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Abstract. In this paper, we study a family of gradient descent algorithms to approximate the
regression function from Reproducing Kernel Hilbert Spaces (RKHSs), the family being character-
ized by a polynomial decreasing rate of step sizes (or learning rate). By solving a bias-variance
trade-off we obtain an early stopping rule and some probabilistic upper bounds for the convergence
of the algorithms. These upper bounds have improved rates where the usual regularized least square
algorithm fails and achieve the minimax optimal rate O(m−1/2) in some cases. We also discuss the
implication of these results in the context of classification. Some connections are addressed with
Boosting, Landweber iterations, and the on-line learning algorithms as stochastic approximations
of the gradient descent method.

1. Introduction

In this paper we investigate the approximation by random examples of the regression function
from Reproducing Kernel Hilbert Spaces (RKHSs). We study a family of gradient descent algo-
rithms to solve a least square problem, the family being characterized by a polynomial decreasing
rate of step sizes (or learning rate).

We focus on two iteration paths in a RKHS: one is the gradient flow for expected risk minimization
which depends on the unknown probability measure and is called here the population iteration; the
other is the gradient flow for empirical risk minimization based on the sample, called here the
sample iteration. Both paths start from the origin and, as iterations go on, leave from each other.
The population iteration converges to our target, the regression function; however the sample
iteration often converges to an overfitting function. Thus keeping the two paths close may play a
role of regularization to prevent the sample iteration from an overfitting function. This exhibits
a bias-variance phenomenon: the distance between the population iteration and the regression
function is called bias or approximation error ; the gap between the two paths is called variance or
sample error. Stopping too early may reduce variance but enlarge bias; and stopping too late may
enlarge variance though reduce bias. Solving this bias-variance trade-off leads to an early stopping
rule.

In literature, such a bias-variance view has been taken, explicitly or implicitly, by boosting as
a gradient descent method, where scaled convex hulls of functions are typically used instead of
RKHSs. The gap between the two paths (measured by some risk functional or distance) typically
grows in proportion to the radius (sum of absolute values of convex combination coefficients, or
l1 norm) of the paths and thus restricting that radius implements regularization. For example,
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fixing radius is used in [Lugosi and Vayatis 2004; Blanchard, Lugosi, and Vayatis 2003]. Recently,
early stopping regularization was systematically studied, see for example [Jiang 2004] for AdaBoost,
[Bühlmann and Yu 2002] for L2Boost, [Zhang and Yu 2003] for Boosting with general convex loss
functions, and [Bickel, Ritov, and Zakai 2005] for some generalized Boosting algorithms. It is also
interesting to note that in [Zhao and Yu 2004] some backward steps are introduced to reduce the
radius. Considering the square loss function, our paper can be regarded as a sort of L2Boost, which,
roughly speaking, extends some early results in [Bühlmann and Yu 2002] from Sobolev spaces with
fixed designs to general RKHSs with random designs.

It should be noted that the bias-variance decomposition here is close, but different to traditional
work on early stopping regularization in ill-posed problems [e.g. see Hanke 1995; or reference
in Chapter 5, Ong 2005]. In these works, the linear operators are fixed without randomization
and only output noise is considered. The sample iteration is the noise perturbed path which
typically first converges and eventually diverges (called semi-convergence). The population iteration
is the unperturbed path convergent to the generalized inverse. In these works the early stopping
was used to avoid the semi-convergence. However in the setting of our paper, only Monte-Carlo
approximations of the linear operators can be obtained, and the sample iteration typically converges
to an over-fitting solution. This increases the technical difficulty (e.g. the order optimality is still an
open problem in this setting), though we benefit a lot from the similarity between the two settings.

In this paper, we show by probabilistic upper bounds that under the early stopping rule above,
the proposed family of algorithms converges polynomially to the regression function subject to
some regularity assumption, where the constant step size algorithm is the fastest one in the family
by requiring the minimal number of iterations before stopping. We also discuss the implications
of our results in the context of classification by showing that under a suitable assumption on the
noise [Tsybakov 2004] some fast convergence rates to the Bayes classifier can be achieved.

Early stopping regularization has a crucial advantage over the usual regularized least square
learning algorithm, see for example [Smale and Zhou 2005; De Vito, Rosasco, Caponnetto, Giovan-
nini, and Odone 2004], which is also called penalized L2 regression or ridge regression in statistical
literature, or Tikhonov regularization in inverse problems. Early stopping does not incur the satu-
ration phenomenon that the rate no longer improves when the regression function goes beyond a
certain level of regularity. The saturation problem was proposed and studied intensively in inverse
problems [e.g. Engl, Hanke, and Neubauer 2000; Mathé 2004]. Our algorithms here can be regarded
as finite rank Monte Carlo approximations of Landweber iterations in linear inverse problems.

The organization of this paper is as follows. Section 2 summarizes the main results with discus-
sions. In Section 3 we collect more discussions on related works. In detail, 3.1 gives a comparison
between early stopping and Tikhonov regularization; 3.2 discusses the connection to boosting in the
view of gradient descent method; 3.3 discusses the connection to the Landweber iteration in linear
inverse problems; 3.4 discusses the connection to on-line learning algorithms based on stochastic
gradient method. Section 4 and 5 contribute to the proofs. Section 4 describes some crucial decom-
positions for later use. Section 5 presents the proofs of the upper bounds for the sample error and
the approximation error. In Section 6 we apply the main theorem to the setting of classification.
Appendix A collects some lemmas used in this paper and Appendix B provides some background
on reproducing kernel Hilbert spaces, random operators and concentration inequalities in Hilbert
spaces.
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2. Main Results

2.1. Definitions and Notations. Let the input space X ⊆ Rn be closed, the output space Y = R
and Z = X ×Y . Given a sample z = {(xi, yi) ∈ X ×Y : i = 1, . . . , m} ∈ Zm, drawn independently
at random from a probability measure ρ on Z, one wants to minimize over f ∈ H the following
quadratic functional

(1) E (f) =
∫

X×Y
(f(x)− y)2dρ

where H is some Hilbert space. In this paper, we choose H a reproducing kernel Hilbert space
(RKHS), in which the gradient map takes an especially simple form.

Here we recall some basic definitions on RKHSs and refer to Appendix B for an exposition with
more details. Let HK be the RKHS associated to a Mercer kernel K : X×X → R, i.e. a continuous
positive semi-definite function. Denote by 〈 , 〉K and ‖ · ‖K the inner product and norm of HK .
Let Kx : X → R be the function defined by Kx(s) = K(x, s) for x, s ∈ X.

Besides HK , another important function space, L 2
ρX

, is used throughout the paper. Denote
by ρX the marginal probability measure on X. Then let L 2

ρX
be the space of square integrable

functions with respect to ρX and by ‖ · ‖ρ (〈, 〉ρ) the norm (the inner product) in L 2
ρX

. Denote by
ρY |x the conditional measure on Y given x. Our target function will be the regression function,
fρ(x) =

∫
ydρY |x, i.e. the conditional expectation of y with respect to x. In fact, by the relation

E (f)− E (fρ) = ‖f − fρ‖2
ρ,

it can be seen that fρ is the minimizer of E (f) over L 2
ρX

Thus the minimization of (1) is to equivalent to finding approximations of fρ from HK , a subspace
(closed or not) in L 2

ρX
.

Here we define an integral operator which plays a central role in the theory. Let LK : L 2
ρX
→ HK

be an integral operator defined by (LKf)(x′) =
∫

K(x′, x)f(x)dρX . Its restriction LK |HK
induces

an operator from HK into HK , which when its domain is clear from the context, is also denoted
by LK (in Appendix B denoted by L̄K).

Finally throughout the paper we assume the following.

Finiteness Assumption.
1) Let κ := max

(
supx∈X

√
K(x, x), 1

)
< ∞.

2) There exists a constant M ≥ 0 such that supp(ρ) ⊆ X × [−M, M ].

2.2. Gradient Descent Algorithms. First we define two iterations: sample iteration and popu-
lation iteration, then we show they are gradient descent algorithms with respect to proper objective
functions.

