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Abstract. We present new fingerprint classification algorithms based
on two machine learning approaches: support vector machines (SVMs),
and recursive neural networks (RNNs). RNNs are trained on a structured
representation of the fingerprint image. They are also used to extract a
set of distributed features which can be integrated in the SVMs. SVMs
are combined with a new error correcting code scheme which, unlike
previous systems, can also exploit information contained in ambiguous
fingerprint images. Experimental results indicate the benefit of integrat-
ing global and structured representations and suggest that SVMs are a
promising approach for fingerprint classification.

1 Introduction
The pattern recognition problem studied in this paper consists of classifying fin-
gerprint images into one out of five categories: whorl (W), right loop (R), left
loop (L), arch (A), and tented arch (T). These categories were defined during
early investigations about fingerprint structure [4] and have been used exten-
sively since then. The task is important because classification can be employed
as a preliminary step for reducing complexity of database search in the problem
of automatic fingerprint matching [5]: If a query image can be classified with
high accuracy, the subsequent matching algorithm only needs to compare stored
images belonging to the same class.

In this paper, we propose new fingerprint classification algorithms based on
two machine learning approaches: support vector machines (SVMs), and recur-
sive neural networks (RNNs). SVMs are a relatively new technique for pattern
classification and regression that is well-founded in statistical learning theory [8].
One of the main attractions of using SVMs is that they are capable of learning
in sparse, high-dimensional spaces with very few training examples. RNNs are
connectionist architectures designed for solving the supervised learning problem
when the instance space is comprised of labeled graphs [2]. This architecture can
exploit structural information in the data, which improves the discrimination of
certain pairs of classes. RNNs are also used to extract a distributed vectorial
representation of the relational graph associated with a fingerprint. This vector
is regarded as an additional set of features subsequently used as inputs for the
SVM classifier. An important issue in fingerprint classification is the problem
of ambiguous examples: some fingerprints are assigned to two classes simulta-
neously, i.e. they have double labels. In order to address this issue, we designed



an error correcting code [1] scheme of SVM classifiers based on a new type of
decoding distance. This approach has two main advantages: (a) It can toler-
ate the presence of ambiguous fingerprint images in the training set, and (b) It
can effectively identify the most difficult fingerprint images in the test set. By
rejecting these images the accuracy of the system improves significantly.

The paper is organized as follows: In Section 2 we briefly describe SVM’s
theory and discuss how to combine SVM classifiers for multi-class classification
tasks. Section 3 briefly presents RNNs. In Section 4 we report the experimental
results. Section 5 concludes the paper.

2 Support Vector Machines

SVMs [8] perform pattern recognition for two-class problems by determining the
separating hyperplane with maximum distance or margin to the closest points
of the training set. These points are called support vectors. If the data is not
linearly separable in the input space, a non-linear transformation Φ(·) can be
applied which maps the data points x ∈ IRn into a Hilbert spaceH. The mapping
Φ(·) is represented by a kernel function K(·, ·) which defines an inner product
in H, i.e. K(x, t) = Φ(x) · Φ(t). The decision function of the SVM has the
form: f(x) =

∑`
i=1 αiciK(xi,x), where ` is the number of data points, and

ci ∈ {−1, 1} is the class label of training point xi. Coefficients αi can be found by
solving a quadratic programming problem with linear constraints. An important
kernel function is the Gaussian kernel: K(x,y) = exp (−‖x− y‖/2σ2), with σ
the variance of the gaussian. See [8] for more information on SVMs.

2.1 Multi-class Classification with Error Correcting Codes

Standard approaches to solve q-class problems with SVMs are: (a) One-vs-all:
We train q SVMs, each of which separates a single class from all remaining
classes [8]; (b) Pairwise: We train q(q−1)

2 machines, each of which separates a
pair of classes. These two classification schemes are two extreme approaches: the
first uses all the data, the second the smallest portion of the data. In practice,
it can be more effective to use intermediate classification strategies in the style
of error-correcting codes (ECCs) [1]. In this case, each classifier is trained to
separate a subset of classes from another disjoint subset of classes (the union of
these two subsets does not need to cover all the classes). For example the first set
could consist of classes A and T and the second of classes R,L and W. By doing
so, we associate each class with a row of the “coding matrix” M ∈ {−1, 0, 1}q×s,
where s denotes the number of classifiers. Mij = −1 or 1 means that points in
class i are regarded as negative or positive examples for training the classifier j.
Mij = 0 says that points in class i are not used for training the j−th classifier.
ECCs allows a more accurate use of ambiguous examples, since each SVM is in
charge of generating one codebit only, whose value discriminates between two
disjoint sets of classes. If a fingerprint has labels all belonging to the same set for
a particular codebit, then clearly we can keep this example in the training set
without introducing any labeling noise. As an example consider fingerprints with
double labels A and T. These examples are discarded by the one-vs-all classifiers



of class A and T, and the pairwise classifier A-vs-T. However they are used to
train the classifier AT-vs-RLW. A test point is classified in the class whose row
in the coding matrix has minimum distance to the output raw of the classifiers.
Let m be a row of the coding matrix, f the real output vector of the classifiers,
and γi the margin of the i−th classifier. The simplest and most commonly used
distance is the Hamming distance d(f ,m) =

