
Combining Flat and Structured Representations for

Fingerprint Classification with Recursive Neural Networks

and Support Vector Machines

Yuan Yao∗ Gian Luca Marcialis‡ Massimiliano Pontil+∗

Paolo Frasconi† Fabio Roli‡

∗Department of Mathematics, City University of Hong Kong, Hong Kong

‡ DIEE University of Cagliari, Italy + DII, University of Siena, Italy,

†DSI, University of Florence, Italy

Abstract

We present new fingerprint classification algorithms based on two machine learning ap-

proaches: support vector machines (SVM), and recursive neural networks (RNN). RNN are

trained on a structured representation of the fingerprint image. They are also used to extract

a set of distributed features of the fingerprint which can be integrated in the SVM. SVM are

combined with a new error correcting code scheme. This approach has two main advantages:

(a) It can tolerate the presence of ambiguous fingerprint images in the training set, and (b)

It can effectively identify the most difficult fingerprint images in the test set. By rejecting

these images the accuracy of the system improves significantly. We report experiments on the

fingerprint database NIST-4. Our best classification accuracy is of 95.6 percent at 20 percent

rejection rate and is obtained by training SVM on both FingerCode and RNN-extracted fea-

tures. This result indicates the benefit of integrating global and structured representations

and suggests that SVM are a promising approach for fingerprint classification.

1

1 Introduction

The pattern recognition problem studied in this paper consists of classifying fingerprint images into

one out of five categories: whorl (W), right loop (R), left loop (L), arch (A), and tented arch (T).

These categories were defined during early investigations about fingerprint structure [17] and have

been used extensively since then. The task is important because classification can be employed as a

preliminary step for reducing complexity of database search in the problem of automatic fingerprint

matching [12, 21]: If a query image can be classified with high accuracy, the subsequent matching

algorithm only needs to compare stored images belonging to the same class.

Many approaches to fingerprint classification have been presented in the literature and this

research topic is still very active. Overviews of the literature can be found in [2, 19, 20, 18]. These

approaches can be coarsely divided into two main categories: “flat” and “structural” approaches.

Flat approaches are characterized by the use of “decision-theoretic” (or statistical) techniques

for pattern classification, namely, a set of characteristic measurements, called feature vector, is

extracted from fingerprint images and used for classification. Methods in this category include

detection of singular points [22], connectionist algorithms such as self-organizing feature maps [16],

neural networks [27, 28], and hidden Markov models [34]. Structural approaches presented in the

literature rely on syntactic or structural pattern-recognition techniques. In this case fingerprints

are described by production rules [26] or relational graphs. Parsing or (dynamic) graph matching

algorithms [24, 2] are used for classification. The structural approach has received less attention

until now. However, a simple visual analysis of the “structure” of fingerprint images allows one

to see that structural information can be very useful for distinguishing some fingerprint classes

(e.g., for distinguishing fingerprints belonging to class A from the ones of class W - see Figure 1).

Accordingly, we will attempt to “integrate” flat and structured representations and evaluate the

practical benefits of their combination. Concerning this issue, very few works investigated the

potentialities of such integration [3, 25].

In this paper, we propose new fingerprint classification algorithms based on two machine learn-

ing approaches: support vector machines (SVM), and recursive neural networks (RNN). SVM is a

relatively new technique for pattern classification and regression that is well-founded in statistical

learning theory [36]. One of the main attractions of using SVM is that they are capable of learning

in sparse, high-dimensional spaces with very few training examples. They have been successfully

2

applied to various classification problems (see [4] and references therein1). A RNN is a connection-

ist architecture designed for solving the supervised learning problem when the instance space is

comprised of labeled graphs [9]. This architecture can exploit structural information in the data,

which, as explained above, may help discriminating between certain classes. In this paper RNN

are also used to extract a distributed vectorial representation of the relational graph associated

with a fingerprint. This vector is regarded as an additional set of features subsequently used as

inputs for the SVM classifier.

An important issue in fingerprint classification is the problem of ambiguous examples: some

fingerprints are assigned to two classes simultaneously, i.e. they have double labels (these images

are also called “cross-referenced”). In order to address this issue, we designed an error correcting

code (ECC) [5] scheme of SVM classifiers based on a new type of decoding distance. This method

presents two main advantages. First, it allows a more accurate use of ambiguous examples because

each SVM is in charge of generating only one codebit, whose value discriminates between two

disjoint sets of classes. Then, if a fingerprint has labels all belonging to the same set for a particular

codebit, we can keep this example in the training set without introducing any labeling noise. The

second advantage of our system is his capability to deal with rejection problems. This is due to

the concept of margin inherent to the SVM, which is incorporated in the decoding distance.

The system is validated on the NIST database 4 [37]. We present three series of experiments.

As a base fingerprint representation we use FingerCode features2, a flat representation scheme

proposed in [21]. In the first set of experiments, FingerCode features are combined with a structural

representation of fingerprints based on relational graphs. In this case, a connectionist architecture

that integrates flat and structural representations achieves 87.9 percent accuracy at 1.8 percent

rejection rate. In the second experiment, SVM are trained on FingerCode [21] preprocessed images,

achieving 89.1 percent accuracy with 1.8 percent rejection. This result is only 0.9 percent worse

than the accuracy obtained in [21] using the same features and a two stages k-NN/MLP classifier.