Given a i.i.d. sample of size m, z =∈ Zm, define the sample iteration as a sequence (fz
t )t∈N ∈ HK

by

(2) fz
t+1 = fz

t −
γt

m

m∑

i=1

(fz
t (xi)− yi) Kxi , fz

0 = 0,
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where γt > 0 is the step size (or learning rate). In this paper we choose γt =
1

κ2(t + 1)θ
(t ∈ N) for

some θ ∈ [0, 1). Now define the population iteration as an averaged version of (2)

(3) ft+1 = ft − γtLK(ft − fρ), f0 = 0.

Clearly ft is deterministic and fz
t is a HK-valued random variable depending on z.

The following proposition shows that the algorithm (3) is a gradient descent method for mini-
mizing (1) over HK and the algorithm (2) is the gradient descent method to minimize over HK

the following empirical risk

(4) Ez(f) :=
1
m

m∑

i=1

(f(xi)− yi)2.

Proposition 2.1. The gradients of (1) and (4) are the maps from HK into HK given by

grad E (f) = LKf − LKfρ,

and

grad Ez(f) =
1
m

m∑

i=1

(f(xi)− yi)Kxi .

Proof. The proof follows from Proposition A.1 in Appendix A by taking expectations, grad V (f) =
E[(f(x) − y)Kx] =

∫
X×Y (f(x) − y)Kxdρ = LKf − LKfρ and grad V̂ (f) = Ê[(f(x) − y)Kx] =

1
m

∑m
i=1(f(xi)−yi)Kxi , where E denotes the expectation with respect to probability measure ρ and

Ê denotes the expectation with respect to the uniform probability measure on z, often called the
empirical measure. ¤

Soon we shall see that the population iteration ft converges to fρ, while the sample iteration fz
t

does not. In most cases, fz
t converges to an undesired overfitting solution which fits exactly the

sample points but has large errors beyond them. However via the triangle inequality

‖fz
t − fρ‖ρ ≤ ‖fz

t − ft‖ρ + ‖ft − fρ‖ρ,

we may control ‖fz
t −fρ‖ρ. Here we call the gap between two iteration paths, ‖fz

t −ft‖ρ, the sample
error (or variance), and distance ‖ft − fρ‖ρ the approximation error (or bias). The theorems in
the next section give upper bounds for each of them.

2.3. Early Stopping and Probabilistic Upper Bounds. In this section we state and discuss
the main results in the paper.

First we assume some regularity property on fρ. Let BR = {f ∈ L 2
ρX

: ‖f‖ρ ≤ R} (R > 0) be
the function ball in L 2

ρX
with radius R and centered at the origin. In this paper we assume that

for some r > 0, fρ ∈ Lr
K(BR), i.e. fρ lies in the image of the ball BR under the map Lr

K . Roughly
speaking, such a condition imposes a low pass filter on fρ which amplifies the projections of fρ on
the eigenvectors of LK : L 2

ρX
→ L 2

ρX
with large eigenvalues and attenuates the projections on the

eigenvectors with small eigenvalues.
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Main Theorem. Suppose fρ ∈ Lr
K(BR) for some R, r > 0. Let γt =

1
κ2(t + 1)θ

(t ∈ N) for some

θ ∈ [0, 1). For each m ∈ N, there is an early stopping rule t∗ : N→ N such that the following holds
with probability at least 1− δ (δ ∈ (0, 1)),

1) if r > 0, then
‖fz

t∗(m) − fρ‖ρ ≤ Cρ,K,δm
− r

2r+2 ,

where Cρ,K,δ = 8M
1−θ log1/2 2

δ + R
(

2rκ2

e

)r
, under the stopping rule

t∗(m) = dm 1
(2r+2)(1−θ) e;

2) if r > 1/2, then fρ ∈ HK and

‖fz
t∗(m) − fρ‖K ≤ Dρ,K,δm

− r−1/2
2r+2 ,

where Dρ,K,δ = 8M
κ(1−θ)3/2 log1/2 2

δ + R
(

2(r−1/2)κ2

e

)r−1/2
, under the stopping rule

t∗(m) = dm 1
(2r+2)(1−θ) e.

Above dxe denotes the smallest integer greater or equal than x ∈ R.

Its proof will be given in the end of this section.

Remark 2.2. The first upper bound holds for all r > 0. In the second upper bound, r > 1/2
implies fρ ∈ HK as L

1/2
K : L 2

ρX
→ HK is a Hilbert space isometry. In particular, when r →∞, we

approaches the asymptotic rate ‖fz
t∗(m) − fρ‖ρ ≤ O(m−1/2) 1 and ‖fz

t∗(m) − fρ‖K ≤ O(m−1/2), at a
price of the constants growing exponentially with r. This happens when HK is of finite dimension,
e.g. when K is a polynomial kernel, as only a finite number of eigenvalues of LK are nonzero whence
arbitrarily large r is allowed. Such a result improves the upper bounds for the usual regularized
least square algorithm [Minh 2005; or Appendix by Minh, in Smale and Zhou 2005] where the
upper convergence rate is slower than O(m−1/3) for r > 0 (or O(m−1/4) for r > 1/2). This fact
is related to the saturation phenomenon in the classical studies of inverse problems [Engl, Hanke,
and Neubauer 2000]. We shall come back to this point in Section 3.1.

Remark 2.3. Some minimax lower rate [DeVore, Kerkyacharian, Picard, and Temlyakov 2004,
Temlyakov 2004] and individual lower rate [Caponnetto and De Vito 2005], suggest that for r > 0
the convergence rate O(m−r/(2r+1)) is optimal in both senses, which has been achieved by the usual
regularized least square algorithm when r varies over a suitable range. This implies that in the
sense above we can not obtain a rate faster than O(m−1/2) which is achieved at r → ∞ by our
algorithms. It is an open problem whether the rates in the Main Theorem can be improved to meet
the lower rate.

Remark 2.4. The upper bounds show an interesting result, that shrinking the step size γt might
only affect the early stopping time, but not the rate of convergence. The constant step size, i.e.
θ = 0, leads to the fastest algorithm in the family in the sense that the algorithm requires the
minimal number of iterations before stopping.

1This implies a rate O(1/m) for the generalization error E (fz
t∗(m))− E (fρ) = ‖fz

t∗(m) − fρ‖2ρ.
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Now we discuss a direct application of the main theorem to the setting of classification. Notice
that when Y = {±1}, algorithm (2) may provide a classification rule signfz

t∗ . Hence we may
consider such a rule as an approximation of the Bayes rule, signfρ. The following result gives an
upper bound on the distance ‖signfz

t − signfρ‖ρ.

Theorem 2.5. Suppose Y = {±} and Tsybakov’s noise condition

(5) ρX({x ∈ X : |fρ(x)| ≤ t}) ≤ Bqt
q, ∀t > 0.

for some q ∈ [0,∞] and Bq ≥ 0. Under the same condition of the Main Theorem, for all r > 0 and
t ∈ N, the following holds with probability at least 1− δ (δ ∈ (0, 1)),

‖signfz
t∗(m) − signfρ‖ρ ≤ Cρ,K,δm

− αr
2(r+1)(2−α) .

where α = q/(q +1) and Cρ,K,δ = 32(Bq+1)M
1−θ log1/2 2

δ +4(Bq + 1)R
(

2rκ2

e

)r
, under the stopping rule

t∗(m) = dm 1
(2r+2)(1−θ) e;

Again the proof together with a detailed introduction on the background, is given in Section 6.
Some remarks follow.

Remark 2.6. This result implies that as α = 1 and r → ∞, the convergence rate may approach
O(1/

√
m) arbitrarily. This happens when using a finite dimensional HK with a hard margin on fρ

(i.e. ρX(|fρ| ≤ c) = 0 for some c > 0). However as in the Main Theorem, the constants here blow
up exponentially as r →∞.

Remark 2.7. Consider Bayes consistency. Define the risk of f by

R(f) = ρZ({(x, y) ∈ Z | signf(x) 6= y}),
and let R(fρ) be the Bayes risk. Combined with Proposition 6.2-2, the Main Theorem leads to an
upper bound,

R(fz
t∗(m))−R(fρ) ≤ O(m− 2r

2(r+1)(2−α) ),

whose asymptotic rate approaches to O(1/m) as α = 1 and r →∞, which is shown to be optimal
[e.g. see Bartlett, Jordan, and McAuliffe 2003, Tsybakov 2004 and reference therein].

