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Abstract

In this paper we study the identification of
common interest groups from low order in-
teractive observations. We present a new al-
gebraic approach based on the Radon basis
pursuit in homogeneous spaces. We prove
that if the common interest groups satisfy
a condition that overlaps between them are
small, then they can be recovered in a ro-
bust way by solving a linear programming
problem. We demonstrate the applicability
of our approach with examples on identify-
ing social communities in the social network
of Les Miserables and on identifying coau-
thorship cliques within large-scale networks.

1 Introduction

In this paper we consider the problem of identifying
common interest groups or cliques based on partial
information. This problem arises in a variety of situa-
tions, from identity management [8], statistical rank-
ing [6, 9], and in particular, social networks. The fol-
lowing three examples provide a glimpse on the typi-
cal problems which could be addressed with the tech-
niques discussed in this paper.

Motivating example 1 (Tracking and Identify-
ing Teams) We consider the scenario of multiple tar-
gets moving in the environment monitored by sensors.
We assume each moving target has an identity and
they each belong to some teams or groups. However,
we only get partial interaction information due to the
problem structure. For example, consider watching a
grey-scale video of a basketball game (when it may
be hard to tell apart the two teams), we observe ball
passes or collaborative offensive/defensive interactions
between teammates. The observations are partial due
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to the fact that players have mostly pairwise interac-
tions in basketball games. It is seldom to observe a
single event which involves all team members. Our
objective is to infer membership information (which
team the players belong to) from partially observed
interactions.

In Figure 1-(a), we show a weighted graph (shown
on the top) illustrating pairwise interactions among
10 basketball players. Nodes in this graph represent
players and weights on edges represent frequencies of
cooperative pairwise interactions. Note that we may
get noisy data due to observation errors where peo-
ple from different teams have ambiguous interactions.
However, given that the noise is not too large, we hope
to be capable to identify the two teams (shown at the
bottom) from such partially observed pairwise inter-
action information.

Motivating example 2 (Detecting Communities
in Social Networks) Detecting social communities in
social networks is of extraordinary importance. It can
be used to understand the organization or collabora-
tion structures within the social network. However, we
do not have direct mechanisms to sense what the social
communities are. Instead, we have partial, low order
interaction information. For example, we observe pair-
wise or triple-wise co-appearance among people who
hang out for some leisure activities together. We hope
to detect those social communities in the social net-
work from such partially observed data.

In Figure 2-(a), we show an example as the social net-
work of Victor Hugo’s novel Les Miserables which was
studied in [10]. In the weighted graph, the nodes repre-
sent 33 key characters and weights on edges represent
frequencies of co-appearance. Several social communi-
ties arise in the network, formed by either friendships,
street gangs, kinships, student society, or drama con-
flicts. We wish to detect those social communities from
pairwise co-appearance frequencies data. Note that in
this example, different social communities may have
different sizes and one people may belong to several
social communities.

Motivating example 3 (Inferring Partial Rank-
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ings of High Order) The problem of clique identi-
fication also arises in the ranking problems. Consider
a collection of items are to be ranked by a collection
of users. Each user can propose his/her top j, say 3,
items in favor but without relative preference within.
We wish to infer what are the first tier competitors
for the top k > j, say 5 items. This problem is the
inference of high order partial rankings from low order
observations.

In these examples we are typically given a network
with some nodes representing players, characters, or
items, and with edges summarizing the pairwise in-
teraction observations. Triple-wise and other low or-
der information can be further considered if we con-
sider complete sub-graphs in the networks. The basic
problem here is to determine common interest groups
or cliques within the network from observed low order
interaction frequencies, since in reality such low or-
der interactions are often governed by a considerably
smaller number of high order communities.

In this paper we assume there are frequency function
defined on complete low order subsets and high order
susets. Intuitively, the interaction frequency of a par-
ticular low order subset should be the sum of frequen-
cies of high order subsets which it belongs to. Hence
we consider the following generative model which as-
sume there exists a linear mapping from frequencies
on high order subsets(usually sparsely distributed) to
low order subsets. One typically can collect data on
low order subsets while our task is to find those few
dominant high order subsets.