∑s
i=1 1−sign(fimi). We will also use

two other distance measures which take in account the margin of the classifiers:
The margin weighted Euclidean distance, d(m, f) =

∑s
i=1 γi(1− fimi), and the

soft margin distance d(f ,m) =
∑s

j=1 |1 − fimi|+. In the later expression, the
function |x|+ is equal to x, when x > 0, and zero otherwise.

3 Recursive Neural Networks
A RNN [2] is a connectionist model designed to solve supervised learning prob-
lems such as classification or regression when the output prediction is conditioned
on a hierarchical data structure, like the structural representation of fingerprints
of [6]. The input to the network is a labeled direct positional acyclic graph
(DPAG) U (see [2] for a definition), where the label U(v) at each vertex v is a
real-value feature vector associated with a fingerprint region, as described above.
A hidden state vector X(v) ∈ Rn is associated with each node v. This vector
contains a distributed representation of the subgraph dominated by v (i.e. all the
vertices that can be reached starting a directed path from v). The state vector
is computed by a state transition function which combines the state vectors of
v’s children with a vector encoding of the label of v:

X(v) = f(X(w1), · · · , X(wk), U(v)),

where {w1, · · · , wk} is the ordered set of v’s children. Computation proceeds re-
cursively from the frontier to the supersource (the vertex dominating all other
vertices). Transition function f is computed by a multilayer perceptron, which
is replicated at each node in the DPAG, sharing weights among replicas. Classi-
fication with RNNs is performed by adding an output function g that maps the
hidden state vector X(s) associated with the supersource to the class label. The
state vector X(s) is a distributed representation of the entire input DPAG and
encodes features of the input DPAG deemed to be relevant for discrimination
amongst classes. In the subsequent experiments, the components of the state
vector at the supersource are thus used as an additional set of features.

4 Experimental Results
Our system was validated the NIST Database 4 [9]. This Database consists of
4000 images analyzed by a human expert and labeled with one or more of the
five structural classes W, R, L, A, and T (more than one class is assigned in
cases where ambiguity could not be resolved by the human expert). Previous
works on the same dataset either rejected ambiguous examples in the training
set (loosing in this way part of the training data), or used the first label as
a target (potentially introducing output noise). Fingerprints were represented
with the structured representation of [6] (22 real value features) as well as with
FingerCode features [5] (192 real features).



4.1 Stacked Integration of Flat and Structural Classifiers
In a first set of experiments we investigated the potentialities of the combination
of flat and structural methods. We coupled our structural approach with the
flat neural network proposed in [5]. In these experiments, we used a “stacked”
approach for combining classifiers, with a k-nearest neighbor as the additional
classifier for combination [3].

Comparison between Vector-based and Structural Classification. We
have trained a multi-layer perceptron (MLP) using the FingerCode feature vec-
tor as input. The best test set performance was obtained with 28 hidden units.
The overall accuracy is 86% at 1.8% rejection rate. For comparison, the struc-
tural approach described in [6] achieves the performance of 71.5% only. This
low accuracy is mainly due to the large degree of confusion among L, R and T,
while A and W are well discriminated. Afterwards, we analyzed the degree of
complementarity between the two above classifiers. To this end, we assessed the
performance of an ideal “oracle” that, for each input fingerprint, always selects
the best of the two classifiers. Such an oracle provides an overall accuracy of
92.5% at 1.8% rejection rate. This value obviously represents a very tight upper
bound for any combination method applied to the two classifiers. However, it
points out the potential benefit of combining the flat and structural classifiers.

Combined Flat and Structural Classification. A k-nearest neighbor clas-
sifier (with a value of k = 113) was used for combining the flat and structural
classifiers. Such metaclassifier takes the outputs of the two above classifiers as
inputs and provides the final fingerprint classification as output. Such combi-
nation attains 87.9% accuracy at 1.8% rejection rate, outperforming the MLP
classifier discussed above. This result indicates that accuracy can be improved
by exploiting structural information. In particular, we observed that such com-
bination improves the performances related to A and W classes.

4.2 Results with SVMs
We compared the three types of multi-class classification schemes discussed in
section 2.1. SVMs were trained using the SVMFu code (http://five-percent-
nation.mit.edu/SvmFu) on a 550MHz Pentium-II PC. Training on 2000 exam-
ples takes about 10s for pairwise classifiers and about 20s for one-vs-all classifiers.