Interesting SVM’s accuracy is much better than separate accuracies of both k-NN and MLP.

Finally, the SVM is trained on both FingerCode and RNN-extracted features. In so doing, the

performance is improved to 90.0 percent at 1.8 percent rejection rate. By allowing 20 percent

rejection rate, accuracy increases to 95.6 percent. This result indicates the benefit of integrating
1For an updated list of SVM applications see www.clopinet.com/isabelle/Projects/SVM/applist.html
2A short introduction on FingerCode feature is given in Section 5.1.

3

global and structural representations for fingerprint classification.

The paper is organized as follows: In Section 2 we briefly describe SVM’s theory and introduce

our new error correcting code classification method. Section 3 discusses the method we designed

for the extraction of the structural features. The RNN is presented in Section 4. In Section 5 we

report the experimental results. Finally, we report our conclusions in Section 6.

2 Support vector machines

In this section we briefly overview the main concepts of support vector machines (SVM) [36] for

pattern classification. More detailed accounts are [36, 1, 8, 4].

2.1 Binary classification

SVM perform pattern recognition for two-class problems by determining the separating hyperplane3

with maximum distance to the closest points of the training set. These points are called support

vectors. If the data is not linearly separable in the input space, a non-linear transformation Φ(·)

can be applied which maps the data points x ∈ IRn into a high (possibly infinite) dimensional space

H which is called feature space. The data in the feature space is then separated by the optimal

hyperplane as described above.

The mapping Φ(·) is represented in the SVM classifier by a kernel function K(·, ·) which defines

an inner product in H, i.e. K(x, t) = Φ(x) ·Φ(t). The decision function of the SVM has the form:

f(x) =
∑̀
i=1

αiciK(xi,x), (1)

where ` is the number of data points, and ci ∈ {−1, 1} is the class label of training point xi.

Coefficients αi in Equation (1) can be found by solving a quadratic programming problem with

linear constraints. The support vectors are the nearest points to the separating boundary and are

the only ones for which αi in Equation (1) can be nonzero.

An important family of admissible kernel functions are the Gaussian kernel:

K(x,y) = exp (−‖x− y‖/2σ2),

3SVM theory also includes the case of non-separable data, see [36].

4

with σ the variance of the gaussian, and the polynomial kernels:

K(x,y) = (1 + x · y)d,

with d the degree of the polynomial. For other important examples of kernel functions used in

practice see [8, 36].

Let ρ be the distance of the support vectors to the hyperplane. This quantity is called margin

and it is related to the coefficients in Equation (1),

ρ =

(∑̀
i=1

αi

) 1
2

. (2)

The margin is an indicator of the separability of the data. More precisely, the expected error

probability of the SVM is bounded by the average (with respect to the training set) of R2

`ρ2 , where

R the radius of the smallest sphere containing the support vector in the feature space [36]. In the

case that the Gaussian kernel is used, R can be upper bounded by 1. Then, in this case the effect

of the radius on the expected error probability of the SVM can be discarded.

2.2 Multi-class classification with error correcting codes

Many real-world classification problems involve more than two classes. Attempts to solve q-class

problems with SVM have involved training q SVM, each of which separates a single class from all

remaining classes [36], or training q(q−1)
2 machines, each of which separates a pair of classes [30,

11, 32]. The first type of classifiers are usually called one-vs-all, while classifiers of the second type

are called pairwise classifiers. When the one-vs-all classifiers are used, a test point is classified

into the class whose associated classifier has the highest score among all classifiers. In the case

of pairwise classifiers, a test point is classified in the class which gets most votes among all the

possible classifiers [11].

Classification schemes based on training one-vs-all and pairwise classifiers are two extreme

approaches: the first uses all the data, the second the smallest portion of the data. In practice,

it can be more effective to use intermediate classification strategies in the style of error-correcting

codes [5, 33]. In this case, each classifier is trained to separate a subset of classes from another

disjoint subset of classes (the union of these two subsets does not need to cover all the classes).

For example the first set could consist of classes A and T and the second of classes R,L and W.

5

By doing so, we associate each class with a row of the “coding matrix” M ∈ {−1, 0, 1}q×s, where

s denotes the number of classifiers. Mij = −1 or 1 means that points in class i are regarded as

negative or positive examples for training the classifier j. Mij = 0 says that points in class i are

not used for training the j−th classifier.

Three sets of SVM classifiers were used to construct the coding matrix: 5 one-vs-al classifiers,

10 two-vs-three classifiers and 10 pairwise classifiers. This allows a more accurate use of ambiguous

examples, since each SVM is only in charge of generating one codebit, whose value discriminates

between two disjoint sets of classes. If a fingerprint has labels all belonging to the same set for a

particular codebit, then clearly we can keep this example in the training set without introducing any

labeling noise. As an example consider fingerprints with double labels A and T. These examples

are discarded by the one-vs-all classifiers of class A and T, and the pairwise classifier A-vs-T.

However they are used to train the classifier AT-vs-RLW.

A test point is classified in the class whose row in the coding matrix has minimum distance

to the vector of outputs of the classifiers. Let m be a row of the coding matrix, f the vector

of outputs of the classifiers, and γi the margin of the i−th classifier. The simplest and most

commonly used distance is the Hamming distance d(f ,m) =
∑s

i=1 1 − sign(fimi). We will also

use two other distance measures which take in account the margin of the classifiers: The margin

weighted Euclidean distance, d(m, f) =
∑s

i=1 γi(1− fimi), and the soft margin distance proposed

in [33], d(f ,m) =
∑s

j=1 |1− fimi|+. In the latter expression, the function |x|+ is equal to x, when

x > 0, and zero otherwise.