Our problem can be regarded as an extension of the
recent work in [9] which studies sparse recovery of
functions on permutation groups, while we reconstruct
functions on k-subsets (cliques), often called homoge-
neous space in literature [6]. In our studies the dis-
crete Radon basis becomes the natural choice instead
of the Fourier basis considered in [9]. This leaves us a
new challenge on addressing the noiseless exact recov-
ery and stable recovery with noise. Unfortunately the
greedy algorithm for exact recovery in [9] can not be
applied to noisy settings, and in general the Radon ba-
sis does not satisfy the Restricted Isometry Property
(RIP) [4] which is crucial for the universal recovery. In
this paper, we develop new theories which guarantee
the exact sparse recovery and stable recovery under the
choice of Radon basis, which has deep roots in Basis
Pursuit [5] and its extensions with uniformly bounded
noise.

The main content of this paper can be summarized
as follows. Section 2 presents the formulation of our
problem with a gentle introduction on Radon basis;
Section 3 discusses exact recovery conditions with-

out noise; Section 4 addresses stable recovery under
uniformly bounded noise, and we generalize our al-
gorithm to handle cliques with mixed sizes; The last
section demonstrates three successful applications to
some motivating examples discussed above.

2 Problem Formulation

We introduce a graph G = (V, E) to facilitate our dis-
cussion. The set of vertices V represents individual
identities such as people in the social network, basket-
ball players, or items to be ranked. Each edge in E is
associated with some weights which represent interac-
tive frequency information.

We assume there are several common interest groups
or communities within the network, represented by
cliques or complete sub-graphs in graph G, which are
perhaps of different sizes and may have overlaps. We
assume every community has certain interaction fre-
quency which can be viewed as a function on cliques.
However, we can only receive partial measurements
consisting of low order interaction frequency on sub-
sets in a clique. For example, in the smallest case we
only observe pairwise interactions represented by edge
weights. Our problem is to reconstruct the function
on cliques from partially observed data.

However, to resolve this problem, one has to answer
two questions: what is the suitable representation ba-
sis, and what is the reconstruction algorithm? Below
we shall provide an answer that the Radon basis will be
the appropriate representation for our purpose which
allows the sparse recovery by a simple linear program-
ming reconstruction algorithm.

2.1 Basis Construction

We first consider the constuction of a basis so that
we can use such a basis to connect functions on j-
subsets to functions on k-subsets (j ≤ k). Our con-
struction of basis is directly related to Radon Trans-
form in combinatorics[6].

2.1.1 Common Interest Groups of Equal Size

For simplicity, we restrict ourselves here to the case
that all the common interest groups are all of the same
size k (k > j). The case with mixed sizes will be
handled later. There are even some natural scenarios
where such a simple case arises, for example the in-
ference of two teams each of size k = 5 from pairwise
(j = 2) interaction frequencies.

Let Vj denote the set of all j−subsets of V =
{1, 2, · · · , n} and M j be the set of functions on Vj .
The observed partial interaction information, i.e., in-
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teraction frequencies on all j−subsets, can be viewed
as a function on Vj , denoted by b ∈ M j.

We build a matrix R̃j,k : Mk → M j (j < k) as a map-
ping from functions on all k−subsets of V to functions
on all j-subsets of V . For example, R̃2,5 is a

(

10
2

)

-by-
(

10
5

)

matrix with rows representing all 2-subsets and
columns representing all 5−subsets. We let entries of
R̃j,k are either 0 or 1 indicating whether the j-subset
is a subset of the k−subset. Note that every column
of R̃j,k has

(

k
j

)

ones. Lacking a priori information, we
assume that every j−subset has equal probability in
interactions, whence choose the same constant 1 for
each column. We further normalize R̃j,k to Rj,k so
that l2 norm of each column of Rj,k is one. To sum-
marize, we have

Rj,k

(σ,τ) =

{

1
√

(k

j)
, if σ ⊂ τ,

0, otherwise,
(1)

where σ is a j−subset and τ is a k−subset. As we shall
see soon, this construction leads to a canonical basis
associated with discrete Radon transform. The size
of matrix Rj,k clearly depends on the total number of
items n = |V |, however, we omit n as its meaning will
be clear from context.

