reusability in Implementing DSL

After defining a DSL, how to implement is another
important topic. In the component_based framework, a
general source-to-source program-transformation system is
used to support the implementations of DSLs[5]. User can
choose an existing target language for new DSL. The chosen
language is called the implementation language, which
serves as the target of the transformation.

As a transformational system, software reuse is the most
important feature. We will analyze the reusability in the
transformational system from the points of view of reusable
artifacts. The following three sections describe three different
kinds of reusable artifacts in the transformation system.
• A whole target language
While language developers implementing a language from
scratch, they must experience a process of lexical analyzing,
parsing, syntactic and semantic error analyzing, and code
generating. Obviously, it is very complex and difficult for
developers. Then, a method of providing a general interpretor
for implementing new DSLs is adopted with Garment.
Programs written in new DSLs are transformed into
programs in target language. Just because of adopting
transformation method, the complex process is avoided.
While developing a new DSL, we can choose an appropriate
existing language as the target language firstly. Secondly,
developers make an abstract description for the new DSL and
translate it into the target language. In fact, to reuse an
existing language is equal to reusing this language’s
compiler.
• Primitive structures of a target language
Once a DSL is implemented, the primitive structures of its
target language can be reused while application system
developers developing new application systems in the DSL.
In addition, these structures also can be reused to design
higher level structures. Then, there are two possibilities to
reuse some primitive structures of the target language.

First, a DSL can embed some of these structures
without modifying. Thus, users can use the structures in their
DSL programs directly. While describing new DSLs, none of
any transformation actions need to be implemented.
Obviously, this reuse level is provided for the DSL
programmers. An example is given below.

 7

stmt_component:
 Proc_call ident name in “call” name
 @ ……
end stmt_component
The structure of calling statement to procedure remains
unchanged. DSL developers need not redesign the structure.

Secondly, some structures can be reused to implement
higher level structures of a new DSL. This kind of usage is
not obvious, but very important. This reuse level is also
provided for DSL developers. An example is also given as
follows:
stmt_component:
enum_ass variable a, expr b in $1{a}-“,” ”:=” $1{b}-“,”
==>#1:”declare”

 $1{“task” temp0 ”;”
 “task body” temp0 “is”
 “begin”

 a.#2 “:=” b.#1”;”
 “end” temp0 ”;”}

 “begin null; end;”
 “declare”

$1 {“task” temp1 “;”
 “task body” temp1 “is”
 “begin”
 a.#1 “:=” a.#2”;”
 “end” temp1 “;”}
 “begin null; end;”

#2: $1{b.#2}
#3: $1{a.#3 “:=” a.#2 ”;”}

$1{a.#2 “:=” b.#2 “;”}
 $1{“if” a.#3 “/=” a.#2 “then return False; end if;”}
@ ……
end;
This example describes how to implement multiple
assignment statement in a parallel language. When a
statement is an enumerated assignment, every sub-variable is
assigned in parallel. Then the new DSL needs to implement
the parallelization. In the above example, it is clear that the
new DSL don’t provide any parallel structures. Because
Ada95 is chosen as the new DSL’s target language, and there
is a fixed grammar structure, task, which can describe
parallel semantics. Then this existing structure is used to
implement parallel processing for the new DSL programs.
Although this kind of reusability for the primitive structure of
the target language is not obvious, it is still very important.

• Existing sub-program:
This reuse level can be introduced from two different points
of view. First, existing sub-program in target languages, such
as user-defined procedures, functions, data-types, etc., can be
reused as usual. In the specification of a DSL, one can ask
for the use of those existing target-language level entities, as
building blocks for the implementation of the DSL. This
reuse level is provided for DSLs developers. An example
about it is given as follows:
type Comx with Complex
 literals: …….
 operators:
 “+” x:Comx, y:Comx return Comx ==> x ”+” y

@ ……
end
Complex is a defined type in Ada95, which is the new DSL’s
target language. Many declarations and operations, such as
“+”, “-“, and “*”, about this data type have been defined in
Ada95, and all those definitions have been put into a program
package whose name is Complex. Then, the op_rule can use
any of Complex’s operation, “+”.
 Secondly, a DSL developer and programmers can define
many sub-programs, and put them into the DSL’s functions
library. Then other programmers can reuse those existing
sub-programs while programming. This reuse level is the
same as usual reusability in general-purpose languages, and it
is for programmers.
 In fact, the reuse level is more than that we have
mentioned before, for example, a newly developed DSL can
be chosen as the target language. Once a new DSL is chosen
as a target language, it means that another reuse level
appears.