3 Extraction of structural features

In this section we discuss the algorithm we have used to extract the structured representation of

the fingerprint image.

3.1 Flow diagram of the structural classification module

As pointed out in the Introduction, a visual analysis of fingerprint images allows one to note that

fingerprint’s “structure” can be extracted by segmenting the fingerprint into regions characterized

by homogeneous ridge directions. To explain this aspect, consider the sample segmented directional

6

images in Figure 1 [2]. These images clearly tell us that structural information can be very useful

for distinguishing fingerprint classes A and W (see Figure 1.a). On the other hand, structural

information is not effective for distinguishing fingerprints belonging to classes L,R, and T (see

Figure 1.b). The fingerprint structure can be characterized by local attributes of the image regions

(area, average directional value, etc.) and by the geometrical and spectral relations among adjacent

regions (relative positions, differences among directional average values, etc.). Therefore, the

developed module extracts and represents the structural information of fingerprints by segmenting

the related directional images and by converting such segmented images into relational graphs

whose nodes correspond to regions extracted by the segmentation algorithm. Graph nodes are

then characterized by local characteristics of regions and by the geometrical and spectral relations

among adjacent regions.

CAPPELLI ET AL.: FINGERPRINT CLASSIFICATION BY DIRECTIONAL IMAGE PARTITIONING 407

significance of each element according to the irregu-
larity degree of its 3 � 3 neighborhood, without re-
quiring the singularities to be explicitly detected. For
each element, a local 3 � 3 window is considered and
a strengthening function str is applied. str is defined
as one minus the magnitude of the sum of the direc-
tional elements divided by the sum of element mag-
nitudes; it returns 0 if all the vectors are parallel to
each other and its value approaches 1 when discor-
dance increases.

str v

v

v
v

v

0 5 = - ³

³

�

�

Ê
Ê

1 3 3

3 3

| |
| |

W

W

The resulting directional image is made up of vectors ve
such that:

v v v v
v

e r r r
Wr

= ¼ + ¼ ¼
�
�
��

�
�
��

³ �

Ê1
1
9

3 3

g att str2 7 2 7 ,

where g is a weighting factor.

Fig. 6. Classification of a Left Loop fingerprint by means of the dynamic masks approach.

CAPPELLI ET AL.: FINGERPRINT CLASSIFICATION BY DIRECTIONAL IMAGE PARTITIONING 407

significance of each element according to the irregu-
larity degree of its 3 � 3 neighborhood, without re-
quiring the singularities to be explicitly detected. For
each element, a local 3 � 3 window is considered and
a strengthening function str is applied. str is defined
as one minus the magnitude of the sum of the direc-
tional elements divided by the sum of element mag-
nitudes; it returns 0 if all the vectors are parallel to
each other and its value approaches 1 when discor-
dance increases.

str v

v

v
v

v

0 5 = - ³

³

�

�

Ê
Ê

1 3 3

3 3

| |
| |

W

W

The resulting directional image is made up of vectors ve
such that:

v v v v
v

e r r r
Wr

= ¼ + ¼ ¼
�
�
��

�
�
��

³ �

Ê1
1
9

3 3

g att str2 7 2 7 ,

where g is a weighting factor.

Fig. 6. Classification of a Left Loop fingerprint by means of the dynamic masks approach.

Class A Class W

CAPPELLI ET AL.: FINGERPRINT CLASSIFICATION BY DIRECTIONAL IMAGE PARTITIONING 407

significance of each element according to the irregu-
larity degree of its 3 � 3 neighborhood, without re-
quiring the singularities to be explicitly detected. For
each element, a local 3 � 3 window is considered and
a strengthening function str is applied. str is defined
as one minus the magnitude of the sum of the direc-
tional elements divided by the sum of element mag-
nitudes; it returns 0 if all the vectors are parallel to
each other and its value approaches 1 when discor-
dance increases.

str v

v

v
v

v

0 5 = - ³

³

�

�

Ê
Ê

1 3 3

3 3

| |
| |

W

W

The resulting directional image is made up of vectors ve
such that:

v v v v
v

e r r r
Wr

= ¼ + ¼ ¼
�
�
��

�
�
��

³ �

Ê1
1
9

3 3

g att str2 7 2 7 ,

where g is a weighting factor.

Fig. 6. Classification of a Left Loop fingerprint by means of the dynamic masks approach.

CAPPELLI ET AL.: FINGERPRINT CLASSIFICATION BY DIRECTIONAL IMAGE PARTITIONING 407

significance of each element according to the irregu-
larity degree of its 3 � 3 neighborhood, without re-
quiring the singularities to be explicitly detected. For
each element, a local 3 � 3 window is considered and
a strengthening function str is applied. str is defined
as one minus the magnitude of the sum of the direc-
tional elements divided by the sum of element mag-
nitudes; it returns 0 if all the vectors are parallel to
each other and its value approaches 1 when discor-
dance increases.

str v

v

v
v

v

0 5 = - ³

³

�

�

Ê
Ê

1 3 3

3 3

| |
| |

W

W

The resulting directional image is made up of vectors ve
such that:

v v v v
v

e r r r
Wr

= ¼ + ¼ ¼
�
�
��

�
�
��

³ �

Ê1
1
9

3 3

g att str2 7 2 7 ,

where g is a weighting factor.

