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Abstract

We present new fingerprint classification algorithms based on two machine learning ap-
proaches: support vector machines (SVM), and recursive neural networks (RNN). RNN are
trained on a structured representation of the fingerprint image. They are also used to extract
a set of distributed features of the fingerprint which can be integrated in the SVM. SVM are
combined with a new error correcting code scheme. This approach has two main advantages:
(a) It can tolerate the presence of ambiguous fingerprint images in the training set, and (b)
It can effectively identify the most difficult fingerprint images in the test set. By rejecting
these images the accuracy of the system improves significantly. We report experiments on the
fingerprint database NIST-4. Our best classification accuracy is of 95.6 percent at 20 percent
rejection rate and is obtained by training SVM on both FingerCode and RNN-extracted fea-
tures. This result indicates the benefit of integrating global and structured representations

and suggests that SVM are a promising approach for fingerprint classification.



1 Introduction

The pattern recognition problem studied in this paper consists of classifying fingerprint images into
one out of five categories: whorl (W), right loop (R), left loop (L), arch (A), and tented arch (T).
These categories were defined during early investigations about fingerprint structure [17] and have
been used extensively since then. The task is important because classification can be employed as a
preliminary step for reducing complexity of database search in the problem of automatic fingerprint
matching [12, 21]: If a query image can be classified with high accuracy, the subsequent matching
algorithm only needs to compare stored images belonging to the same class.

Many approaches to fingerprint classification have been presented in the literature and this
research topic is still very active. Overviews of the literature can be found in [2, 19, 20, 18]. These
approaches can be coarsely divided into two main categories: “flat” and “structural” approaches.
Flat approaches are characterized by the use of “decision-theoretic” (or statistical) techniques
for pattern classification, namely, a set of characteristic measurements, called feature vector, is
extracted from fingerprint images and used for classification. Methods in this category include
detection of singular points [22], connectionist algorithms such as self-organizing feature maps [16],
neural networks [27, 28], and hidden Markov models [34]. Structural approaches presented in the
literature rely on syntactic or structural pattern-recognition techniques. In this case fingerprints
are described by production rules [26] or relational graphs. Parsing or (dynamic) graph matching
algorithms [24, 2] are used for classification. The structural approach has received less attention
until now. However, a simple visual analysis of the “structure” of fingerprint images allows one
to see that structural information can be very useful for distinguishing some fingerprint classes
(e.g., for distinguishing fingerprints belonging to class A from the ones of class W - see Figure 1).
Accordingly, we will attempt to “integrate” flat and structured representations and evaluate the
practical benefits of their combination. Concerning this issue, very few works investigated the
potentialities of such integration [3, 25].

In this paper, we propose new fingerprint classification algorithms based on two machine learn-
ing approaches: support vector machines (SVM), and recursive neural networks (RNN). SVM is a
relatively new technique for pattern classification and regression that is well-founded in statistical
learning theory [36]. One of the main attractions of using SVM is that they are capable of learning

in sparse, high-dimensional spaces with very few training examples. They have been successfully



applied to various classification problems (see [4] and references therein'). A RNN is a connection-
ist architecture designed for solving the supervised learning problem when the instance space is
comprised of labeled graphs [9]. This architecture can exploit structural information in the data,
which, as explained above, may help discriminating between certain classes. In this paper RNN
are also used to extract a distributed vectorial representation of the relational graph associated
with a fingerprint. This vector is regarded as an additional set of features subsequently used as
inputs for the SVM classifier.

An important issue in fingerprint classification is the problem of ambiguous examples: some
fingerprints are assigned to two classes simultaneously, i.e. they have double labels (these images
are also called “cross-referenced”). In order to address this issue, we designed an error correcting
code (ECC) [5] scheme of SVM classifiers based on a new type of decoding distance. This method
presents two main advantages. First, it allows a more accurate use of ambiguous examples because
each SVM is in charge of generating only one codebit, whose value discriminates between two
disjoint sets of classes. Then, if a fingerprint has labels all belonging to the same set for a particular
codebit, we can keep this example in the training set without introducing any labeling noise. The
second advantage of our system is his capability to deal with rejection problems. This is due to
the concept of margin inherent to the SVM, which is incorporated in the decoding distance.