Next we present upper bounds for the sample error and the approximation error, respectively,
which are used to prove the Main Theorem.

Theorem 2.8 (Sample Error). With probability at least 1− δ (δ ∈ (0, 1)) there holds for all t ∈ N,

‖fz
t − ft‖ρ ≤ C1

t1−θ

√
m

,

where C1 =
4M

1− θ
log1/2 2

δ
; and

‖fz
t − ft‖K ≤ C2

√
t3(1−θ)

m
,

where C2 =
4M

κ(1− θ)3/2
log1/2 2

δ
.
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Theorem 2.9 (Approximation Error). Suppose fρ ∈ Lr
K(BR) for some R, r > 0 and f0 = 0. Then

for all t ∈ N,

‖ft − fρ‖ρ ≤ C3t
−r(1−θ),

where C3 = R
(

2rκ2

e

)r
; and if moreover r > 1/2, then fρ ∈ HK and

‖ft − fρ‖K ≤ C4t
−(r−1/2)(1−θ),

where C4 = R
(

2(r−1/2)κ2

e

)r−1/2
.

Their proofs are given in Section 5.

Remark 2.10. It can be seen that the population iteration ft converges to fρ, while the gap between
the population iteration and sample iteration (i.e. the sample error) expands simultaneously. The
step size γt affects the rates of both. When γt shrinks faster (larger θ), the approximation error
(bias) drops slower, while the sample error (variance) grows slower.

Finally combining these upper bounds, we obtain an immediate proof of the Main Theorem by
solving a bias-variance trade-off.

Proof of the Main Theorem. Combining Theorem 2.8 and 2.9, we have

‖fz
t − fρ‖ρ ≤ C1

t1−θ

√
m

+ C3t
−r(1−θ).

Let t∗(m) = dmαe, the smallest integer greater or equal to mα for some α > 0. Minimizing the
right hand side over α > 0 we arrive at the linear equation

α(1− θ)− 1
2

= −αr(1− θ)

whose solution is α = 1
(2r+2)(1−θ) .

Assume for some β ∈ [1, 2] such that mα ≤ t∗(m) = βmα ≤ mα + 1 ≤ 2mα. Then

‖fz
t∗ − fρ‖ρ ≤ (β1−θC1 + β−r(1−θ)C3)m−r/(2r+2) ≤ (2C1 + C3)m−r/(2r+2).

Essentially the same reasoning leads to the second bound. ¤

3. Discussions on Related Work

In this section, we provide more discussions on the comparison between early stopping and
Tikhonov regularization used in the usual regularized least square algorithm, Boosting in the gra-
dient descent view, Landweber iterations to solve linear equations, and on-line learning algorithms
as stochastic approximations of the gradient descent method.
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3.1. Early Stopping vs. Tikhonov Regularization. In this subsection we give some compar-
isons of early stopping regularization vs. the usual regularized least square algorithm [e.g. Cucker
and Smale 2002; Smale and Zhou 2005], where following the tradition of inverse problems the latter
is roughly called Tikhonov regularization here to emphasize some motivations behind our studies.

Let
fλ = arg min

f∈HK

E (f) + λ‖f‖2
K ,

be the solution of problem (1) with Tikhonov regularization. It is known [e.g. Cucker and Smale
2002] that

fλ = (LK + λI)−1LKfρ.

Moreover for simplicity, let γt = γ0 = 1 (whence κ = 1), then by induction the population itera-
tion (3) becomes

ft =
t−1∑

i=0

(I − LK)iLKfρ =
t−1∑

i=0

(I − LK)i(I − (I − LK))fρ = (I − (I − LK)t)fρ.

Now let (µi, φi)i∈N be an eigen-system of the compact operator LK : L 2
ρX

→ L 2
ρX

. Then we
have decompositions

fλ =
∑

i

µi

µi + λ
〈fρ, φi〉φi,

and
ft =

∑

i

(1− (1− µi)t)〈fρ, φi〉φi.

Compactness of LK implies that limi→∞ µi = 0. Therefore for most µi which are sufficiently
small, µi/(µi + λ) ≈ 0 and 1 − (1 − µi)t converges to 0 with gap dropping at least exponentially
with t. Therefore both early stopping and Tikhonov regularization can be regarded as low pass
filters on fρ, which tends to project fρ to the eigenfunctions corresponding to large eigenvalues.
Such an observation in statistical estimation can be traced back to [Wahba 1987], which further
derives generalized cross-validation criteria for data-dependent early stopping rules [see also Wahba,
Johnson, Gao, and Gong 1995 for numerical experiments]. Moreover, it is shown in [Fleming 1990]
that if the LK is a finite rank operator (matrix) and if the step size γt is taken to be a finite rank
operator (matrix), there is a one-to-one correspondence between the two regularization methods.

On the other hand, there are also significant differences between the two regularization ap-
proaches. One major difference which motivates our study is that early stopping regularization
seems to have better upper bounds than Tikhonov regularization. In fact, it can be shown [Minh
2005; or Appendix by Minh, in Smale and Zhou 2005] that if fρ ∈ Lr

K(BR) for some r > 0,

‖fλ − fρ‖ρ ≤ O(λmin(r,1)),

and for r > 1/2,
‖fλ − fρ‖K ≤ O(λmin(r−1/2,1)).

We can see for large r, the upper bound can not go faster than t−1 in Tikhonov regularization.
On the other hand in early stopping regularization, taking θ = 0 in Theorem 2.9 we have that for
r > 0,

‖ft − fρ‖ρ ≤ O(t−r),
and for r > 1/2,

‖ft − fρ‖K ≤ O(t−(r−1/2)).
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We may roughly regard such a relationship between regularization parameters, λ ∼ 1/t, where early
stopping has faster rates than Tikhonov regularization for large r. A consequence of this leads to
a fast convergence rate O(m−1/2) in the Main Theorem as r → ∞, in a contrast for Tikhonov
regularization the best known upper convergence rate in L 2

ρX
(or in HK) [Minh 2005; or Remark

2 in Appendix in Smale and Zhou 2005] is O(m−1/3) (or O(m−1/4)), achieved at all r ≥ 1 (or
r ≥ 3/2).

In traditional studies of inverse problems, there is a closely related saturation phenomenon
[e.g. Engl, Hanke, and Neubauer 2000]: when approximating functions in a Hilbert scale (here
Lr

K(BR) for r > 0 or r > 1/2), Tikhonov regularization can not achieve the optimal error order
for high enough regularity levels. The saturation phenomenon has been studied intensively in
inverse problems. However due to the random design setting in learning, different to the setting in
traditional inverse problems (we shall discuss this in Section 3.3), such results can not be applied
to learning directly. A thorough study on saturation of regularization in learning, requires both
tight upper and lower bounds, which are still open at this moment.

On numerical aspects, the computational cost of Tikhonov regularization essentially needs invert-
ing a matrix which is of O(m3) floating point operations, where early stopping regularization needs
O(t∗m2), where t∗ is the early stopping time. Thus for those kernel matrices with special structures,
where a few iterations are sufficient to provide a good approximation (i.e. t∗ << m), early stopping
regularization is favored. For those very ill-conditioned kernel matrices, conjugate gradient descent
method or more complicated iteration methods [Hanke 1995; Ong 2005], are suggested to achieve
faster numerical convergence.

3.2. Perspectives on Boosting. The notion of boosting was originally proposed as the question
weather a “weak” learning algorithm which performs just slightly better than random guessing (with
success probability slightly larger than 1/2) can be “boosted” into a “strong” learning algorithm
of high accuracy [Valiant 1984; or see the review by Schapire 2002 or Dietterich 1997]. Roughly
speaking, the weak learning algorithm generate an ensemble of base functions (weak learners)
and then some aggregation methods are applied to construct a function of high accuracy (strong
learner). For example, AdaBoost [Freund and Schapire 1997] is claimed to be one of the “best
off-shelf” machine learning algorithms.