Fig. 6. Classification of a Left Loop fingerprint by means of the dynamic masks approach.

CAPPELLI ET AL.: FINGERPRINT CLASSIFICATION BY DIRECTIONAL IMAGE PARTITIONING 407

significance of each element according to the irregu-
larity degree of its 3 � 3 neighborhood, without re-
quiring the singularities to be explicitly detected. For
each element, a local 3 � 3 window is considered and
a strengthening function str is applied. str is defined
as one minus the magnitude of the sum of the direc-
tional elements divided by the sum of element mag-
nitudes; it returns 0 if all the vectors are parallel to
each other and its value approaches 1 when discor-
dance increases.

str v

v

v
v

v

0 5 = - ³

³

�

�

Ê
Ê

1 3 3

3 3

| |
| |

W

W

The resulting directional image is made up of vectors ve
such that:

v v v v
v

e r r r
Wr

= ¼ + ¼ ¼
�
�
��

�
�
��

³ �

Ê1
1
9

3 3

g att str2 7 2 7 ,

where g is a weighting factor.

Fig. 6. Classification of a Left Loop fingerprint by means of the dynamic masks approach.

Class L Class R Class T

(a) (b)

Figure 1: (a) Examples of segmented fingerprint images related to the A and W classes. It is easy

to see that structural information is very useful for distinguishing such fingerprint classes. (b)

Examples of segmented fingerprint images related to the L,R, and T classes. It is easy to see that

structural information is not very useful for distinguishing such fingerprint classes.

The main steps of our structural approach to fingerprint classification are as follows:

• Computation of the directional image of the fingerprint. This directional image is a 28x30

matrix. Each matrix element represents the ridge orientation within a given block of the

input image. The directional image was computed using the algorithm proposed in [6].

• Segmentation of the directional image into regions containing ridges with similar orientations.

To this end, the segmentation algorithm described in [2] was used.

• Representation of the segmented image by a directed positional4 acyclic graph (DPAG). The
4Positional here means that for each vertex v, a bijection P : E → IN is defined on the edges leaving from v.

7

representation of fingerprint structure is completed by characterizing each graph node with

a numerical feature vector containing local characteristics of the related image region (area,

average directional value, etc.) and some geometrical and spectral relations with respect to

adjacent regions (relative positions, differences among directional average values, etc).

• Classification of the above DPAG by a RNN made up of two multilayer perceptrons (MLP)

neural nets. This neural network model is briefly described below (see [9] for more details).

���
�

���
�

���
�

���
���	

	

�
�

0

1

2

3

45

0

1 3

2
4 5SW

SE

S
NE E

E S
N

Figure 2: Left: segmented fingerprint image. Right: Relational graph.

3.2 Image segmentation and relational graph construction

In order to segment directional fingerprint images, we used an algorithm explicitly designed for

such task [6]. This algorithm implements a very sophisticated ”region growing” process. It starts

from the central element of the directional image and scans the image according to a square spiral

strategy. At each step, the segmentation algorithm uses a cost function to decide about the creation

of a new region. The resulting segmentation is related to a minimum of such cost function. Details

about this segmentation algorithm can be found in [2]. The construction of relational graphs from

segmented images is performed by the following main steps:

• The image region containing the ”core” point is selected as starting region for the graph

construction, that is, a graph node associated to such region is initially created;

8

Algorithm 1 rgExtract(R)
. Input: R = [R1, R2, . . . , Rn] is the set of regions of the segmented image.

. Output: G = (V, E), the relational graph with vertex set V and edge set E.

. For k = 0, · · · , 7 we shall denote the “reference angles” for each position by βk = kπ/4, and the “reference

interval” by Ik = [βk − π/8, βk + π/8]. An edge in a DPAG is denoted (u, v, k) indicating that v is the k-th

child of u. Finally, for each region R, Xbar[R] and Ybar[R] denote the x-y coordinates of the region’s center

of mass.

V←R;
E←∅;
for j←1, . . . , n do Color[Rj] ← WHITE;
Let Q be a FIFO queue of regions (initially empty);
Let Ri be the region containing the core of the fingerprint;
Enqueue(Q,Ri);
while Q is not empty do

Rc← Dequeue(Q);
Color[Rc] ← BLACK;
R′

c←{Rj : Rj is adjacent to Rc}
foreach Rj ∈ R′

c do
if Color[Rj] = WHITE then

Enqueue(Q, Rj);
αj← slope of the vector from (Xbar[R c], Ybar[R c]) to (Xbar[R j], Ybar[R j]);
. Note that αj ∈ [0, 2π].

for k←0, · · · 7 do
if αj ∈ Ik then djk←|αj − βk|;
else djk←∞;

for k←0, · · · , 7 do
h← arg minj{djk};
E←E ∪ {(Rc, Rh, k)};

return G

Figure 3: Algorithm for constructing relational graphs from segmented directional images.

• The regions that are adjacent to such core region are then evaluated for the creation of new

nodes. Nodes are created for adjacent regions which are located in one of the following spatial

positions with respect to the core region: North, North East, East, South East, South, South

West, West, North West;

• The process above is repeated for each of the new nodes until that all the regions of the

segmented images have been considered;

• The graph nodes created by the algorithm above are finally characterized by a numerical

feature vector containing local characteristics of the related image regions (area, average

9

directional value, etc) and some geometrical and spectral relations with respect to adjacent

regions (relative positions, differences among directional average values, etc).