The system is validated on the NIST database 4 [37]. We present three series of experiments.
As a base fingerprint representation we use FingerCode features?, a flat representation scheme
proposed in [21]. In the first set of experiments, FingerCode features are combined with a structural
representation of fingerprints based on relational graphs. In this case, a connectionist architecture
that integrates flat and structural representations achieves 87.9 percent accuracy at 1.8 percent
rejection rate. In the second experiment, SVM are trained on FingerCode [21] preprocessed images,
achieving 89.1 percent accuracy with 1.8 percent rejection. This result is only 0.9 percent worse
than the accuracy obtained in [21] using the same features and a two stages k-NN/MLP classifier.
Interesting SVM’s accuracy is much better than separate accuracies of both k-NN and MLP.
Finally, the SVM is trained on both FingerCode and RNN-extracted features. In so doing, the
performance is improved to 90.0 percent at 1.8 percent rejection rate. By allowing 20 percent

rejection rate, accuracy increases to 95.6 percent. This result indicates the benefit of integrating

1For an updated list of SVM applications see www.clopinet.com/isabelle/Projects/SVM/applist.html
2A short introduction on FingerCode feature is given in Section 5.1.



global and structural representations for fingerprint classification.

The paper is organized as follows: In Section 2 we briefly describe SVM'’s theory and introduce
our new error correcting code classification method. Section 3 discusses the method we designed
for the extraction of the structural features. The RNN is presented in Section 4. In Section 5 we

report the experimental results. Finally, we report our conclusions in Section 6.

2 Support vector machines

In this section we briefly overview the main concepts of support vector machines (SVM) [36] for

pattern classification. More detailed accounts are [36, 1, 8, 4].

2.1 Binary classification

SVM perform pattern recognition for two-class problems by determining the separating hyperplane?
with maximum distance to the closest points of the training set. These points are called support
vectors. If the data is not linearly separable in the input space, a non-linear transformation ®(-)
can be applied which maps the data points x € IR" into a high (possibly infinite) dimensional space
‘H which is called feature space. The data in the feature space is then separated by the optimal
hyperplane as described above.

The mapping ®(-) is represented in the SVM classifier by a kernel function K (-, -) which defines
an inner product in H, i.e. K(x,t) = ®(x)- ®(t). The decision function of the SVM has the form:

14
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where ¢ is the number of data points, and ¢; € {—1,1} is the class label of training point x;.
Coefficients «; in Equation (1) can be found by solving a quadratic programming problem with
linear constraints. The support vectors are the nearest points to the separating boundary and are
the only ones for which «; in Equation (1) can be nonzero.

An important family of admissible kernel functions are the Gaussian kernel:

K(x,y) = exp (=[x = yll/20%),

3SVM theory also includes the case of non-separable data, see [36].




with o the variance of the gaussian, and the polynomial kernels:
K(x,y)=(1+x-y),

with d the degree of the polynomial. For other important examples of kernel functions used in
practice see [8, 36].
Let p be the distance of the support vectors to the hyperplane. This quantity is called margin

and it is related to the coefficients in Equation (1),

) 3
p= (Z ai) : (2)

The margin is an indicator of the separability of the data. More precisely, the expected error
probability of the SVM is bounded by the average (with respect to the training set) of %, where
R the radius of the smallest sphere containing the support vector in the feature space [36]. In the
case that the Gaussian kernel is used, R can be upper bounded by 1. Then, in this case the effect

of the radius on the expected error probability of the SVM can be discarded.