In the example of basketball games, given information
b ∈ M2 as a function on 2-subsets, we wish to obtain
a function x ∈ M5 on 5-subsets such that b = Ax
where A = R2,5. Ideally x should be a sparse distribu-
tion concentrating on two 5-subsets, representing the
two disjoint teams. This is where compressive sensing
techniques shall be applied to find such an x.

2.1.2 Relation to Radon Basis

The matrix Rj,k constructed above is related to dis-
crete Radon transforms on homogeneous space Mk. In
fact, up to a constant, the adjoint or transpose oper-
ator (Rj,k)∗ : M j → Mk defined by [(Rj,k)∗u](τ) =
c
∑

σ⊂τ u(σ), is called in literature [6] the discrete

Radon transform from homogeneous spaces M j to Mk.
The collection of all row vectors of Rj,k is called as the
j-th Radon basis for Mk. Our usage here is to exploit
the transpose matrix of Radon transform to construct
an over-complete dictionary for M j , such that the ob-
servation b ∈ M j is represented by a possibly sparse
x ∈ Mk (k ≥ j).

The Radon basis was proposed as an efficient way to
study partially ranked data in [6], where it was shown
that by looking at low order Radon coefficients of func-
tion on Mk, we usually get useful and interpretable in-
formation. Our approach here adds a reversal of this
perspective, i.e. the reconstruction of sparse high or-
der functions from low order Radon coefficients. We

will discuss this in the following with a connection to
the compressive sensing [5, 2].

2.2 Reconstruction Algorithms

Now we give some reconstruction algorithms for de-
tecting high order cliques based on low order informa-
tion exploiting the basis matrix we talked about in the
last section.

Suppose x0 is a sparse function on common interest
groups or cliques. To reconstruct this sparse function
based on low order observation data, we consider the
following linear programming first known as Basis Pur-
suit [5], etc.

P1 : min ‖x‖1,

subject to Ax = b,

where the matrix A is Rj,k. For robust construction
against noise, we also consider the following algorithm

P1,δ : min ‖x‖1,

subject to ‖Ax − b‖∞ ≤ δ.

It differs from Lasso [12] or BPDN [5] in that a l∞
norm is used to control the noise instead of the l2 norm,
and also differs from the Dantzig selector [3] which uses
‖A∗(Ax − b)‖∞ ≤ δ in the constraint. The reason for
our choice lies in the fact that the typical examples
we discussed above often exhibit bounded noise rather
than Gaussian-like noise. Our choice will be suitable
to incorporate this kind of prior knowledge on noise.

2.3 Failure of Restricted Isometry Property
and Universal Recovery

Recently it was shown by [2, 4] that P1 has a unique
sparse solution x0, if the matrix A satisfies the so called
Restricted Isometry Property (RIP), i.e. for every set
of columns T with |T | ≤ s, there exists a certain uni-
versal constant δs ∈ [0, 1) (e.g. δ2s <

√
2 − 1 in [4])

such that

(1 − δs)‖x‖2
l2
≤ ‖AT x‖2

l2
≤ (1 + δs)‖x‖2

l2
, ∀x ∈ Rs.

This exact recovery holds for all s−sparse signals x0,
whence called the universal recovery.

Unfortunately, in our basis construction of matrix A =
Rj,k, RIP is not satisfied unless s <

(

k+j+1
k

)

which
cannot scale up with n. To see this, we extract a set
of columns T = {τ : τ ⊂ {1, 2, · · · , k + j + 1}} (τ
is interpreted as a k−subset) and form a submatrix

Rj,k
T . By discarding zero rows, we know the rank of

Rj,k
T is determined by a small submatrix of Rj,k

T of size
(

k+j+1
j

)

by
(

k+j+1
k

)

. This matrix has more columns
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than rows. This means the extracted columns must
be linearly dependent. In other words, there exist an
h where supp(h) ⊂ T such that Rj,kh = 0. So in
general, we can not expect that the sparse recovery
holds universally for all s−sparse signals when s ≥
(

k+j+1
k

)

.