Figure 3 describes the algorithm used to derive relational graphs from segmented directional images.

Figure 2 depicts a relational graph that the algorithm derived from a segmented directional image.

4 Recursive neural networks

Research in connectionist models capable of representing and learning structured (or hierarchically

organized) information begun in the early 90’s with recursive auto-associative memories (RAAM)

[31]. Since then, several other architectures have been proposed, including holographic reduced

representations (HRR) [29], and recursive neural networks (RNN) [15, 35, 9]. A selection of papers

in this research area recently appeared in [10]. RNN are capable of solving the supervised learning

problems such as classification and regression when the output prediction is conditioned on a

hierarchical data structure, like the structural representation of fingerprints described above. The

input to the network is a labeled DPAG U , where the label U(v) at each vertex v is a real-value

feature vector associated with a fingerprint region, as described in Section 3.2. A hidden state

vector X(v) ∈ Rn is associated with each node v. This vector contains a distributed representation

of the subgraph dominated by v (i.e., all the vertices that can be reached starting a directed path

from v). The state vector is computed by a state transition function which combines the state

vectors of v’s children with a vector encoding of the label of v:

X(v) = f(X(w1), · · · , X(wk), U(v)) (3)

being {w1, · · · , wk} the ordered set of v’s children. Computation proceeds recursively from the

frontier to the supersource (the vertex dominating all other vertices). The base step for Equation

(3) is X(w) = 0 if w is a missing child. Transition function f is computed by a multilayer

perceptron, which is replicated at each node in the DPAG, sharing weights among replicas. Note

that the state vector is similar to the context layer used in simple recurrent networks [7], except that

it encodes its context as a recursive data structure, and not simply a sequence. Pollack’s RAAM

[31] used similar distributed compositional representations but can only encode and decode trees

and cannot solve supervised learning problems.

10

In the case of classification we assume that the input graph possess a supersource s (i.e. a node

from which every other node can be reached by a directed path). Classification with recurrent

neural networks is then performed by adding an output function g that takes as input the hidden

state vector X(s) associated with the supersource s:

Y = g(X(s)) (4)

Function g is also implemented by a multilayer perceptron. The output layer in this case uses

the softmax function (normalized exponentials), so that Y can be interpreted as a vector of con-

ditional probabilities of classes given the input graph, i.e. Yi = P (C = i|U), being C a multino-

mial class variable. Training relies on maximum likelihood. The training set consists of T pairs

D = {(U1, c1), · · · , (U t, ct), · · · (UT , cT), } where ct denotes the class of the t-th fingerprint in the

dataset. According to the multinomial model, the log-likelihood has the form

l(D; θ) =
∑

t

log Yct (5)

where θ denotes the set of trainable weights and t ranges over training examples. Optimiza-

tion is performed with a gradient descent procedure, where gradients are computed by the back-

propagation through structure algorithm [15, 35].

We remark that the state vector X(s) at the supersource is a distributed representation of the

entire input DPAG and encodes features of the input DPAG deemed to be relevant for discrimi-

nation amongst classes. In the subsequent experiments, the components of the state vector at the

supersource are thus used as additional features that may help to discriminate between some class

pairs.

5 Experimental results

5.1 Dataset and FingerCode features

Our system was validated on the NIST Database 4 [37]. This Database consists of 4000 images

analyzed by a human expert and labeled with one or more of the five structural classes W, R,

L, A, and T (more than one class is assigned in cases where ambiguity could not be resolved by

the human expert). Previous works on the same dataset either rejected ambiguous examples in

11

the training set (loosing in this way part of the training data), or used the first label as a target

(potentially introducing output noise).

Fingerprints were represented with the structured representation discussed in Section 3 as well

as with FingerCode features. FingerCode is a representation scheme described in [21] and consists

of a vector of 192 real features computed in three steps. First, the fingerprint core and center

are located. Then the algorithm separates the number of ridges present in four directions (0◦,

45◦, 90◦, and 135◦) by filtering the central part of a fingerprint with a bank of Gabor filters.

Finally, standard deviations of grayscale values are computed on 48 disc sectors, for each of the

four directions.

As in [21], a few fingerprint images were rejected5 both during training (1.4 percent) and

testing (1.8 percent). Thus, when not explicitly said, the evaluation performance of the methods

discussed below is intended to be at 1.8 percent rejection rate. For the same reason we were

not able to compute the performance at zero percent rejection rate, which is not expected to

increase. However, this does not reduce the interest of the discussion. Our main goal here is

to show the novel methodology offered by our machine learning approach: (a) the advantage of

ECC to better exploit cross-referenced (i.e. double labeled) images for training, (b) the strength

of the SVM in improving accuracy versus rejection curves and (c) the benefit of integrating flat

and structural representations. In particular our ECC scheme provides a novel approach to deal

with cross-referenced images during training which can be easily implemented/extended to work

on new image representations.

5.2 Results using RNN and integration of flat and structural classifiers

In order to investigate the potentialities of the combination of flat and structural methods, we

coupled our structural approach (Section 3) with the vector-based approach proposed in [21].