2.2 Multi-class classification with error correcting codes

Many real-world classification problems involve more than two classes. Attempts to solve g-class

problems with SVM have involved training ¢ SVM, each of which separates a single class from all

q(g—=1)
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remaining classes [36], or training machines, each of which separates a pair of classes [30,
11, 32]. The first type of classifiers are usually called one-vs-all, while classifiers of the second type
are called pairwise classifiers. When the one-vs-all classifiers are used, a test point is classified
into the class whose associated classifier has the highest score among all classifiers. In the case
of pairwise classifiers, a test point is classified in the class which gets most votes among all the
possible classifiers [11].

Classification schemes based on training one-vs-all and pairwise classifiers are two extreme
approaches: the first uses all the data, the second the smallest portion of the data. In practice,
it can be more effective to use intermediate classification strategies in the style of error-correcting
codes [5, 33]. In this case, each classifier is trained to separate a subset of classes from another

disjoint subset of classes (the union of these two subsets does not need to cover all the classes).

For example the first set could consist of classes A and T and the second of classes R,L. and W.



By doing so, we associate each class with a row of the “coding matrix” M € {—1,0,1}7%%, where
s denotes the number of classifiers. M;; = —1 or 1 means that points in class i are regarded as
negative or positive examples for training the classifier j. M;; = 0 says that points in class i are
not used for training the j—th classifier.

Three sets of SVM classifiers were used to construct the coding matrix: 5 one-vs-al classifiers,
10 two-vs-three classifiers and 10 pairwise classifiers. This allows a more accurate use of ambiguous
examples, since each SVM is only in charge of generating one codebit, whose value discriminates
between two disjoint sets of classes. If a fingerprint has labels all belonging to the same set for a
particular codebit, then clearly we can keep this example in the training set without introducing any
labeling noise. As an example consider fingerprints with double labels A and T. These examples
are discarded by the one-vs-all classifiers of class A and T, and the pairwise classifier A-vs-T.
However they are used to train the classifier AT-vs-RLW.

A test point is classified in the class whose row in the coding matrix has minimum distance
to the vector of outputs of the classifiers. Let m be a row of the coding matrix, f the vector
of outputs of the classifiers, and -; the margin of the i—th classifier. The simplest and most
commonly used distance is the Hamming distance d(f,m) = Y°7_, 1 — sign(f;m;). We will also
use two other distance measures which take in account the margin of the classifiers: The margin
weighted Euclidean distance, d(m,f) = Y7_, 7:(1 — fym;), and the soft margin distance proposed
in [33], d(f, m) = 377_, [1 = fimi|;. In the latter expression, the function [z|; is equal to 2, when

x > 0, and zero otherwise.

3 Extraction of structural features

In this section we discuss the algorithm we have used to extract the structured representation of

the fingerprint image.

3.1 Flow diagram of the structural classification module

As pointed out in the Introduction, a visual analysis of fingerprint images allows one to note that
fingerprint’s “structure” can be extracted by segmenting the fingerprint into regions characterized

by homogeneous ridge directions. To explain this aspect, consider the sample segmented directional



images in Figure 1 [2]. These images clearly tell us that structural information can be very useful
for distinguishing fingerprint classes A and W (see Figure l.a). On the other hand, structural
information is not effective for distinguishing fingerprints belonging to classes L,R, and T (see
Figure 1.b). The fingerprint structure can be characterized by local attributes of the image regions
(area, average directional value, etc.) and by the geometrical and spectral relations among adjacent
regions (relative positions, differences among directional average values, etc.). Therefore, the
developed module extracts and represents the structural information of fingerprints by segmenting
the related directional images and by converting such segmented images into relational graphs
whose nodes correspond to regions extracted by the segmentation algorithm. Graph nodes are
then characterized by local characteristics of regions and by the geometrical and spectral relations

among adjacent regions.

Class A Class W Class L Class R Class T

(a) (b)

Figure 1: (a) Examples of segmented fingerprint images related to the A and W classes. It is easy
to see that structural information is very useful for distinguishing such fingerprint classes. (b)
Examples of segmented fingerprint images related to the L,R, and T classes. It is easy to see that

structural information is not very useful for distinguishing such fingerprint classes.

