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Abstract. We report about some experiments on the fingerprint data-
base NIST-4 using different combinations of Support Vector Machine
(SVM) classifiers. Images have been preprocessed using the feature ex-
traction technique as in [10]. Our best classification accuracy is 89.3 per-
cent (with 1.8 percent rejection due to the feature extraction process)
and is obtained by an error-correction scheme of SVM classifiers. Our
current system does not outperform previously proposed classification
methods, but the focus here is on the development of novel algorithmic
ideas. In particular, as far as we know, SVM have not been applied be-
fore in this area and our preliminary findings clearly suggest that they
are an effective and promising approach for fingerprint classification.

1 Introduction

The pattern recognition problem studied in this paper consists of classifying fin-
gerprint images into one out of five categories: whorl (W), right loop (R), left
loop (L), arch (A), and tented arch (T). These categories were defined during
early investigations about fingerprint structure [9] and have been used exten-
sively since then. The task is interesting because classification can be employed
as a preliminary step for reducing complexity of database search in the prob-
lem of automatic fingerprint matching [7,10]. Basically, if a query image can be
classified with high accuracy, the subsequent matching algorithm only needs to
compare stored images belonging to the same class.
Several pattern recognition algorithms have been proposed for fingerprint

classification, including early syntactic approaches [12], methods based on de-
tection of singular points [11], connectionist algorithms such as self-organizing
feature maps [8], neural networks [13], and structural methods based on (dy-
namic) graph matching [1]. The current highest accuracy (92.2 percent on the
NIST Database 4) was obtained with a method based on multi-space principal
component analysis [2]. In spite of these efforts, the problem has not beed solved
satisfactorily and there is undoubtedly room for further improvements in terms
of classification accuracy, rejection threshold, and simplicity of design.
In this paper, we propose an fingerprint classifier based on Support Vector

Machines (SVM), a relatively new technique to train classifiers that is well-
founded in statistical learning theory [17]. One of the main attractions of using
SVMs is that they are capable of learning in sparse, high-dimensional spaces
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with very few training examples. SVMs have been successfully applied to various
classification problems (see [3] and references therein).
Since basic SVM are formulated for solving binary classification tasks, we de-

signed a multiclass strategy based on a new error correcting code (ECC) strategy.
Our system is validated on FingerCode [10] preprocessed images from the

NIST database 4 [18]. The best SVM combination achieves 89.3 percent accuracy
with 1.8 percent rejection, due to failures of FingerCode in reliably locating
the fingerprint core. This result is only 0.7 percent worse than the accuracy
obtained in [10] using the same features and a two stages k-NN/MLP classifier.
Interestingly, SVM’s accuracy is much better than separate accuracies of both k-
NN and MLP, but slightly worse than the cascading of the two. Hence, although
preliminary, we believe our results are very promising and might yield state-of-
the-art improvements if further refined.

2 Support Vector Machines

Support vector machines (SVMs) [17] perform pattern recognition for two-class
problems by determining the separating hyperplane1 with maximum distance to
the closest points of the training set. These points are called support vectors. If
the data is not linearly separable in the input space, a non-linear transformation
Φ(·) can be applied which maps the data points x ∈ IRn into a high (possibly
infinite) dimensional space H which is called feature space. The data in the
feature space is then separated by the optimal hyperplane as described above.
The mapping Φ(·) is represented in the SVM classifier by a kernel function

K(·, ·) which defines an inner product in H, i.e. K(x, t) = Φ(x) · Φ(t). The
decision function of the SVM has the form:

f(x) =
�∑

i=1

αiyiK(xi,x), (1)

where � is the number of data points, and yi ∈ {−1, 1} is the class label of
training point xj . Coefficients αi in Eq. (1) can be found by solving a quadratic
programming problem with linear constraints [17]. The support vectors are the
nearest points to the separating boundary and are the only ones for which αi in
Eq. (1) can be nonzero.
An important family of admissible kernel functions are the Gaussian kernel,

K(x,y) = exp (−‖x− y‖/2σ2), with σ the variance of the gaussian, and the
polynomial kernels, K(x,y) = (1 + x · y)d, with d the degree of the polynomial.
For other important examples of kernel functions used in practice see [5,17].
LetM be the distance of the support vectors to the hyperplane. This quantity

is called margin and it is related to the cofficients in Eq. (1),

M =

(
�∑

i=1

αi

) 1
2

. (2)

1 SVM theory also includes the case of non-separable data, see [17].
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The margin is an indicator of the separability of the data. In fact, the expected
error probability of an SVM is bounded by the average (with respect to the
training set) of R2

�M2 , with R the radius of the smallest sphere containing the
data points in the feature space.