Although running long enough AdaBoost will eventually overfit, during the process it exhibits
resistance against overfiting. This phenomenon suggests that it might be the dynamical process
of boosting which accounts for regularization. Note that there are two dynamical systems in
AdaBoost: one is the evolution of the empirical distributions on the sample, and the other is the
evolution in hypothesis spaces. Thus one may study both dynamical systems, or either one. For
example, studies on both lead a road to game theory [e.g. Breiman 1999; Freund and Schapire
1999; Schapire 2001; Stoltz and Lugosi 2004], on the first have been seen in [Rudin, Daubechies,
and Schapire 2004] and on the second lead to the functional gradient descent view with general
convex loss functions [e.g. Breiman 1999; Friedman, Hastie, and Tibshirani 2000; Mason, Baxter,
Bartlett, and Frean 2000; Friedman 2001], where this paper also lies in.

In the view of gradient descent with L2 loss, our algorithms can be also regarded as a boosting
procedure, L2Boost [Bühlmann and Yu 2002]. The “weak learners” here are the functions Kxi

(i = 1, . . . ,m), where xi ∈ X is an example. Such functions can be regarded as generalizations of
the sinc function in Shannon Sampling Theorem [Smale and Zhou 2004].
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Sacrificing some mathematical rigor, our paper may be regarded as extending some early results
in [Bühlmann and Yu 2002] from Sobolev spaces with fixed designs to general Reproducing Kernel
Hilbert Spaces (RKHSs) with random designs (see Chapter I in [Györfi, Kohler, Krzyżak, and Walk
2002] for more discussions on random design vs. fixed design), yet with suboptimal convergence
rates. However, a technical difficulty to justify this claim rigorously, lies in the question that if
our “smoothness” assumption on regression function, fρ ∈ Lr

K(BR), is equivalent to Sobolev spaces
even for suitable spline kernels. In fact, for each integer r, following [Wahba 1990] we can construct
a corresponding spline kernel K, thus get a Sobolev space W r as a RKHS HK , which is identical
(isometric) to the image of L

1/2
K [Cucker and Smale 2002]. Sobolev spaces with index less than r,

W s (0 < s < r), can be regarded as the interpolation spaces of the Sobolev space with smooth
index r, W r. It is true that the image of Ls

K , (s < 1/2), does lie in the interpolation spaces of
the image of L

1/2
K , i.e. HK = W r; however the converse, if every interpolation space of W r can be

represented as the image of Ls
K for suitable s < 1/2, is not clear yet up to the author’s knowledge.

On the other hand, such a connection seems not harmful and does help understanding, whence we
note it down here with the hope that further work can clarify this connection.

The gradient descent view on boosting triggers a series of studies on consistency and regulariza-
tion in boosting [e.g. Jiang 2004; Breiman 2004; Lugosi and Vayatis 2004; Zhang and Yu 2003],
going beyond margin analysis in early studies [Schapire, Freund, Bartlett, and Lee 1998]. As we
mentioned in the beginning, a common perspective adopts the bias-variance decomposition. But
our paper differs to other works above in the following aspects.

A. In stead of convex combinations or linear combinations of functions, we choose in particular
Reproducing Kernel Hilbert Spaces (RKHSs), which are simple but general enough to include all
finite dimensional subspaces of continuous functions. In these specific spaces, we may obtain upper
bounds with faster rates (optimal in finite dimensional subspaces), than [Zhang and Yu 2003] and
[Blanchard, Lugosi, and Vayatis 2003] which study general scaled convex hulls of functions.

B. To benefit the linear structure in this paper, instead of using the VC-dimension or Rademacher
complexity, we directly exploit the martingale inequalities for random operators and vectors in a
Hilbert space. The idea that norm convergence of operators leading to uniform convergence of
sequences, is in fact not new in literature, e.g. [Yosida and Kakutani 1941] or see the comments in
[Peskir 2000].

Moreover, we also investigate the influence of restricting step sizes (or learning rate) on con-
vergence rates, by imposing a polynomial decreasing rate on step sizes. It is interesting to notice
that: when the step sizes decrease faster, on one hand, the gap between the paths (sample error or
variance) grows slower, as shown in Theorem 2.8; on the other hand, the population iteration con-
verges slower too, as shown in Theorem 2.9. The final bias-variance trade-off, as shown in the Main
Theorem, turns out that under the given stopping rule, the decreasing rate of step sizes might not
affect the convergence rate of fz

t , but just the stopping time.

3.3. Perspectives on Landweber Iteration. In this subsection we show that there are some
close relationship between the algorithms in this paper and the Landweber iteration for linear
inverse problems [Engl, Hanke, and Neubauer 2000]. Below one can see the population iteration (3)
can be regarded as the Landweber iteration for a specific linear operator equation and the sample
iteration (2) is a Monte Carlo approximation of that.
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We start by rephrasing the learning problem as a suitable linear inverse problem, and then discuss
the difference between the two fields. For a broader discuss on this perspect, see [De Vito, Rosasco,
Caponnetto, Giovannini, and Odone 2004]. First note that the minimization of (1) over HK can
be written equivalently as

(6) inf
f∈HK

‖f − fρ‖ρ.

Let PK : L 2
ρX
→ H K be the projection from L 2

ρX
onto the closure of HK in L 2

ρX
. Note that HK

is closed if it is of finite dimension. With the aid of PK , we have

‖PKfρ − fρ‖ρ = inf
f∈HK

‖f − fρ‖ρ.

The population iteration converges in HK to PKfρ, which however under the condition that fρ ∈
Lr

K(BR), coincides with fρ exactly.

In the perspective of linear inverse problem, we may consider the following linear operator equa-
tion

(7) IKf = fρ

where the linear map IK : HK ↪→ L 2
ρX

is an embedding, i.e. a continuous (bounded) inclusion. IK

is compact in the setting of this paper (i.e. X ⊆ Rn is closed and K is a bounded Mercer’s kernel).
A least square solution of (7) satisfies the following normal equation

(8) I∗KIKf = I∗Kfρ

where the adjoint of IK , I∗K : L 2
ρX

→ HK is simply the operator LK : L 2
ρX

→ HK . Note that
I∗KIK = LK |HK

: HK → HK , which, abusing the notation, is also denoted by LK . Then the
normal equation (8) is simply

(9) LKf = LKfρ.

In this way on can see that the population iteration (3) with the choice γt = 1/κ2 is the Landweber
iteration [Engl, Hanke, and Neubauer 2000] to solve (7).

Now we develop a discrete version of the equations above. Given a finite sample z = (x,y) ∈
Xm×Y m, consider to find a function f ∈ HK such that f(xi) = yi (i = 1, . . . ,m). Let Sx : HK →
Rm be the sampling operator such that Sx(f) = (f(xi))m

i=1 (see Appendix B for detail). Consider
the linear operator equation

(10) Sxf = y,

whose normal equation becomes

(11) S∗xSxf = S∗xy,

where S∗x : Rm → HK is the conjugate of Sx, defined by S∗x(y) = 1
m

∑m
i=1 yiKxi (see Appendix B

for detail). In this way the sample iteration (2) written via the sampling operator as,

(12) fz
t+1 = fz

t − γt(S∗xSxfz
t − S∗xy),

is the Landweber iteration to solve (10). Clearly the sample iteration converges to an overfitting
solution f such that f(xi) = yi exactly for all i = 1, . . . ,m.

It should be noted that the setting of learning goes slightly beyond the classical setting of inverse
problems.
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A. Since (xi, yi) (i = 1, . . . , m) are randomly sampled from probability measure ρ on Z, we have
Monte Carlo approximations S∗xSx ∼ I∗KIK and S∗xy ∼ I∗Kfρ. In classical inverse problems, the
sample x is fixed (i.e. fixed design) and only the output y are noise-perturbed.