The main steps of our structural approach to fingerprint classification are as follows:

e Computation of the directional image of the fingerprint. This directional image is a 28x30
matrix. Each matrix element represents the ridge orientation within a given block of the

input image. The directional image was computed using the algorithm proposed in [6].

e Segmentation of the directional image into regions containing ridges with similar orientations.

To this end, the segmentation algorithm described in [2] was used.

e Representation of the segmented image by a directed positional* acyclic graph (DPAG). The

4Positional here means that for each vertex v, a bijection P : £ — IN is defined on the edges leaving from wv.



representation of fingerprint structure is completed by characterizing each graph node with
a numerical feature vector containing local characteristics of the related image region (area,
average directional value, etc.) and some geometrical and spectral relations with respect to

adjacent regions (relative positions, differences among directional average values, etc).

e Classification of the above DPAG by a RNN made up of two multilayer perceptrons (MLP)

neural nets. This neural network model is briefly described below (see [9] for more details).

Figure 2: Left: segmented fingerprint image. Right: Relational graph.

3.2 Image segmentation and relational graph construction

In order to segment directional fingerprint images, we used an algorithm explicitly designed for
such task [6]. This algorithm implements a very sophisticated ”region growing” process. It starts
from the central element of the directional image and scans the image according to a square spiral
strategy. At each step, the segmentation algorithm uses a cost function to decide about the creation
of a new region. The resulting segmentation is related to a minimum of such cost function. Details
about this segmentation algorithm can be found in [2]. The construction of relational graphs from

segmented images is performed by the following main steps:

e The image region containing the ”core” point is selected as starting region for the graph

construction, that is, a graph node associated to such region is initially created;



Algorithm 1 rgExtract(R)
> Input: R = [R1,Ra,...,Rn] is the set of regions of the segmented image.
> Output: G = (V,E), the relational graph with vertez set V and edge set £.
> For k =0,---,7 we shall denote the “reference angles” for each position by Bx = km/4, and the “reference
interval” by Iy, = [Bx — 7/8, Bk + 7/8]. An edge in a DPAG is denoted (u,v,k) indicating that v is the k-th
child of w. Finally, for each region R, Xbar[R] and Ybar[R] denote the z-y coordinates of the region’s center
of mass.
VR,
E—1;
for j—1,...,n do Color[R;] — WHITE;
Let @ be a FIFO queue of regions (initially empty);
Let R; be the region containing the core of the fingerprint;
Enqueue(Q,R;);
while @ is not empty do
R.— Dequeue(Q);
Color[R.] «— BLACK;
R.—{R; : R; is adjacent to R.}
foreach R; € R, do
if Color[R;] = WHITE then
Enqueue(Q, R;);
aj« slope of the vector from (Xbar[R-c], Ybar[R-c]) to (Xbar[R_j], Ybar[Rj]);
> Note that o € [0, 27].
for k<—0,---7 do
if a; € I;; then djr—|aj — Bl;
else d;«—o0;
for k—0,---,7 do
h«— arg min;{d;x};
E—EU{(Re, Rn,k)};
return G

Figure 3: Algorithm for constructing relational graphs from segmented directional images.

e The regions that are adjacent to such core region are then evaluated for the creation of new
nodes. Nodes are created for adjacent regions which are located in one of the following spatial
positions with respect to the core region: North, North East, East, South East, South, South
West, West, North West;

e The process above is repeated for each of the new nodes until that all the regions of the

segmented images have been considered;

e The graph nodes created by the algorithm above are finally characterized by a numerical

feature vector containing local characteristics of the related image regions (area, average



directional value, etc) and some geometrical and spectral relations with respect to adjacent

regions (relative positions, differences among directional average values, etc).

Figure 3 describes the algorithm used to derive relational graphs from segmented directional images.

Figure 2 depicts a relational graph that the algorithm derived from a segmented directional image.