Several strategies for combining classifiers were evaluated in order to combine the flat and struc-

tural approaches [13, 14, 23]. We firstly assessed the performance of simple and commonly used

combination rules, namely, the majority voting rule and the linear combination. Such classifier

combination rules works well if the classifiers exhibit similar accuracies and make “independent”

errors. As the flat and the structural classifiers considered exhibit very different accuracies (86.0%

5This is due to the failure of FingerCode in reliably locating the fingerprint core.

12

vs. 71.5%; see Section 5.2.1) and their classifications were correlated in a complex way (namely,

correlation of classifications strongly varies in the feature space), such simple combination rules

performed poorly. Accordingly, we combined classifiers adopting the so-called “metaclassification”

(or “stacked”) approach, which uses a trainable rule or an additional classifier for the combination.

In particular, after various experiments with different trainable combination rules proposed in the

literature [23], a k-nearest neighbor classifier was selected for the combination.

Table 1: Confusion matrices: (a) MLP using FingerCode; (b) RNN using relational graphs; (c)

combination of MLP and RNN. Rows denote the true class, columns the assigned class.

W R L A T

W 354 24 13 4 1

R 8 349 0 6 27

L 8 2 349 6 15

A 0 8 4 347 72

T 55 8 12 2 292

W R L A T

W 323 28 36 5 1

R 24 305 16 6 64

L 44 11 266 7 57

A 3 13 12 333 68

T 21 44 49 41 179

W R L A T

W 359 19 10 3 2

R 6 345 0 7 29

L 4 2 342 5 18

A 0 4 0 361 65

T 0 8 9 46 312

(a) (b) (c)

5.2.1 Comparison between vector-based and structural classification

We have trained a multi-layer perceptron (MLP) using the FingerCode feature vector as input.

The best performance on the test set were obtained with a MLP architecture with 28 hidden units.

Table 1a shows the corresponding confusion matrix. The overall accuracy is 86.0 percent.

Table 1b shows the confusion matrix of the RNN trained on the structural features discussed

in Section 3. In this case the overall accuracy is 71.5 percent.

Tables 1a and 1b point out that the accuracy of the structural classifier is much lower than

the one of the flat classifier. This is mainly due to the large degree of confusion among L, R and

T classes. On the other hand, as expected, the best performance of the structural classifier are

related to the discrimination between A and W classes.

Afterwards, we analyzed the degree of complementarity between the two classifiers discussed

above. To this end, we computed the performance of an ideal “oracle” that, for each input finger-

13

print, always selects the one of two classifiers, if any, that classifies correctly such fingerprint. Such

oracle applied to the two classifiers provided an overall accuracy of 92.5 percent. This accuracy

value obviously represents a very tight upper bound for any combination method applied to the

two classifiers. Yet, it points out the potential benefit of the combination of the flat and structural

classifiers.

5.2.2 Combined flat and structural classification

A k-nearest neighbor classifier (with a value of the k parameter equal to 113) was used for combing

the flat and structural classifiers. Such metaclassifier takes the outputs of the two classifiers as

inputs and provides the final fingerprint classification as output. Table 1c depicts the confusion

matrix for this experiment. Notice that such combination outperforms the best single classifier

(i.e., the MLP classifier using the FingerCode representation; see Table 1a), so pointing out that

the exploitation of structural information allows increasing classification performances. The accu-

racy of this classifier is 87.9 percent. In particular, we note that such combination improves the

performances related to A and W classes, confirming the intuition suggested by Figure 1.

5.3 Results with SVM

We used the three types of multi-class classification schemes discussed in section 2.1 which are

based on the combination of binary SVM. SVM have been trained using the SVMFu code6 on a

550MHz Pentium-II PC. Training on 2000 examples takes about 10s for pairwise classifiers and

20s for one-vs-all classifiers.

One-vs-all SVM. We trained five one-vs-all SVM classifiers using both Gaussian kernels and

polynomials of degree between 2 and 6. The best result was obtained with the Gaussian kernel

with σ = 1: 88.0 percent at 1.8 percent rejection rate; the confusion matrix is reported in Table

2a. The best polynomial SVM was of degree 3 and achieved a performance of 84.5 percent only.

Then, in the remaining experiments we used only the Gaussian kernel.

Pairwise SVM. We trained the ten pairwise SVM. The test set accuracy increases to 88.4 percent

at 1.8 percent rejection rate, improving the MLP accuracy reported in [21] of 2 percent. The

confusion matrix is reported in Table 2b.
6This software can be downloaded at http://five-percent-nation.mit.edu/SvmFu.

14

Error-correction SVM scheme. Three sets of SVM classifiers were used to construct the coding

matrix: 5 one-vs-al classifiers, 10 two-vs-three classifiers and 10 pairwise classifiers. The three kinds

of decoding distances discussed in Section 2 were compared: (i) Hamming distance: 88.0 percent,

(ii) Margin weighted Euclidean distance: 89.1 percent, (iii) Soft margin distance: 88.8 percent (all

results are at 1.8 percent rejection rate). This results confirm the advantage of taking in account

the margin of the classifiers inside the decoding distance. The confusion matrix for the margin

weighted Euclidean distance is reported in Table 2c.

Table 2: Confusion matrices: (a) One-vs-all SVM; (b) Pairwise SVM; (c) ECC SVM with margin

weighted Euclidean decoding). Rows denote the true class, columns the assigned class.