B. Moreover, there are some difference on convergence considered in the two settings. To this
aim it is important to focus on the existence of a solution for equation (7). Note that equation (7)
has a least square solution if and only if PKfρ ∈ HK (or equivalently fρ ∈ HK

⊕
HK

⊥
), where

we can define f †ρ = PKfρ to be the generalized solution [Engl, Hanke, and Neubauer 2000], i.e. the
unique minimal norm least square solution of (7) in HK . In this case inverse problem typically
studies the convergence

‖ft − f †ρ‖K → 0

under the assumption f †ρ = (I∗KIK)rg for some ‖g‖K ≤ R [Engl, Hanke, and Neubauer 2000].

If PKfρ 6∈ HK (or fρ 6∈ HK
⊕

HK
⊥
), then f †ρ does not exists, which is however often met in

learning theory. A typical example is that K is the Gaussian kernel (HK is thus dense in L 2
ρX

),
but fρ 6∈ HK . In this case, if measured by ‖ · ‖K norm, ft diverges eventually. But we still have

‖ft − PKfρ‖ρ → 0

under the assumption that fρ = (IKI∗K)rg for some ‖g‖ρ ≤ R.

3.4. Perspectives on On-line Learning. The on-line learning algorithms in [Smale and Yao
2005] are stochastic approximations of the gradient descent method for the following least square
problem with Tikhonov regularization,

min
f∈HK

E (f) + λ‖f‖2
K , λ ≥ 0.

To be precise, the algorithm returns a sequence (ft)t∈N defined by

(13) ft = ft−1 − γt[(ft−1(xt)− yt)Kxt + λft−1], for some f0 ∈ HK

where ft depends on zt = (xt, yt) and ft−1 which only relies on the previous examples zt−1 =
(xi, yi)1≤i≤t−1. In our paper, the sample z ∈ Zm is fixed during the iterations and the Tikhonov
regularization parameter λ = 0, is replaced by some early stopping rule as a regularization.

It is interesting to compare the step sizes (or learning rate) in this paper and the on-line learning
algorithm (13). For convergence of (13), one need shrinking step sizes γt → 0, but the shrinkage
can’t go too fast: in fact

∑
t γt = ∞ is necessary to “forget” the initial error [Smale and Yao 2005]

or [Yao 2005]. However, one can see from the upper bounds in the Main Theorem that, all the step
sizes in the family can achieve a common convergence rate O(t−r/(2r+2)) and the constant step size
is even favored since it leeds to the minimal number of iterations before stopping.

Some closer connections can be seen from the decomposition in Proposition 4.3 in the next
section.

4. Some Function Decompositions

The next two sections are devoted to the proof of the upper bounds on sample error and approx-
imation error, i.e. Theorem 2.8 and 2.9. In this section we provides some decompositions for ft, fz

t

and fz
t − ft, which are crucial to estimate the sample error in Section 5.
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4.1. Regularization and Residue Polynomials. Before studying the sample error, we define
some polynomials which will be used to represent the decomposition in a neat way.

For x ∈ R, define a polynomial of degree t− k + 1,

(14) πt
k(x) =





t∏

i=k

(1− γix) , k ≤ t;

1, k > t.

An important property about πt
k is that by the telescope sum

(15)
t−1∑

k=τ

γkxπt−1
k+1(x) =

t−1∑

k=τ

(1− (1− γkx))πt−1
k+1(x) =

t−1∑

k=τ

(πt−1
k+1(x)− πt−1

k (x)) = 1− πt−1
τ (x).

This property motivates the definition of two important polynomials: define the regularization
polynomial

(16) gt(x) =
t−1∑

k=0

γkπ
t−1
k+1(x);

and the residue polynomial

(17) rt(x) = 1− xgt(x) = πt−1
0 (x).

Given a polynomial p(x) = a0 + a1x + . . . + anxn and a self-adjoint operator T , we write p(T )
for the operator a0I + a1T + . . . + anTn.

Lemma 4.1. Let T be a compact self-adjoint operator. Suppose 0 ≤ γt ≤ 1/‖T‖ for all t ∈ N.
Then

1) ‖πt
k(T )‖ ≤ 1;

2) ‖gt(T )‖ ≤ ∑t−1
0 γk;

3) ‖rt(T )‖ ≤ 1.

Proof. The results follow from the spectral decomposition of T (see e.g. [Engl, Hanke, and Neubauer
2000]) and the following estimates: suppose 0 ≤ γtx ≤ 1 for all t ∈ N, then

(A) |πt
k(x)| ≤ 1;

(B) |gt(x)| ≤ ∑t−1
0 γk;

(C) |rt(x)| ≤ 1.

These bounds are tight since πt
k(0) = rt(0) = 1, and gt(0) =

∑t−1
k=0 γk. ¤

4.2. Some Decompositions. The following proposition gives explicit representations of ft and
fz

t .

Proposition 4.2. For all t ∈ N,

1) ft = rt(LK)f0 + gt(LK)LKfρ;

2) fz
t = rt(S∗xSx)fz

0 + gt(S∗xSx)S∗xy.
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Proof. The first identity follows from induction on (3) and the second follows from induction on
(12). ¤

Define the remainder at time t to be rt = fz
t −ft. The following proposition gives a decomposition

of remainder which is crucial in the upper bound for the sample error.

Proposition 4.3 (Remainder Decomposition). For all t ∈ N,

fz
t − ft = rt(LK)(fz

0 − f0) +
t−1∑

k=0

γkπ
t
k+1(LK)χk;

where χk = (LK − S∗xSx)fz
k + S∗xy − LKfρ.

Remark 4.4. This result is similar to the remainder decomposition in [Yao 2005], where χk is a
martingale difference sequence; however here we lose this martingale property since both fz

k and
Sx are random variables dependent on x.

Proof. We use a new representation of fz
t other than Proposition 4.2-2,

fz
t+1 = fz

t − γt(S∗xSxfz
t − S∗xy) = (1− γtLK)fz

t + γt[(LK − S∗xSx)fz
t + S∗xy].

By induction on t ∈ N, we reach

fz
t = πt−1

0 (LK)fz
0 +

t−1∑

k=0

γkπ
t−1
k+1(LK)((LK − S∗xSx)fz

k + S∗xy − LKfρ).

Subtracting on both sides Proposition 4.2-1, we obtain the result. ¤

Some useful upper bounds are collected in the following proposition.

Proposition 4.5. Assume that f0 = fz
0 = 0. Then for all t ∈ N,

1) ‖ft‖K ≤
√∑t−1

k=0 γk‖fρ‖ρ;

2) ‖ft‖ρ ≤ ‖fρ‖ρ;

3) ‖fz
t ‖K ≤ M

√∑t−1
k=0 γk.

4) ‖fz
t − ft‖K ≤ (

∑t−1
k=0 γk) sup1≤k≤t−1 ‖χk‖K ;

5) ‖fz
t − ft‖L 2

ρX
≤

√∑t−1
k=0 γk sup1≤k≤t−1 ‖χk‖K ;

Proof. Throughout the proof we repeated use Corollary 4.1 and the isometry property L
1/2
K : L 2

ρX
→

HK , i.e. equation (B-1).

The first three parts are based on Proposition 4.2 with f0 = fz
0 = 0,

ft = gt(LK)LKfρ, and fz
t = gt(S∗xSx)S∗xy.

1) Note that

‖ft‖2
K = 〈gt(LK)LKfρ, gt(LK)LKfρ〉K = 〈L1/2

K fρ, [gt(LK)LK ]gt(LK)L1/2
K fρ〉K ,
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where using rt(λ) = 1− λgt(λ),

r.h.s. = 〈L1/2
K fρ, (I − rt(LK))gt(LK)L1/2

K fρ〉K ≤ ‖gt(LK)‖‖L1/2
K fρ‖2

K =
t−1∑

k=0

γk‖fρ‖2
ρ.

Taking the square root gives the result.

2) Note that ‖ft‖2
ρ = ‖L1/2

K ft‖2
K , whence

‖ft‖ρ = ‖L1/2
K gt(LK)LKfρ‖K = ‖(I − rt(LK))L1/2

K fρ‖K ≤ ‖L1/2
K fρ‖2

K = ‖fρ‖2
ρ.

3) Let G be the m×m Grammian matrix Gij = 1
mK(xi, xj). Clearly G = SxS∗x.