4 Recursive neural networks

Research in connectionist models capable of representing and learning structured (or hierarchically
organized) information begun in the early 90’s with recursive auto-associative memories (RAAM)
[31]. Since then, several other architectures have been proposed, including holographic reduced
representations (HRR) [29], and recursive neural networks (RNN) [15, 35, 9]. A selection of papers
in this research area recently appeared in [10]. RNN are capable of solving the supervised learning
problems such as classification and regression when the output prediction is conditioned on a
hierarchical data structure, like the structural representation of fingerprints described above. The
input to the network is a labeled DPAG U, where the label U(v) at each vertex v is a real-value
feature vector associated with a fingerprint region, as described in Section 3.2. A hidden state
vector X (v) € R™ is associated with each node v. This vector contains a distributed representation
of the subgraph dominated by v (i.e., all the vertices that can be reached starting a directed path
from v). The state vector is computed by a state transition function which combines the state

vectors of v’s children with a vector encoding of the label of v:
X(v) = f(X(wy), -, X(wp),U(v)) (3)

being {wy, -, w} the ordered set of v’s children. Computation proceeds recursively from the
frontier to the supersource (the vertex dominating all other vertices). The base step for Equation
(3) is X(w) = 0 if w is a missing child. Transition function f is computed by a multilayer
perceptron, which is replicated at each node in the DPAG, sharing weights among replicas. Note
that the state vector is similar to the context layer used in simple recurrent networks [7], except that
it encodes its context as a recursive data structure, and not simply a sequence. Pollack’s RAAM
[31] used similar distributed compositional representations but can only encode and decode trees

and cannot solve supervised learning problems.

10



In the case of classification we assume that the input graph possess a supersource s (i.e. a node
from which every other node can be reached by a directed path). Classification with recurrent
neural networks is then performed by adding an output function g that takes as input the hidden

state vector X (s) associated with the supersource s:
Y =g(X(s)) (4)

Function g is also implemented by a multilayer perceptron. The output layer in this case uses
the softrmaz function (normalized exponentials), so that Y can be interpreted as a vector of con-
ditional probabilities of classes given the input graph, i.e. Y; = P(C = i|U), being C a multino-
mial class variable. Training relies on maximum likelihood. The training set consists of T" pairs
D={Ui,c1), - +,(U,ct), - (Ur,cr), } where ¢; denotes the class of the ¢-th fingerprint in the

dataset. According to the multinomial model, the log-likelihood has the form
U(D:0) =) logYe, (5)
t

where 6 denotes the set of trainable weights and t ranges over training examples. Optimiza-
tion is performed with a gradient descent procedure, where gradients are computed by the back-
propagation through structure algorithm [15, 35].

We remark that the state vector X (s) at the supersource is a distributed representation of the
entire input DPAG and encodes features of the input DPAG deemed to be relevant for discrimi-
nation amongst classes. In the subsequent experiments, the components of the state vector at the
supersource are thus used as additional features that may help to discriminate between some class

pairs.

5 Experimental results

5.1 Dataset and FingerCode features

Our system was validated on the NIST Database 4 [37]. This Database consists of 4000 images
analyzed by a human expert and labeled with one or more of the five structural classes W, R,
L, A, and T (more than one class is assigned in cases where ambiguity could not be resolved by

the human expert). Previous works on the same dataset either rejected ambiguous examples in
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the training set (loosing in this way part of the training data), or used the first label as a target
(potentially introducing output noise).

Fingerprints were represented with the structured representation discussed in Section 3 as well
as with FingerCode features. FingerCode is a representation scheme described in [21] and consists
of a vector of 192 real features computed in three steps. First, the fingerprint core and center
are located. Then the algorithm separates the number of ridges present in four directions (0°,
45°, 90°, and 135°) by filtering the central part of a fingerprint with a bank of Gabor filters.
Finally, standard deviations of grayscale values are computed on 48 disc sectors, for each of the
four directions.