Therefore, in our case, the correct strategy is to
look for the sparsity patterns corresponding to cliques
which can be recovered by P1 or P1,δ. In general, we
hope to be able to recover a collection of sparse signals
x0, whose sparsity pattern satisfies certain conditions
instead of meeting a universal sparse recovery. Such
conditions might naturally occur in reality, which will
be shown in the sequel as simply requiring small over-
laps between cliques.

3 Exact Recovery Conditions

In this section we present our main results on noiseless
exact recovery conditions of x0 from the given infor-
mation b ∈ M j by solving the linear program P1.

3.1 Irrepresentable Condition

Suppose A is a M -by-N matrix and x0 is a sparse
signal. Let T = supp(x0), T c be the complement of
T , and AT (or AT c) be the submatrix of A where we
only extract column set T (or T c, respectively). A
regularization path of P1,δ refers to the map δ 7→ xδ

where xδ is a solution of P1,δ.

Theorem 1 Assume that A∗
T AT where ∗ denote ma-

trix transpose is invertible and there exists a vector
w ∈ RM such that

(1) A∗
T w = ι∗sgn(x0),

(2) ‖A∗
T cw‖∞ < 1,

where ι is an imbedding operator ι : l2(T ) → l2(N)
extending a vector on T to a vector in RN by plac-
ing zeros outside of T , and ι∗ is the dual restriction
ι∗sgn(x0) = sgn(x0)|T . Then x0 is the unique solu-
tion for P1, and it is also a necessary condition that
x0 lies on a unique regularization path of P1,δ

The sufficiency for the unique solution x0 of P1 is
shown by [2]. The necessity can also be derived from
convex optimization theory. Detailed proofs will be
given in Appendix.

However this condition is difficult to check due to the
presence of w. However if we further assume that w ∈
im(AT ), then the condition in Theorem 1 reduces to
the following condition.

Irrepresentable condition A∗
T AT is invertible and

‖A∗
T cAT (A∗

T AT )−1‖∞ < 1, (2)

where ∗ denote matrix transpose and ‖ · ‖∞ stands for
the matrix ∞-norm, i.e. the maximum absolute row
sum of the matrix such that ‖A‖∞ := maxj

∑

i |Aij |.
Note that this condition only depends on A and the
true sparsity pattern of x0, which is easy to check.
The restriction w ∈ im(AT ) does not put a too strong
constraint, which is actually the necessary condition
that x0 can be reconstructed by Lasso [12] or Dantzig
selector [3], even under some Gaussian-like noise as-
sumptions [15, 14].

Corollary 1 If the Irrepresentable condition holds,
then x0 is the unique solution of P1 and lies on a
unique regularization path of P1,δ.

In the following we will present some further condi-
tions which are easily checkable to satisfy the Irrepre-
sentable condition in (2).

3.2 Common Interest Groups of Equal Size

We consider the case where A is Rj,k. Given data
b defined on all j−subsets, we wish to infer common
interest groups on all k−subsets so that low order in-
teraction data b can be viewed as induced from high
order common interest groups. Suppose x0 is a sparse
signal on all k−subsets. We have the following theo-
rem:

Theorem 2 Let T = supp(x0), if we allow overlaps
among common interest groups to be no larger than r,
then the maximum r that can guarantee the irrepre-
sentable condition is j − 2.

This is a direct conclusion of the following three re-
sults.

Lemma 1 Let T = supp(x0), and j ≥ 2. Suppose
that for any σ1, σ2 ∈ T , there holds |σ1 ∩ σ2| ≤ r.

1. If r = j − 2, then ‖A∗
T cAT (A∗

T AT )−1‖∞ < 1;

2. If r = j − 1, then ‖A∗
T cAT (A∗

T AT )−1‖∞ ≤ 1 where
equality holds with certain examples;

3. If r = j, there are examples such that
‖A∗

T cAT (A∗
T AT )−1‖∞ > 1.