One-vs-all SVMs. We trained five one-vs-all SVM classifiers using both gaus-
sian kernels and polynomials of degree between 2 and 6. The best result was
obtained with the gaussian kernel with σ = 1: 88.0% at 1.8% rejection rate. The
best polynomial SVM was of degree 3 and achieved a performance of 84.5% only.
Then, in the remaining experiments we used only the Gaussian kernel.

Pairwise SVMs. We trained the ten pairwise SVMs. The test set accuracy
increases to 88.4%, improving of 2.4% the MLP accuracy reported above.

Error-correction SVM scheme. Three sets of SVM classifiers were used to
construct the coding matrix: 5 one-vs-al classifiers, 10 two-vs-three classifiers
and 10 pairwise classifiers. The three kinds of decoding distances discussed in



Section 2.1 were compared: (i) Hamming distance: 88.0%, (ii) Margin weighted
Euclidean distance: 89.1%, (iii) Soft margin distance: 88.8% (all results are at
1.8% rejection rate). This results confirm the advantage of incorporating the
margin of the classifiers inside the decoding distance. We have also trained the
ECC of SVMs for the four classes task (classes A and T merged together) using
the margin weighted Euclidean distance. The obtained accuracy is of 93.7% at
1.8% rejection rate. For comparison, the accuracy reported in [5] for the sole
MPL’s is 92.1%, while the cascade of k−NN and MLP yields 94.8%. This series
of experiments indicate the advantage of the ECC scheme over the first two to
the better exploiting information contained in multiple labeled examples.

Analysis of the Margin. We measured the margin and the number of support
vectors of each SVM classifier used in our experiments (the training error of
each individual classifier was always equal to zero). The number of support
vectors ranges between 1/5 and 1/2 of the number of training points. As expected
the margin decreases for those classifiers which involve difficult pairs of classes.
Among the pairwise classifiers, the A-T classifier has the smallest margin. The
margin of the T-vs-all and A-vs-all is also small. However the margin of the
AT-vs-RLW classifier increases, which might explain why our error correcting
strategy works well.

Rejection versus Accuracy. Let d1 be the minimum distance of the output
vector of the classifiers from the coding row, and d2 the second minimum dis-
tance. Rejection can be decided by looking at the difference ∆ = d2−d1. A large
value of ∆ indicates high confidence in classification; when ∆ is smaller than a
given threshold we reject the data. The rejection rate is controlled by this thresh-
old. Table 1 shows the accuracy-rejection tradeoff obtained in our experiments.
Notice that the accuracy of the system increases sharply with the rejection rate.
At 20% and 32.5% rejection, the system shows a moderate improvement over
the best results in [5].

Table 1. Accuracy vs. rejection rate for the ECC scheme of SVMs (Margin weighted
Euclidean decoding) trained on FingerCode features.

Rejection Rate: 1.8% 8.5% 20% 32.5%
5 Classes: 89.1% 90.6% 93.9% 96.2%
4 Classes: 93.7% 95.4% 97.1% 98.4%

4.3 Combining Flat and Structural Features with SVM and ECC
We have trained SVMs on both FingerCode and RNN-extracted features and
used the ECC scheme with margin weighted Euclidean decoding. The confusion
matrix is summarized in Table 2a. The performance improves to 90.0% at 1.8%
rejection rate. If we compare this performance to the performance obtained with
FingerCode features only (89.1%), we observe the benefit of integrating global
and structural representations. This effect is especially clear in the accuracy
vs. rejection rate results. As shown in Table 2b, the accuracy sharply increases
with the rejection rate, improving significantly over the results obtained with
FingerCode features only (see Table 1).



Table 2. (a): Confusion matrix for the ECC of SVMs (Margin weighted Euclidean
decoding) trained on both FingerCode and RNN-extracted features. (b): Accuracy vs.
rejection rate for the ECC of SVM classifiers trained on the union of FingerCode and
RNN- extracted features.

W R L A T
W 366 18 8 2 0
R 5 354 0 7 29
L 6 1 357 2 13
A 0 2 2 396 33
T 1 8 12 48 294

Rejection Rate: 1.8% 8.5% 20.0% 32.5%
5 Classes: 90.0% 92.2% 95.6% 97.6%
4 Classes: 94.7% 96.6% 98.4% 99.2%

(a) (b)

5 Conclusions

In this paper have studied the combination of flat and structured representations
for fingerprint classification. RNNs were used for process this structural repre-
sentation and to extract a distributed vectorial representation of the fingerprint.
This vectorial representation was integrated with other global representations,
showing significant improvement over global features only. Experiment were per-
formed on the NIST Database 4. The best performance was obtained with an
error correcting code of SVMs. This method can tolerate the presence of ambigu-
ous examples in the training set and shown to be precise to identify difficult test
images, then sharply improving the accuracy of the system at a higher rejection
rate.
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