As in [21], a few fingerprint images were rejected® both during training (1.4 percent) and
testing (1.8 percent). Thus, when not explicitly said, the evaluation performance of the methods
discussed below is intended to be at 1.8 percent rejection rate. For the same reason we were
not able to compute the performance at zero percent rejection rate, which is not expected to
increase. However, this does not reduce the interest of the discussion. Our main goal here is
to show the novel methodology offered by our machine learning approach: (a) the advantage of
ECC to better exploit cross-referenced (i.e. double labeled) images for training, (b) the strength
of the SVM in improving accuracy versus rejection curves and (c¢) the benefit of integrating flat
and structural representations. In particular our ECC scheme provides a novel approach to deal
with cross-referenced images during training which can be easily implemented/extended to work

on new image representations.

5.2 Results using RNN and integration of flat and structural classifiers

In order to investigate the potentialities of the combination of flat and structural methods, we
coupled our structural approach (Section 3) with the vector-based approach proposed in [21].
Several strategies for combining classifiers were evaluated in order to combine the flat and struc-
tural approaches [13, 14, 23]. We firstly assessed the performance of simple and commonly used
combination rules, namely, the majority voting rule and the linear combination. Such classifier
combination rules works well if the classifiers exhibit similar accuracies and make “independent”

errors. As the flat and the structural classifiers considered exhibit very different accuracies (86.0%

5This is due to the failure of FingerCode in reliably locating the fingerprint core.
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vs. 71.5%); see Section 5.2.1) and their classifications were correlated in a complex way (namely,
correlation of classifications strongly varies in the feature space), such simple combination rules
performed poorly. Accordingly, we combined classifiers adopting the so-called “metaclassification”
(or “stacked”) approach, which uses a trainable rule or an additional classifier for the combination.
In particular, after various experiments with different trainable combination rules proposed in the

literature [23], a k-nearest neighbor classifier was selected for the combination.

Table 1: Confusion matrices: (a) MLP using FingerCode; (b) RNN using relational graphs; (c)

combination of MLP and RNN. Rows denote the true class, columns the assigned class.

W|IR|L|A|T W|IR|L|A|T W|I R |L|A|T
W |354| 24 | 13 | 4 1 W 32328 | 36 | 5 1 W 35919 | 10 | 3 2
R | 8 |349| 0 | 6 | 27 R |24 305|116 | 6 | 64 R | 6 |345] 0O 7129
L 8 2 1349| 6 | 15 L |44 ] 11 |266| 7 | 57 L 4 2 1342 5 | 18
Al O 8 4 1347| 72 A | 3 13|12 |333]| 68 Al O 4 0 |361] 65
T |55 | 8 | 12 | 2 |292 T | 21 | 44 | 49 | 41 | 179 T] 0 8 9 | 46 | 312
(a) (b) ()

5.2.1 Comparison between vector-based and structural classification

We have trained a multi-layer perceptron (MLP) using the FingerCode feature vector as input.
The best performance on the test set were obtained with a MLP architecture with 28 hidden units.
Table 1la shows the corresponding confusion matrix. The overall accuracy is 86.0 percent.

Table 1b shows the confusion matrix of the RNN trained on the structural features discussed
in Section 3. In this case the overall accuracy is 71.5 percent.

Tables 1a and 1b point out that the accuracy of the structural classifier is much lower than
the one of the flat classifier. This is mainly due to the large degree of confusion among L, R and
T classes. On the other hand, as expected, the best performance of the structural classifier are
related to the discrimination between A and W classes.

Afterwards, we analyzed the degree of complementarity between the two classifiers discussed

above. To this end, we computed the performance of an ideal “oracle” that, for each input finger-
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print, always selects the one of two classifiers, if any, that classifies correctly such fingerprint. Such
oracle applied to the two classifiers provided an overall accuracy of 92.5 percent. This accuracy
value obviously represents a very tight upper bound for any combination method applied to the
two classifiers. Yet, it points out the potential benefit of the combination of the flat and structural

classifiers.