2.1 Multi-class Classification

Many real-world classification problems involve more than two classes. Attempts
to solve q-class problems with SVMs have involved training q SVMs, each of
which separates a single class from all remaining classes [17], or training q2

machines, each of which separates a pair of classes [14,6,15]. The first type of
classifiers are usually called one-vs-all, while classifiers of the second type are
called pairwise classifiers. For the one-vs-all a test point is classified into the
class whose associated classifier has the highest score among all classifiers. In
the pairwise classifier, a test point is classified in the class which gets most votes
among all the possible classifiers [6].
Classification schemes based on training one-vs-all and pairwise classifiers

are two extreme approaches: the first uses all the data, the second the smallest
portion of the data. In practice, it can be more effective to use intermediate
classification strategies in the style of error-correcting codes [4,16]. In this case,
the number of classifiers grows linearly with the number of classes. Each classifier
is trained to separate a subset of classes from another disjoint subset of classes
(the union of these two subsets does not need to cover all the classes). For
example the first set could be classes A and T and the second classes R,L and
W. By doing so, we associate each class with a row of the “coding matrix”
M ∈ {−1, 0, 1}q×s, where s denotes the number of classifiers. Mij = −1 or
1 means that points in class i are regarded as negative or positive examples
for training the classifier j. Mij = 0 says that points in class i are not used
for training classifier j. A test point is classified in the class whose row in the
coding matrix has minimum distance to the output raw of the classifiers. The
simplest and most commonly used distance is the hamming distance. We will
discuss other distance measures in Section 3.

3 Experimental Results

3.1 Dataset

Our system was validated on FingerCode preprocessed fingerprints from the
NIST Database 4 [18]. FingerCode is a representation scheme described in [10]
and consists of a vector of 192 real features computed in three steps. First, the
fingerprint core and center are located. Then the algorithm separates the number
of ridges present in four directions (0◦, 45◦, 90◦, and 135◦) by filtering the central
part of a fingerprint with a bank of Gabor filters. Finally, standard deviations of
grayscale values are computed on 48 disc sectors, for each of the four directions.
The NIST Database 4 consists of 4000 images analyzed by a human expert and
labeled with one or more of the five structural classes W, R, L, A, and T (more
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than one class is assigned in cases where ambiguity could not be resolved by the
human expert).
Previous works on the same dataset either rejected ambiguous examples in

the training set (loosing in this way part of the training data), or used the first
label as a target (potentially introducing output noise). The error correcting code
developed in this paper allows a more accurate use of ambiguous examples, since
each SVM is only in charge of generating one codebit, whose value discriminates
between two disjoint sets of classes. If a fingerprint has labels all belonging to
the same set for a particular codebit, then clearly we can keep this example
in the training set without introducing any labeling noise. As far as testing is
concerned, we followed the customary convention of counting as errors only those
predictions that do not agree with any of the labels assigned to the fingerprint.
Before discussing our results, we briefly summarize the results in [10]. Three

different experiments were performed there: (a) A k-NN classifier with k = 10,
(b) A MLP classifier, (c) A hybrid combination of (a) and (b): given a test point,
first the k-NN classifier is used to compute the two most frequent labels. Then,
the MLP corresponding to these two labels is used for the final classification.
The accuracies obtained were of 85.4, 86.4, and 90.0 percent, respectively.

3.2 Results with SVMs

We used the three types of multi-class classification schemes discussed in section
2.1 which are based on the combination of binary SVMs. SVMs have been trained
using the SVMFu code2 on a 550MHz Pentium-II PC. Training on 2000 examples
takes about 10s for pairwise classifiers and 20s for one-vs-all classifiers.

One-vs-All SVMs.We trained five one-vs-all SVM classifiers using both Gaus-
sian kernels and polynomials of degree between 2 and 6. The best result was
obtained with the Gaussian kernel (σ = 1): 88.0% (see the confusion matrix in
Table 2a). The best polynomial SVM was of degree 3 and achieved a performance
of 84.5%. Rejection can be decided by examining the margin (see Eq. (2)). Table
1 shows the accuracy-rejection tradeoff obtained in our experiments.

Table 1. Accuracy vs. rejection rate for the one-vs-all SVMs combination.

Rejection Rate: 1.8% 3.0% 6.1% 10.9% 17.3% 24.2% 30.2%
Accuracy: 88.0% 89.0% 89.7% 90.9% 92.4% 93.4% 94.8%

Finally, in the four classes task (classes A and T merged together) a Gaussian
SVM with σ = 1 and C = 10 obtains an accuracy of 93.1%. For comparison, the
accuracy reported in [10] for the sole MPL’s is 92.1%, but the cascade of k-NN
and MLP yields 94.8%.

2 This software can be downloaded at http://five-percent-nation.mit.edu/SvmFu.

http://five-percent-nation.mit.edu/SvmFu
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Table 2. Confusion matrices: (a) One-vs-all SVMs; (b) Pairwise SVMs; (c)
ECC SVMs with margin weighted Euclidean decoding). Raws denote the true
class, columns the assigned class.