The proofs are based on combinatorial arguments and
will be given in Appendix. Theorem 2 thus provides
us with a theoretical sufficient and necessary condi-
tion on how many overlaps we should allow to guar-
antee the Irrepresentable Condition. Clique overlaps
no more than j − 2 will be suffice to guarantee the ex-
act sparse recovery by P1, while larger overlaps may
violate the Irrepresentable Condition. Note that this
theorem is an analysis in the worse case, so in appli-
cation, one may encounter examples which has larger
overlaps than j − 2 where P1 still works.
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To conclude this section, we note that Irrepresentable
condition(IRR) is sufficient and almost necessary to
guarantee exact recovery. Theorem 2 tells us the intu-
ition behind the IRR is that overlaps between cliques
are small which is also easily verifiable. In the next
section, we will see IRR is also sufficient to guarantee
stable recovery of cliques.

4 Stable Recovery with Bounded

Noise and Mixed Sizes

In real applications, one almost always encounters ex-
amples with noise such that exact sparse recovery is
impossible. In this case, P1,δ will be a good replace-
ment of P1 as a robust reconstruction algorithm. We
will also generalize our algorithm so as to deal with
identifying cliques with mixed sizes.

4.1 Stable Recovery Theorems

In the previous sections, we have given various suffi-
cient conditions to recover sparse signal x0 from the
convex program P1, where b exactly equals Ax0. In
reality, one often meets with noisy observations with
b = Ax0 + z, where z accounts for noise. Extended
algorithms from P1 to denoising has been studied ex-
tensively in the literature, under the names of BPDN
[5], LASSO [12], and Dantzig selector [3], etc. These
methods differ in their assumptions on the noise. In
this paper, we choose P1,δ as we found it heuristically
useful to assume bounded noise |z| ≤ ǫ in our applica-
tions.

The following theorem is about the stable recovery
of P1,δ under bounded noise assumptions; its proof
is given in the Appendix.

Theorem 3 Assume that ‖z‖∞ ≤ ǫ, |T | = s, and
the Irrepresentable condition ‖A∗

T cAT (A∗
T AT )−1‖∞ ≤

α ≤ 1/s. Then the following error bound holds for any
solution x̂δ of P1,δ,

‖x̂δ − x0‖1 ≤ 2s(ǫ + δ)

1 − αs
‖AT (A∗

T AT )−1‖1, (1)

In the particular case where k = j + 1, we have the
following corollary.

Corollary 2 Assume that k = j + 1, |T | = s, and
overlap |σ1 ∩ σ2| ≤ j − 2 for any σ1, σ2 ∈ T . Then
‖A∗

T cAT (A∗
T AT )−1‖∞ ≤ 1/(j + 1) and the following

error bound for solution x̂δ of P1,δ holds:

‖x̂δ − x0‖1 ≤ 2s(ǫ + δ)

1 − s
j+1

√

j + 1, s < j + 1.

4.2 Identifying Cliques with Mixed Sizes

In general, we need to deal with identifying cliques of
mixed sizes. Suppose we wish to detect high order
cliques of sizes k1, k2, · · · , kl(k1 < k2 < · · · < kl) from
low order information b on j-subsets. One possible
way is to construct basis matrix A by concatenating
Rj,k with different k’s together. We can solve P1 and
P1,δ for exact recovery and stable recovery with this
new concatenated basis matrix A.

Theorem 4 Suppose x0 is a sparse signal on cliques of
sizes k1, k2, · · · , kl(k1 < k2 < · · · < kl) and b = Ax0.
Let T = supp(x0), if the common interest groups in T
have no overlaps, then they can be identified by solving
P1. Moreover, if the data b = Ax0 + z is noised, then
solving P1,δ will find the approximating solution of x0

where inequality (1) still holds.

The above theorem gives us a sufficient condition to
guarantee exact sparse recovery with concatenated ba-
sis and stable recovery theory is also established.