5.2.2 Combined flat and structural classification

A k-nearest neighbor classifier (with a value of the k parameter equal to 113) was used for combing
the flat and structural classifiers. Such metaclassifier takes the outputs of the two classifiers as
inputs and provides the final fingerprint classification as output. Table lc depicts the confusion
matrix for this experiment. Notice that such combination outperforms the best single classifier
(i.e., the MLP classifier using the FingerCode representation; see Table 1a), so pointing out that
the exploitation of structural information allows increasing classification performances. The accu-
racy of this classifier is 87.9 percent. In particular, we note that such combination improves the

performances related to A and W classes, confirming the intuition suggested by Figure 1.

5.3 Results with SVM

We used the three types of multi-class classification schemes discussed in section 2.1 which are
based on the combination of binary SVM. SVM have been trained using the SVMFu code® on a
550MHz Pentium-IT PC. Training on 2000 examples takes about 10s for pairwise classifiers and

20s for one-vs-all classifiers.

One-vs-all SVM. We trained five one-vs-all SVM classifiers using both Gaussian kernels and
polynomials of degree between 2 and 6. The best result was obtained with the Gaussian kernel
with o = 1: 88.0 percent at 1.8 percent rejection rate; the confusion matrix is reported in Table
2a. The best polynomial SVM was of degree 3 and achieved a performance of 84.5 percent only.

Then, in the remaining experiments we used only the Gaussian kernel.

Pairwise SVM. We trained the ten pairwise SVM. The test set accuracy increases to 88.4 percent
at 1.8 percent rejection rate, improving the MLP accuracy reported in [21] of 2 percent. The

confusion matrix is reported in Table 2b.

6This software can be downloaded at http://five-percent-nation.mit.edu/SvmFu.
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Error-correction SVM scheme. Three sets of SVM classifiers were used to construct the coding
matrix: 5 one-vs-al classifiers, 10 two-vs-three classifiers and 10 pairwise classifiers. The three kinds
of decoding distances discussed in Section 2 were compared: (i) Hamming distance: 88.0 percent,
(ii) Margin weighted Euclidean distance: 89.1 percent, (iii) Soft margin distance: 88.8 percent (all
results are at 1.8 percent rejection rate). This results confirm the advantage of taking in account
the margin of the classifiers inside the decoding distance. The confusion matrix for the margin

weighted Euclidean distance is reported in Table 2c.

Table 2: Confusion matrices: (a) One-vs-all SVM; (b) Pairwise SVM; (¢) ECC SVM with margin

weighted Euclidean decoding). Rows denote the true class, columns the assigned class.

W|IR|L|A|T W|IR|L|A|T W|R|L|A|T
W 356 23| 14| 3 1 W 35924 | 15| 3 1 W 1362| 22| 11| 3 0
R | 4 (344] 1 7 133 R | 4 |341] 1 6 | 30 R | 4 |350]| 3 8 | 27
L 4 2 (356 6 | 13 L 5 0 [356| 6 | 15 L 7 2 1357 5 |11
Al O 2 5 | 371 55 Al O 2 4 363 58 Al O 3 3 1398 32
T]| 0 7 7 | 48 | 302 T] 0 7 9 | 38 | 317 T | 0 |13] 9 | 51 |283
(a) (b) (c)

We have also trained the ECC of SVM for the four classes task (classes A and T merged
together) using the margin weighted Euclidean distance. The obtained accuracy is of 93.7 percent
at 1.8 percent rejection rate. For comparison, the accuracy reported in [21] for the sole MPL’s is

92.1 percent, while the cascade of k-NN and MLP yields 94.8 percent.