In order to provide DSLs developers with an
environment for developing new DSLs, we have set up a
Garden. The software development process in Garment
approach can be divided into three classes:
• The design of the SDL and development of a Garden;
• Analyzing application domains, then defining and
implementing a new DSL;
• Developing domain application systems in a DSL.
 Garden can be regarded as a DSLs generator. For
DSLs developers, it is clear that DSLs’ specification is
separated from its implementation. While developing a new
DSL, making a specification of the new DSL is the only
thing. On this level of abstraction, it is possible for even

 8

non-programmers to be familiar with concept of an
application domain to create DSLs. All DSLs developers can
reuse the global system architecture, major subsystems
within this global architecture, and very specific data
structures and algorithms [6]. This reuse level is provided for
DSLs developers.
 DSLs developed in the second step can also be regarded
as an application system generator. Once a DSL is generated,
programmers can develop domain application systems with it.
This application system generator is similar to the traditional
programming language compiler. However, it differs from
traditional compilers in that the input specifications are
typically very high-level, special-purpose abstractions from
an application domain. This reuse level is special for domain
application system developers.

4. Conclusion

Garment is a mechanism for abstraction and

encapsulation of languages. It aims to support the
definition and implementation of new languages, especially
DSLs. However, we think that Garment is mainly used for
DSLs because DSLs are usually simple and succinct. It is
well known that DSLs are used more and more widely.
Moreover, some people think that design and effective
implementation of DSL will become an important field in the
near future. It is necessary to provide an effective mechanism
to design DSLs. Garment plays an important role in defining
DSLs. In addition, the correctness and effectiveness are both
important for a DSL. Therefore, the two properties may be
guaranteed through the type checking and optimization in
Garment.

The component-based framework of Garment is a
progress because of reusability. For defining DSL, this
framework supports several reuse levels. DSLs developers
can conveniently and flexibly describe new DSLs by
defining some components and inheriting some features from
its parent-language, some independent components, and
some concrete compositions of components. Transformation
system is used to implement DSLs. Reusability is an
important feature in transformation system. In addition,
Garden can be regarded as an application generator. It is well
known that reusability is also an important feature of
application generator. In a word, this component-base
framework is a product of reusability. Although we don’t
give formal definition of the reusability in Garment like [4], a

conceptual analysis has been made in this paper.
In this paper, the component-based framework and

reusability were discussed mainly from the point of view of
being used in Garment. In fact, this idea is common to
sofeware engineering. We have pointed out before that
domain-specific languages are closely related to interface
language of domain-oriented software. Thus the specification
of such software can be abstracted to specifications of
language systems. While developing a new domain software
system or language system, it is very important to reuse some
existed component. It is also necessary to provide a
framework for the users. The component-based framework
introduced in this paper is an special case for impertive
language development. However, it can be extended to
object-oriented language and others specification language
easily. We are doing something about it.

5.References

[1] Charles W. Krueger, Software Reuse, ACM Computing Surveys,
Vol. 24, No. 2, June 1992, P131-183.

[2] David Atkins, Thomas Ball, Michael Benedikt, Glenn Bruns,
Kenneth Cox, Peter Mataga, Kenneth Rehor, Experience with a
Domain Specific Language for Form-based Services. In USENIX
Association, Conference on Domain-Specific Languages, P37-49,
October, 15-17, 1997.

[3] P.A.V. Hall, Architecture-driven Component Reuse.
Informational and Software Technology 41(1999) P963-968.

[4] Rym Mili, Jules Desharnais, Marc Frappier, Ali Mili, Semantic
Distance Between Specifications, Theoretical Computer Science
247(2000), P257-276.

[5] Zhang Naixiao, A Notation of Program Transformation in
Programming Languages  on Transformation Programming
Languages. Journal of Software Transaction, Vol. 4, No. 5, P17-23,
October, 1993.

[6] Rickard E. Faith, Lars S. Nyland, and Jan F. Rrins, KHEPERA:
a system for rapid implementation of domain specific languages. In
UNENIX Association, Proceeding of Conference on
Domain-Specific Languages, Santa Barbara, California, P 243-255,
October 15-17, 1997.

[7] Zhang Naixiao, Zheng Hongjun and Qiu Zongyan, Garment 
A Mechanism for Abstraction and Encapsulation of Languages,
ACM SIGPLAN Notices, Vol. 32, No. 6, p53-60, 1997.