‖fz
t ‖2

K = 〈gt(S∗xSx)S∗xy, gt(S∗xSx)S∗xy〉K = 〈gt(G)y, gt(G)Gy〉m

= 〈gt(G)y, (I − rt(G))y〉m ≤ ‖gt(G)‖‖y‖2
m ≤ M2

t−1∑

k=0

γk.

The next two parts are based on Proposition 4.3 on remainder decompositions with zero initial
conditions,

fz
t − ft =

t−1∑

k=0

γkπ
t
k+1(LK)χk.

4) ‖fz
t − ft‖K ≤

(
t−1∑

k=0

γk‖πt
k+1(LK)‖

)
sup

1≤k≤t−1
‖χk‖K ≤ (

t−1∑

k=0

γk) sup
1≤k≤t−1

‖χk‖K .

5) Note that ‖fz
t − ft‖2

ρ = ‖L1/2
K (fz

t − ft)‖2
K , whence similar to part 4,

‖fz
t − ft‖2

ρ = 〈L1/2
K

t−1∑

k=0

γkπ
t
k+1(LK)χk, L

1/2
K

t−1∑

k=0

γkπ
t
k+1(LK)χk〉

≤ ‖rt(LK)‖
(

t−1∑

k=0

γk‖πt
k+1(LK)‖

)
( sup
1≤k≤t−1

‖χk‖K)2,

≤ (
t−1∑

k=0

γk)( sup
1≤k≤t−1

‖χk‖K)2.

The result follows by taking the square root. ¤

5. Bounds for Sample Error and Approximation Error

In this section, we present the proofs of Theorem 2.8 and 2.9.

5.1. A Probabilistic Upper Bound for Sample Error. Before the formal proof, we present a
proposition which gives a probabilistic upper bound on the random variable χt = (LK−S∗xSx)fz

t +
S∗xy − LKfρ using the concentration results in Appendix B.
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Proposition 5.1. With probability at least 1− δ (δ ∈ (0, 1)) there holds for all t ∈ N,

sup
1≤k≤t−1

‖χk‖K ≤ 4κM√
1− θ

log1/2 2
δ

√
t1−θ

m
.

Proof. Note that

sup
1≤k≤t

‖χk‖K ≤ ‖LK−S∗xSx‖‖fz
t ‖K +‖S∗xy−LKfρ‖K ≤ M

√√√√
t−1∑

k=0

γk‖LK−S∗xSx‖+‖S∗xy−LKfρ‖K .

By the upper bound in Lemma A.3 and the concentration results in Appendix B, we have

M

√√√√
t−1∑

k=0

γk‖LK − S∗xSx‖ ≤ 2κ2M√
m

log1/2 2
δ
· 1
κ
√

1− θ
t(1−θ)/2 ≤ 2κM√

1− θ
log1/2 2

δ

√
t1−θ

m
,

and
‖S∗xy − LKfρ‖K ≤ 2κM√

m
log1/2 2

δ
.

Adding them together, and noticing that 1 ≤
√

t(1−θ)/(1− θ), we obtain the result. ¤

Now we are in a position to prove Theorem 2.8.

Proof of Theorem 2.8. Using Proposition 4.5-5 and Proposition 5.1,

‖fz
t − ft‖ρ ≤

√√√√
t−1∑

k=0

γk sup
1≤k≤t−1

‖χk‖K ≤ 1
κ
√

1− θ
t

1−θ
2

4κM√
1− θ

log1/2 2
δ

√
t1−θ

m

≤ 4M

1− θ
log1/2 2

δ
· t1−θ

√
m

which gives the first bound.

Using Proposition 4.5-4, the upper bound in Lemma A.3 and Proposition 5.1,

‖fz
t − ft‖K ≤

t−1∑

k=0

γk sup
1≤k≤t−1

‖χk‖K ≤ 1
κ2(1− θ)

t1−θ 4κM√
1− θ

log1/2 2
δ

√
t1−θ

m

≤ 4M

κ(1− θ)3/2
log1/2 2

δ
· t

3
2
(1−θ)

√
m

which gives the second bound. ¤

5.2. A Deterministic Upper Bound for Approximation Error. The following is the proof
of Theorem 2.9 using similar technique in [Engl, Hanke, and Neubauer 2000].

Proof of Theorem 2.9. Let fρ = Lr
Kg with ‖g‖ρ ≤ R. By Proposition 4.2 with f0 = 0,

ft − fρ = gt(LK)LKfρ − fρ = −rt(LK)fρ,

whence

‖ft − fρ‖ρ = ‖rt(LK)Lr
Kg‖ρ ≤ R‖Lr

Krt(LK)‖.
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where with eigenvalues (λj)j∈N for LK ,

‖Lr
Krt(LK)‖ ≤ sup

j
λr

j

t−1∏

i=0

(1− γiλj) = sup
j

exp

{
t−1∑

i=0

log(1− γiλj) + r log λj

}

≤ sup
j

exp{−
t−1∑

i=0

γiλj + r log λj}, where log(1 + x) ≤ x for x > −1,

But the function
f(λ) = −

∑

i

γiλ + r log λ, λ > 0,

is maximized at λ∗ = r/(
∑

i γi) with f(λ∗) = −r + r log r − r log
∑

i γi. Taking γt = (t + 1)−θ/κ2,
by the lower bound in Lemma A.3 we obtain

‖Lr
Krt(LK)‖ ≤ (r/e)r(

t−1∑

i=0

γi)−r ≤
(

2rκ2

e

)r

t−r(1−θ).

For the case of r > 1/2, fρ ∈ HK and by the isomorphism L
1/2
K : L 2

ρX
→ HK ,

‖ft − fρ‖K = ‖L−1/2
K (ft − fρ)‖ρ = ‖Lr−1/2

K rt(LK)g‖ρ ≤ R‖Lr−1/2
K rt(LK)‖.

Replacing r by r − 1/2 above leads to the second bound. ¤

6. Early Stopping in Classification

In this section we apply the Main Theorem to classifications and give a proof of Theorem 2.5. The
formal proof is presented in the end of this section and before that we provide some background.
For simplicity, we only use Tsybakov’s noise condition to derive the convergence rates. Our results
can be extended to incorporate the geometric noise condition introduced by [Steinwart and Scovel
2005], which is however not pursued in this paper.

First recall different error measures for binary classification problems and then collect some
results on the relation between them. In this section let Y = {±1}. Define the misclassification set

Xf := {x ∈ X | signf 6= signfρ}.
For classification problems, the following error measure is proposed in [Smale and Zhou 2005]

‖signf − signfρ‖ρ

which is equivalent to the probability of misclassification by f ,

(18) ‖signf − signfρ‖2
ρ = 4ρX(Xf ).

More often in literature, the following misclassification risk is used

R(f) = ρZ({(x, y) ∈ Z | signf(x) 6= y}),
which is minimized at the so called Bayes rule, signfρ. It is easy to check that

(19) R(f)−R(fρ) =
∫

Xf

|fρ(x)|dρX(x).
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6.1. Tsybakov’s Noise Condition. We adopts the following approach to assess the regularity of
the marginal probability measure ρX in a classification problem.

Define the Tsybakov function Tρ : [0, 1] → [0, 1] by

(20) Tρ(s) = ρX({x ∈ X : fρ(x) ∈ [−s, s]}),
which characterizes the probability of level sets of fρ. The following Tsybakov’s noise condition
[Tsybakov 2004] for some q ∈ [0,∞],

(21) Tρ(s) ≤ Bqs
q, ∀s ∈ [0, 1],

characterizes the decay rate of Tρ(s). In particular when Tρ vanishes at a neighborhood of 0 (i.e.
Tρ(s) = 0 when s ≤ ε for some ε > 0), indicating a nonzero hard margin, we have q = ∞.

The following equivalent condition is useful (see Tsybakov 2004 or Bousquet, Boucheron, and
Lugosi 2004].

Lemma 6.1. Tsybakov’s condition (21) is equivalent2 to that for all f ∈ L 2
ρX

,

(22) ρX(Xf ) ≤ cα(R(f)−R(fρ))α,

where

(23) α =
q

q + 1
∈ [0, 1]

and cα = Bq + 1 ≥ 1.