5.3.1 Analysis of the margin

We have measured the margin as in Equation (2) and the number of support vectors of each SVM
classifier used in our experiments (the training error of each individual classifier was always equal
to zero). The number of support vector ranges between 1/5 and 1/2 of the number of training
points. As expected the margin decreases for those classifiers which involve difficult pairs of classes.
Among the pairwise classifiers, the A-T classifier has the smallest margin. The margin of the T-

vs-all and A-vs-all is also small. However the margin of the AT-vs-RLW classifier increases, which

15



might explain why our error correcting strategy works well.

5.3.2 Rejection vs. accuracy

Let d; be the minimum distance of the vector of outputs of the classifiers from the coding row,
and ds the second minimum distance. Rejection can be decided by looking at the difference
A =dy —d;. A large value of A indicates high confidence in classification; when A is smaller than
a given threshold we reject the data. The rejection rate is controlled by this threshold. Table 3
shows the accuracy-rejection tradeoff obtained in our experiments. Notice that the accuracy of
the system increases sharply with the rejection rate. At 20 and 32.5 percent rejection, the system

shows a moderate improvement over the best results in [21].

Table 3: Accuracy vs. rejection rate for the one-vs-all SVM combination.

Rejection Rate: | 1.8% | 8.5% | 20.0% | 32.5%
5 Classes: 89.1% | 90.6% | 93.9% | 96.2%
4 Classes: 93.7% | 95.4% | 97.1% | 98.4%

5.4 Using both vectorial and structured features with SVM

We have trained SVM on both FingerCode and RNN-extracted features and used the ECC scheme
with margin weighted Euclidean decoding. The confusion matrix is summarized in Table 4. The
performance is improved to 90.0 percent at 1.8 percent rejection rate. If we compare this perfor-
mance to the performance obtained with FingerCode features only (89.1 percent), we observe the

benefit of integrating global and structural representations.
This effect is especially clear in the accuracy vs. rejection rate results. As shown in Table

5, the accuracy sharply increases with the rejection rate, improving significantly over the results

obtained with FingerCode features only (see Table 3).
Finally, Table 6 summarizes the performance results of the different methods presented above.

From there one can clearly observe the advantage offered by the ECC approach as well as and the

effect of integrating flat and structural features.
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Table 4: Confusion matrix for the ECC of SVM trained on both FingerCode and RNN-extracted

features.
W | R L A T
W | 366 | 18 8 2 0
R| 5 |34 0 7 29
L 6 1 |37 2 13
Al O 2 2 139 | 33
T 1 8 12 | 48 | 294

Table 5: Accuracy vs. rejection rate for the ECC of SVM classifiers trained on the union of

FingerCode and RNN-extracted features

Rejection Rate: | 1.8% | 8.5% | 20.0% | 32.5%
5 Classes: 90.0% | 92.2% | 95.6% | 97.6%
4 Classes: 94.7% | 96.6% | 98.4% | 99.2%

6 Conclusions

In this paper we have studied the combination of flat and structured representations for fingerprint
classification. An algorithm for extracting a structural representation of fingerprint images was
presented. RNN were used to process this structural representation and to extract a distributed
vectorial representation of the fingerprint. This vectorial representation was integrated with other
global representation, showing significant improvement over global features only. Experiment were
performed on the NIST Database 4. The best performance was obtained with an error correcting
code of SVM. This method can tolerate the presence of ambiguous examples in the training set
and shown to be precise to identify difficult test images, then sharply improving the accuracy of
the system at a higher rejection rate.

A number of questions and future research directions are still open. The main one is how to

train directly SVM on structured representation.

Acknowledgment: We wish to thank Anil Jain for providing us the dataset of preprocessed
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Table 6: Summary of the results of the different proposed methods. We have used the following
notation: SVM1 for One-vs-all SVM, SVM2 for Pairwise SVM, and SVM3 for the ECC of SVM.

Method RNN MLP | E-NN | SVM1 | SVM2 | SVM3 | SVM & RNN
Performance: | 71.5% | 86.0% | 87.9% | 88.0% | 88.4% | 89.1% 90.0%

NIST-4 fingerprints. This work was partially supported by CERG Grant 9040457.
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