W R L A T
W 356 23 14 3 1
R 4 344 1 7 33
L 4 2 356 6 13
A 0 2 5 371 55
T 0 7 7 48 303

W R L A T
W 359 24 15 3 1
R 4 341 1 6 36
L 5 0 356 6 15
A 0 2 4 363 58
T 0 7 9 38 318

W R L A T
W 362 22 11 3 0
R 4 350 3 8 27
L 7 2 357 5 11
A 0 3 3 398 32
T 0 10 9 51 287

(a) (b) (c)

Pairwise SVMs. We trained the ten pairwise SVMs using always a Gaussian
kernels with σ = 1. The test set accuracy increases to 88.4%, improving of 2%
the MLP accuracy reported in [10]. The confusion matrix is reported in Table
2b.

Error-Correction SVM Scheme. Three sets of SVM classifiers were used to
construct the coding matrix: 5 one-vs-all
classifiers, 10 two-vs-three classifiers and 10 pairwise classifiers. Three kinds

of decoding distances were compared: (i) Hamming decoding: 88.0%, (ii) The
loss-based decoding proposed in [16]: 88.8%; (iii) Margin weighted decoding (the
distance function is defined as the Euclidean distance weighted by the margin):
89.3%. The confusion matrix for the last case is reported in Table 2c.
We have measured the margin as in Eq. (2) and the number of support

vectors of each SVM classifier used in our experiments (the training error of
each individual classifier was always zero). The number of support vector ranges
between 1/5 and 1/2 of the number of training points. As expected the margin
decreases for those classifiers which involve difficult pairs of classes. Among the
pairwise classifiers, the A-T classifier has the smallest margin. The margin of
the T-vs-all and A-vs-all is also small. However the margin of the AT-vs-RLW
classifier increases, which might explain why our error correcting strategy works
well.

4 Conclusions

We have presented experiments for fingerprint classification using different com-
binations of SVM classifiers. Images have been preprocessed using the features
extraction technique as in [10]. Our best classification accuracy is obtained by
an error-correction schemes of SVM classifiers. It improves separate accuracies
of both k-NN and MLP of 3.9 and 2.9 percent respectively, while is only 0.7
percent worse than the best performance obtained with the same features [10].
As far as we know, this is the first experimental study of SVMs in the area

of fingerprint classification. Therefore, we believe that our preliminary findings
are promising and might yield state-of-the-art improvements if further refined.
In particular this might be obtained by reweighting the features used by each
SVM classifier using the technique in [19].



258 Yuan Yao, Paolo Frasconi, and Massimiliano Pontil

Acknowledgment: We wish to thank Anil Jain for providing us the dataset of
preprocessed NIST-4 fingerprints.

References

1. R. Cappelli, A. Lumini, D. Maio, and D. Maltoni. Fingerprint classification by
directional image partitioning. Transactions on Pattern Analysis Machine Intelli-
gence, 21(5):402–421, 1999.

2. R. Cappelli, D. Maio, and D. Maltoni. Fingerprint classification based on multi-
space KL. In Proceedings Workshop on Automatic Identification Advances Tech-
nologies (AutoID’99), pages 117–120, 1999.

3. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
(and other kernel-based learning methods). Cambridge University Press, 2000.

4. T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research, 1995.

5. T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector
machines. Advances in Computational Mathematics, 13:1–50, 2000.

6. Jerome H. Friedman. Another approach to polychotomous classification. Technical
report, Department of Statistics, Stanford University, 1997.

7. R.S. Germain, A. Califano, and S. Colville. Fingerprint matching using trans-
formation parameter clustering. IEEE Computational Science and Engineering,
4(4):42–49, 1997.

8. U. Halici and G. Ongun. Fingerprint classification through self-organizing feature
maps modified to treat uncertainty. Proceedings of the IEEE, 84(10):1497–1512,
1996.

9. E.R. Henry. Classification and Uses of Finger Prints. Routledge, London, 1900.
10. A.K. Jain, S. Prabhakar, and L. Hong. A multichannel approach to fingerprint
classification. PAMI, 21 (4):348–359, 1999.

11. K. Karu and A.K. Jain. Fingerprint classification. Pattern Recognition, 29(3):389–
404, 1996.

12. B. Moayer and K.S. Fu. A syntactic approach to fingerprint pattern recognition.
Pattern Recognition, 7:1–23, 1975.

13. K. Moscinska and G. Tyma. Neural network based fingerprint classification. In
Third International Conference on Neural Networks, pages 229–232, 1993.

14. J. Platt, N. Cristianini, and J. Shawe-Taylor. Lrge margin dags for multiclass
classification. In Advances in Neural Information Processing Systems, Denver,
Colorado, 2000.

15. M. Pontil and A. Verri. Support vector machines for 3-d object recognition. IEEE
Trans. PAMI, pages 637–646, 1998.

16. Robert E. Schapire, Yoram Singer, and Erin Lee Young. Reducing multiclass
to binary: A unifying approach for margin classifiers. Technical report, AT&T
Research, 2000.

17. V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
18. C.I. Watson and C.L. Wilson. National Institute of Standards and Technology,
March 1992.

19. J.Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature
selection for support vector machines. In NIPS-13, 2001. To Appear.


	Introduction
	Support Vector Machines
	Multi-class Classification

	Experimental Results
	Dataset
	Results with SVMs

	Conclusions