Proof. (21) ⇒ (22). Recalling (19) we have the following chains of inequalities

R(f)−R(fρ) ≥
∫

Xf

|fρ(x)|χ|fρ(x)|>tdρX ≥ t

∫

Xf

χ|fρ(x)|>tdρX

= t

[∫

X
χ|fρ(x)|>tdρX −

∫

X/Xf

χ|fρ(x)|>tdρX

]

≥ t [(1−Bqt
q)− ρX(X\Xf )] = t(ρX(Xf )−Bqt

q)

The proof follows taking

t =
(

1
Bq + 1

ρX(Xf )
)1/q

and setting α as in (23).

(22) ⇒ (21). Define for s > 0,

Xs = {x ∈ X : |fρ(x)| ≤ s}
Choose a f ∈ L 2

ρX
such that signf = signfρ on X\Xs and otherwise signf 6= signfρ, then Xf = Xs.

Therefore

ρX(Xf ) = ρX(Xs) ≤ cα(R(f)−R(fρ))α ≤ cα(
∫

Xs

|fρ(x)|dρX)α ≤ cαtαρX(Xs)α = cαtαρX(Xf )α

whence ρX(Xf ) ≤ c
1/(1−α)
α tα/(1−α) which recovers (21) with q = α/(1− α) and Bq = c

1/(1−α)
α . ¤

2The uniform condition, for all f ∈ L 2
ρX

, is crucial for the direction (22)⇒(21) as shown in the proof. If we replace
it by f ∈ HK , the two conditions are not equivalent. However, the proof of Theorem 2.5, or Proposition 6.2-5, only
requires the direction (21)⇒(22).
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6.2. Comparison Results and Proof of Theorem 2.5. Now recall several results relating the
different error measures introduced above.

Proposition 6.2. Let f be some function in L 2
ρX

. The following inequalities hold

1) R(f)−R(fρ) ≤ ‖f − fρ‖ρ

2) If (22) hold then R(f)−R(fρ) ≤ 4cα‖f − fρ‖2/(2−α)
ρ

3) R(f)−R(fρ) ≤ 1
2‖fρ‖‖signf − signfρ‖ρ

4) ‖signf − signfρ‖2
ρ ≤ T (‖f − fρ‖∞)

5) If (22) hold then ‖signf − signfρ‖ρ ≤ 4cα‖f − fρ‖
α

2−α
ρ

Remark 6.3. Part 4 was used in [Smale and Zhou 2005] by applying bounds on ‖f−fρ‖K to estimate
‖f − fρ‖∞. Due to the square on the left hand side, this loses a power of 1/2 in the asymptotic
rate. But turning to the weaker norm ‖f − fρ‖ρ, Part 5 remedies this problem without losing the
rate.

Proof. 1) The proof is straightforward by noting that

(24) |fρ(x)| ≤ |f(x)− fρ(x)|
when x ∈ Xf . In fact from (19)

R(f)−R(fρ) ≤
∫

Xf

|f(x)− fρ(x)| ≤ ‖f − fρ‖ρ

2) The inequality is a special case of Theorem 10 in [Bartlett, Jordan, and McAuliffe 2003]. Here
we give the proof for completeness. If we further develop (19) we get

R(f)−R(fρ) =
∫

Xf

|fρ(x)|χ|fρ(x)|≤tdρX(x) +
∫

Xf

|fρ(x)|χ|fρ(x)|>tdρX(x).

where for |fρ(x)| > t, |fρ(x)| = |fρ(x)|2/|fρ(x) < 1
t |fρ(x)|2. Then by conditions (22) and (24) we

have

R(f)−R(fρ) ≤ tρX(Xf ) +
1
t

∫

Xf

|fρ(x)|2ρdρX(x) ≤ tcα(R(f)−R(fρ))α +
1
t
‖f − fρ‖2

ρ.

The result follows by taking t = 1
2cα

(R(f) − R(fρ))1−α and (4cα)1/(2−α) ≤ 4cα as α ∈ [0, 1] and
cα ≥ 1.

3) From (19), simply using Schwartz Inequality we have

R(f)−R(fρ) =
1
2

∫

X
fρ(x)(signf(x)− signfρ(x))dρX(x) ≤ 1

2
‖fρ‖ρ‖signf − signfρ‖ρ

4) See Proposition 2 in [Smale and Zhou 2005].

5) The proof follows from (18) by plugging in (22) and part 2). ¤

Now we are ready to give the proof of Theorem 2.5.

Proof of Theorem 2.5. It’s a direct application of the Main Theorem with Proposition 6.2-5. ¤
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Appendix A

Proposition A.1. The gradient of V =
1
2
(f(x)− y)2 is the map

gradV : HK → HK

f 7→ (f(x)− y)Kx.

Proof. Recall that the Fréchet derivative of V at f , DV (f) : HK → R is the linear functional such
that for g ∈ HK ,

lim
‖g‖K→0

|V (f + g)− V (f)−DV (f)(g)|
‖g‖K

= 0.

Note that

V (f + g)− V (f) =
1
2

{
(f(x) + g(x)− y)2 − (f(x)− y)2

}

= g(x)(f(x)− y) +
1
2
g(x)2

= 〈g, (f(x)− y)Kx〉K +
1
2
〈g, Kx〉2K

≤ 〈g, (f(x)− y)Kx〉K +
1
2
κ2‖g‖2

K ,

whence
DV (f)(g) = 〈(f(x)− y)Kx, g〉K .

Recall the definition of gradV : HK → HK as for all g ∈ HK ,

〈gradV (f), g〉K = DV (f)(g).

Thus we obtain the result. ¤

Lemma A.2. For x ∈ [0, 1] and a, b > 0,

xa(1− x)b ≤
(

a

a + b

)a (
b

a + b

)b

.
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Lemma A.3. For all t ∈ N, γt = κ−2(t + 1)−θ. Then for all t ∈ N

1
2κ2

t1−θ ≤
t−1∑

k=0

γk ≤ 1
κ2(1− θ)

t1−θ.

Proof. 1) For the lower bound,

t−1∑

k=0

γk ≥ κ−2

∫ t

1
x−θdx =

1
κ2(1− θ)

(1− tθ−1)t1−θ

≥ 1
κ2(1− θ)

(1− 2θ−1)t1−θ, t ≥ 2

≥ 1
2κ2

t1−θ,

where the last step is due to

1− 2θ−1

1− θ
=

21−θ − 1
21−θ(1− θ)

≥ (1− θ)2−θ

21−θ(1− θ)
=

1
2
.

It remains to check that for t = 1, γ0 = κ−2 ≥ κ−2/2, i.e. the lower bound holds.

2) As to the upper bound, note that for all t ∈ N
t−1∑

k=0

γk ≤ κ−2

(
1 +

∫ t

1
x−θdx

)

= κ−2

(
1 +

1
1− θ

(t1−θ − 1)
)
≤ 1

κ2(1− θ)
t1−θ.

¤

Appendix B: RKHS, Random Operators and Measure-Concentration

In this appendix, we collect some facts on reproducing kernel Hilbert spaces, random Hilbert-
schmidt operators and concentration inequalities in Hilbert space.

A function K : X×X → R is called a Mercer kernel, if it is a continuous, symmetric and positive
semi-definite in the sense that

∑l
i,j=1 cicjK(xi, xj) ≥ 0 for any l ∈ N and any choice of xi ∈ X and

ci ∈ R (i = 1, . . . , l).

Given a Mercer kernel K, the associated reproducing kernel Hilbert space HK can be constructed
as follows. Let Kt : X → R be a function defined by Kt(x) = K(x, t). Define VK as a vector space
generated by {Kt : t ∈ X}, i.e. all the finite linear combinations of Kt. An inner product 〈 , 〉K
on VK is defined as the unique linear extension of 〈Kx,Kx′〉K := K(x, x′). With this inner product
we have the reproducing property : for any f ∈ VK , f(x) = 〈f, Kx〉K (x ∈ X). The induced norm
is defined by ‖f‖K =

√〈f, f〉K for each f ∈ VK . Now define HK to be the completion of this
inner product space VK . Examples of RKHS include Sobolev spaces [Wahba 1990], real analytic
functions (band-limited functions) [Daubechies 1992] and their generalizations [Smale and Zhou
2004].
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Let C (X) be the Banach space of real continuous function on X. Define a linear map LK :
L 2

ρX
→ C (X) by (LKf)(x′) =

∫
K(x′, x)f(x)dρX . Composition with the inclusion C (X) ↪→ L 2

ρX

yields a linear operator LK : L 2
ρX
→ L 2

ρX
, which abusing the notation, will be also denoted by LK .