W R L A T

W 356 23 14 3 1

R 4 344 1 7 33

L 4 2 356 6 13

A 0 2 5 371 55

T 0 7 7 48 302

W R L A T

W 359 24 15 3 1

R 4 341 1 6 30

L 5 0 356 6 15

A 0 2 4 363 58

T 0 7 9 38 317

W R L A T

W 362 22 11 3 0

R 4 350 3 8 27

L 7 2 357 5 11

A 0 3 3 398 32

T 0 13 9 51 283

(a) (b) (c)

We have also trained the ECC of SVM for the four classes task (classes A and T merged

together) using the margin weighted Euclidean distance. The obtained accuracy is of 93.7 percent

at 1.8 percent rejection rate. For comparison, the accuracy reported in [21] for the sole MPL’s is

92.1 percent, while the cascade of k-NN and MLP yields 94.8 percent.

5.3.1 Analysis of the margin

We have measured the margin as in Equation (2) and the number of support vectors of each SVM

classifier used in our experiments (the training error of each individual classifier was always equal

to zero). The number of support vector ranges between 1/5 and 1/2 of the number of training

points. As expected the margin decreases for those classifiers which involve difficult pairs of classes.

Among the pairwise classifiers, the A-T classifier has the smallest margin. The margin of the T-

vs-all and A-vs-all is also small. However the margin of the AT-vs-RLW classifier increases, which

15

might explain why our error correcting strategy works well.

5.3.2 Rejection vs. accuracy

Let d1 be the minimum distance of the vector of outputs of the classifiers from the coding row,

and d2 the second minimum distance. Rejection can be decided by looking at the difference

∆ = d2 − d1. A large value of ∆ indicates high confidence in classification; when ∆ is smaller than

a given threshold we reject the data. The rejection rate is controlled by this threshold. Table 3

shows the accuracy-rejection tradeoff obtained in our experiments. Notice that the accuracy of

the system increases sharply with the rejection rate. At 20 and 32.5 percent rejection, the system

shows a moderate improvement over the best results in [21].

Table 3: Accuracy vs. rejection rate for the one-vs-all SVM combination.

Rejection Rate: 1.8% 8.5% 20.0% 32.5%

5 Classes: 89.1% 90.6% 93.9% 96.2%

4 Classes: 93.7% 95.4% 97.1% 98.4%

5.4 Using both vectorial and structured features with SVM

We have trained SVM on both FingerCode and RNN-extracted features and used the ECC scheme

with margin weighted Euclidean decoding. The confusion matrix is summarized in Table 4. The

performance is improved to 90.0 percent at 1.8 percent rejection rate. If we compare this perfor-

mance to the performance obtained with FingerCode features only (89.1 percent), we observe the

benefit of integrating global and structural representations.
This effect is especially clear in the accuracy vs. rejection rate results. As shown in Table

5, the accuracy sharply increases with the rejection rate, improving significantly over the results

obtained with FingerCode features only (see Table 3).
Finally, Table 6 summarizes the performance results of the different methods presented above.

From there one can clearly observe the advantage offered by the ECC approach as well as and the

effect of integrating flat and structural features.

16

Table 4: Confusion matrix for the ECC of SVM trained on both FingerCode and RNN-extracted

features.
W R L A T

W 366 18 8 2 0

R 5 354 0 7 29

L 6 1 357 2 13

A 0 2 2 396 33

T 1 8 12 48 294

Table 5: Accuracy vs. rejection rate for the ECC of SVM classifiers trained on the union of

FingerCode and RNN-extracted features

Rejection Rate: 1.8% 8.5% 20.0% 32.5%

5 Classes: 90.0% 92.2% 95.6% 97.6%

4 Classes: 94.7% 96.6% 98.4% 99.2%

6 Conclusions

In this paper we have studied the combination of flat and structured representations for fingerprint

classification. An algorithm for extracting a structural representation of fingerprint images was

presented. RNN were used to process this structural representation and to extract a distributed

vectorial representation of the fingerprint. This vectorial representation was integrated with other

global representation, showing significant improvement over global features only. Experiment were

performed on the NIST Database 4. The best performance was obtained with an error correcting

code of SVM. This method can tolerate the presence of ambiguous examples in the training set

and shown to be precise to identify difficult test images, then sharply improving the accuracy of

the system at a higher rejection rate.

A number of questions and future research directions are still open. The main one is how to

train directly SVM on structured representation.

Acknowledgment: We wish to thank Anil Jain for providing us the dataset of preprocessed

17

Table 6: Summary of the results of the different proposed methods. We have used the following

notation: SVM1 for One-vs-all SVM, SVM2 for Pairwise SVM, and SVM3 for the ECC of SVM.

Method RNN MLP k-NN SVM1 SVM2 SVM3 SVM & RNN

Performance: 71.5% 86.0% 87.9% 88.0% 88.4% 89.1% 90.0%

NIST-4 fingerprints. This work was partially supported by CERG Grant 9040457.

References

[1] C. Burges. A tutorial on support vector machines for pattern recognition. In Data Mining and Knowl-

edge Discovery. Kluwer Academic Publishers, Boston, 1998. (Volume 2).

[2] R. Cappelli, A. Lumini, D. Maio, and D. Maltoni. Fingerprint classification by directional image

partitioning. Transactions on Pattern Analysis Machine Intelligence, 21(5):402–421, 1999.