For closed X ⊆ Rn and the bounded Mercer kernel K (supx∈X K(x, x) < ∞), LK : L 2
ρX
→ L 2

ρX

is a compact operator [Carmeli, DeVito, and Toigo 2005] and there exists an orthonormal eigen-
system of LK : L 2

ρX
→ L 2

ρX
, (λi, φi)i∈N, such that

LKf =
∑

i

λiaiφi, where f =
∑

i aiφi.

Moreover, given r > 0, define Lr
K by

Lr
Kf =

∑

i

λr
i aiφi, where f =

∑
i aiφi.

For all r > 0, the image of Lr
K gives a scale of subspaces compactly embedded in L 2

ρX
. When

r = 1/2, L
1/2
K : L 2

ρX
→ HK is an isometry, i.e.

(B-1) 〈L1/2
K f, L

1/2
K g〉K = 〈f, g〉ρ, for all f, g ∈ L 2

ρX
;

and when r 6= 1/2, the image of Lr
K depends on ρX which is unknown.

Since the image of LK lies in HK , then its restriction LK |HK
induces an operator L̄K : HK →

HK such that L̄Kf = LKf for f ∈ HK . Moreover in operator norms, ‖L̄K‖ = ‖LK : L 2
ρX
→ L 2

ρX
‖.

To see this by definition ‖L̄K‖ := sup‖f‖K=1 ‖L̄Kf‖K/‖f‖K where

‖L̄Kf‖K/‖f‖K = ‖LKf‖K/‖f‖K = ‖L1/2
K f‖ρ/‖L−1/2

K f‖ρ = ‖LKg‖ρ/‖g‖ρ, g = L
−1/2
K f.

As L
−1/2
K : HK → L 2

ρX
is an isometry, so

‖L̄K‖ = sup
‖f‖K=1

‖L̄Kf‖K/‖f‖K = sup
‖g‖ρ=1

‖LKg‖ρ/‖g‖ρ = ‖LK‖ ≤ κ2.

Let Ex : HK → R be the evaluation functional defined by Ex(f) = f(x) = 〈f,Kx〉K , by the
reproducing property. Let E∗

x : R→ HK be its adjoint such that 〈Ex(f), y〉R = 〈f, E∗
x(y)〉K , whence

E∗
x(y) = yKx. They are bounded rank-one operators, ‖Ex‖ = ‖E∗

x‖ ≤ κ. E∗
xEx : HK → HK is a

self-adjoint operator, with bound ‖E∗
xEx‖ ≤ κ2.

With the aid of the reproducing property we can generalize the evaluation functional to the
sampling operators on HK . Let z = {(xi, yi) : i = 1, . . . ,m} be a set of i.i.d. examples drawn
from ρ. Define x = (xi) ∈ Xm and y = (yi) ∈ Rm. Let (Rm, 〈, 〉m) be an inner product space
with 〈u, v〉m = 1

m

∑m
i=1 uivi for u, v ∈ Rm. Define a sampling operator Sx : HK → (Rm, 〈, 〉m)

by Sx(f) = (Exif)i=1,...,m ∈ Rm. Let S∗x : (Rm, 〈, 〉m) → HK be the adjoint of Sx such that
〈Sx(f),y〉m = 〈f, S∗xy〉K . Thus S∗x(y) = 1

m

∑m
i=1 yiKxi = 1

m

∑m
i=1 E∗

xi
(yi). Both Sx and S∗x are

bounded random operators depending on x, with bounds ‖Sx‖ = ‖S∗x‖ ≤ κ. Such sampling
operators are used in a generalization of Shannon Sampling Theorem, [Smale and Zhou 2004].

Define a random operator Tx : HK → HK

(B-2) Tx = S∗xSx =
1
m

m∑

i=1

E∗
xi

Exi .

Its expectation E[Tx] = L̄K .
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Recall that a bounded linear operator T is called a Hilbert-Schmidt operator if T = T ∗ and
tr(T 2) < ∞. The set of Hilbert-Schmidt operators contain all finite-rank self-adjoint operators and
are contained in the set of compact operators. Given two Hilbert-Schmidt operators S, T : H →
H , we can define the inner product 〈S, T 〉HS = tr(S∗T ) and whence the norm ‖S‖HS =

√〈S, S〉HS .
The completion with respect to this norm gives a Hilbert space consisting of Hilbert-Schmidt
operators. Therefore we can apply concentration inequalities in Hilbert spaces to study the random
operators in this space. Note that Tx and L̄K are Hilbert-Schmidt operators, thus we are going to
bound the deviation Tx − L̄K .

The following result is due to Iosif Pinelis [Pinelis 1992].

Lemma B.1 (Pinelis-Hoeffding). Let (ξi)i∈N ∈ H be an independent random sequence of zero
means in a Hilbert space H such that for all i almost surely ‖ξi‖ ≤ ci < ∞. Then for all t ∈ N,

Prob

{∥∥∥∥∥
m∑

i=1

ξi

∥∥∥∥∥ ≥ ε

}
≤ 2 exp

{
− ε2

2
∑m

i=1 c2
i

}
.

Proposition B.2. LK , E∗
xEx and Tx are Hilbert-Schmidt operators. Moreover,

1) tr(L2
K) ≤ κ4;

2) tr(E∗
xEx) ≤ κ2;

3) tr(E∗
xExE∗

t Et) ≤ κ4;

4) tr(Tx) ≤ κ2;

5) tr(T 2
x) ≤ κ4

Proof. 1) See Corollary 3 in Section 2, Chapter III, [Cucker and Smale 2002];

2) Since E∗
xEx is a rank one operator, then tr(ET

x Ex) ≤ ‖ET
x Ex‖ ≤ κ2;

3) Noting that ExE∗
t = K(x, t) ≤ κ2, whence tr(E∗

xExE∗
t Et) = k(x, t)tr(ET

x Ex) ≤ κ4;

4) By tr(A + B) = tr(A) + tr(B), tr(Tx) = 1
m

∑m
i=1 tr(ET

xi
Exi) ≤ κ2;

5) Similar to 4, noting that

tr(T 2
x) =

1
m2

m∑

i,j=1

tr(E∗
xi

ExiE
∗
xj

Exj ).

The result follows from part 3. ¤

Let ξi = E∗
xi

Exi − L̄K . Note that tr(L2
K |HK

) ≤ tr(L2
K) ≤ κ4. Thus setting c2

i = 2κ4, and ε = nε,
we obtain

Proposition B.3.

Prob
{∥∥Tx − L̄K

∥∥
HS

≥ ε
} ≤ 2 exp

{
−mε2

4κ4

}
.

Therefore with probability at least 1− δ (δ ∈ (0, 1)),

‖Tx − L̄K‖ ≤
∥∥Tx − L̄K

∥∥
HS

≤ 2κ2

√
m

log1/2 2
δ
.
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Note that S∗xy = 1
m

∑m
i=1 yiKxi is a random vector in HK with expectation E[S∗xy] = LKfρ.

Moreover ‖S∗xy‖ ≤ ‖S∗x‖‖y‖ ≤ κM and ‖LKfρ‖ ≤ κM . Thus

Proposition B.4.

Prob {‖S∗xy − LKfρ‖ ≥ ε} ≤ 2 exp
{
− mε2

4κ2M2
ρ

}
.

Therefore with probability at least 1− δ (δ ∈ (0, 1)),

‖S∗xy − LKfρ‖K ≤ 2κM√
m

log1/2 2
δ
.

This kind of concentration results was obtained by [De Vito, Rosasco, Caponnetto, Giovannini,
and Odone 2004] in the context of inverse problem for learning.
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