[3] R. Cappelli, D. Maio, and D. Maltoni. Combining fingerprint classifiers. In Proceedings First Interna-

tional Workshop on Multiple Classifier Systems (MCS2000), pages 351–361, Cagliari, 2000.

[4] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge University

Press, 2000.

[5] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes.

Journal of Artificial Intelligence Research, 1995.

[6] M.J. Donahue and S.I. Rokhlin. On the use of level curves in image analysis. Image Understanding,

57(3):185–203, 1993.

[7] J. L. Elman. Finding structure in time. Cognitive Science, 14:179–211, 1990.

[8] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines. Advances

in Computational Mathematics, 13:1–50, 2000.

[9] P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive processing of data structures.

IEEE Trans. on Neural Networks, 9(5):768–786, 1998.

[10] P. Frasconi, M. Gori, and A. Sperduti. Special section on connectionist models for learning in struc-

tured domains. IEEE Trans. on Knowledge and Data Engineering, 13(2), 2001.

[11] Jerome H. Friedman. Another approach to polychotomous classification. Technical report, Department

of Statistics, Stanford University, 1997.

18

[12] R.S. Germain, A. Califano, and S. Colville. Fingerprint matching using transformation parameter

clustering. IEEE Computational Science and Engineering, 4(4):42–49, 1997.

[13] G. Giacinto and F. Roli. Ensembles of neural networks for soft classification of remote sensing images.

In European Symposium on Intelligent Techniques, pages 166–170, 1997.

[14] G. Giacinto, F. Roli, and L. Bruzzone. Combination of neural and statistical algorithms for supervised

classification of remote-sensing images. Pattern Recognition Letters, 21(5), 2000.

[15] C. Goller and A. Küchler. Learning task-dependent distributed structure-representations by back-

propagation through structure. In IEEE Int. Conf. on Neural Networks, pages 347–352, 1996.

[16] U. Halici and G. Ongun. Fingerprint classification through self-organizing feature maps modified to

treat uncertainty. Proceedings of the IEEE, 84(10):1497–1512, 1996.

[17] E.R. Henry. Classification and Uses of Finger Prints. Routledge, London, 1900.

[18] A. K. Jain and S. Pankanti. Fingerprint Classification and Recognition, chapter The Image and Video

Processing Handbook. Academic Press, 2000.

[19] A.K. Jain, R. Bolle, and S. Pankainti. Biometrics: Personal Identification in Networked Society.

Kluwer Academic Pub., Norwell, MA, 1999.

[20] L.C Jain, U. Halici, I. Hayashi, S.B Lee, and Tsutsui (Eds.). Intelligent Biometric Techniques in

Fingerprint and Face Recognitioni. CRC Press, USA, 1999.

[21] A.K. Jain, S. Prabhakar, and L. Hong. A multichannel approach to fingerprint classification. PAMI,

21 (4):348–359, 1999.

[22] K. Karu and A.K. Jain. Fingerprint classification. Pattern Recognition, 29(3):389–404, 1996.

[23] J. Kittler and F. Roli, editors. Proc. of the First International Workshop on Multiple Classifier

Systems, volume 1857 of LNCS. Springer-Verlag, 2000.

[24] D. Maio and D. Maltoni. A structural approach to fingerprint classification. In of the 13th International

Conference on Pattern Recognition, volume 3, pages 578–585, 1996.

[25] G.L. Marcialis, F. Roli, and P. Frasconi. Fingerprint classification by combination of flat and structural

approaches. Proc. 3rd Int. Conf. on Audio- and Video-Based Biometric Person Authentication, 2001.

[26] B. Moayer and K.S. Fu. A syntactic approach to fingerprint pattern recognition. Pattern Recognition,

7:1–23, 1975.

[27] K. Moscinska and G. Tyma. Neural network based fingerprint classification. In Third International

Conference on Neural Networks, pages 229–232, 1993.

19

[28] H.V. Neto and D.L. Borges. Fingerprint classification with neural networks. In Proceedings 4th

Brazilian Symposium on Neural Networks, pages 66–72. IEEE Press, 1997.

[29] Tony A. Plate. Holographic reduced representations. IEEE Trans. on Neural Networks, 6(3):623–641,

1995.

[30] J. Platt, N. Cristianini, and J. Shawe-Taylor. Lrge margin dags for multiclass classification. In

Advances in Neural Information Processing Systems, Denver, Colorado, 2000.

[31] J. B. Pollack. Recursive distributed representations. Artificial Intelligence, 46(1-2):77–106, 1990.

[32] M. Pontil and A. Verri. Support vector machines for 3-d object recognition. IEEE Trans. PAMI,

pages 637–646, 1998.

[33] Robert E. Schapire, Yoram Singer, and Erin Lee Young. Reducing multiclass to binary: A unifying

approach for margin classifiers. Technical report, AT&T Research, 2000.

[34] A. Senior. A hidden markov model fingerprint classifier. In Proc. 31st Asilomar Conf. Signal, Sistems,

and Computers, pages 305–310, 1997.

[35] A. Sperduti and A. Starita. Supervised neural networks for the classification of structures. IEEE

Transactions on Neural Networks, 8(3), 1997.

[36] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[37] C.I. Watson and C.L. Wilson. Fingerprint database. National Institute of Standards and Technology,

April 1992. Special Database 4, FPDB.

20