We note that we can also detect cliques with mixed
sizes in a stagewise way, i.e., we built different linear
programming problems P1,δ’s with different A = Rj,k

and b’s where k ranges from k1 to kl. We can de-
tect cliques of sizes ki from solving linear programming
problem to yield solutions x̂i which tells us important
ki-cliques. Once a solution x̂i is obtained, we need to
remove its effect by feeding the residue bi − Aix̂i into
the next stage as data on j−subsets. In our practical
experience, this stagewise algorithm works well. De-
tecting cliques with mixed sizes in increasing order or
decreasing order yield similar results.

4.3 Complexity

The basis matrix Rj,k is of size
(

n
j

)

by
(

n
k

)

which makes
solving the LP program P1 or P1,δ be impossible for all
but very small n. However, the following approaches
can be considered to improve scalability.

One way is a divide-and-conquer approach utilizing
spectral clustering, which can be used to partition, for
example, the large social network into subsets(each
of size about 20 − 30), followed by our LP algo-
rithm in each subset to detect cliques within clus-
ters(interesting cliques typically arise within clusters
of this size). This approach is efficient for obtaining
good approximation solutions in practice. In theory,
it is equivalent to down-sampling columns of the basis
matrix A, preserving the support of signals as much
as possible, whence the theoretical results above still
hold.

The second way to achieve scalability is to solve the
LP program iteratively, without writing out A explic-



Manuscript under review by AISTATS 2010

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

Noise Level ε

V
al

ue
s 

on
 x

σ

Detecting Baksetball Teams with Noise

 

 

Team 1

Team 2

Alternative 5−Subsets

(a) (b)

Figure 1: Detecting Basketball Teams with Noise. (a)
Two teams in a virtual Basketball Game, with intra-
team interaction 1 and cross-team interaction noise no
more than ǫ; (b) Under a large noise level ǫ < 0.9, the
two teams are identifiable. For each noise level, we
run 100 simulations repeatedly, whose errorbar plot of
weights on cliques are shown.

itly. Note that the Radon basis matrix Rj,k has special
structure to exploit(Rj,k is sparse and has a combina-
torial structure). Hence, we may not need to form
matrix A explicitly if we use iterative algorithms, e.g.
Bregman iterations which has a guaranteed conver-
gence rate[1]. If the basis matrix A is a down-sampled
matrix of Rj,k, then a single iteration of the Bregman
algorithm has complexity O(

(

k
j

)

(
(

n
j

)

+N)) where N is
the number of down-sampling columns. In real cases,
we often have data on pairwise interactions which re-
duce the one-step complexity to be O(k2(n2 + N)).

Another way to address the scalability is to develop
heuristic algorithm. For sparse recovery problem, one
may proceeds by matching pursuit, which relies on it-
eratively find the basis which maximize the correlation
between the basis itself and the data residual. We note
that computing the correlation is computationally fea-
sible by making use of the special combinatorial struc-
ture of Rj,k. However, to search within all possible ba-
sis to select the one which has the largest correlation
is a hard problem. Some heuristic techniques, such
as branch and bound algorithm, may be considered to
address this problem.

5 Application Examples

We demonstrate three application examples, which
show the effectiveness of the scheme proposed in this
paper. As we will see in this section, our clique-based
model can deal with overlaps between cliques which
gives us more community structural information com-
pared against using purely clustering methods. Our
model can be combined with clustering methods which
help improve the scalability of our algorithm.

5.1 Basket-ball team detection

Detecing two basketball teams from pairwise interac-
tions among plays is an ideal scenario. Suppose we
have x0 which is a signal on all 5-subsets of the 10-
player set. We assume it is sparsely concentrated on
two 5-subsets which correspond to the two teams with
magnitudes both equal to one. Assume we have obser-
vations b of pairwise interactions which is b = Ax0 +z,
where z is uniform random noise distributed in [−ǫ, ǫ].
We solve P1,δ, with δ = ǫ, which is a linear program-

ming searching over x ∈ R(10

5 ) = R252 with parameters

A ∈ R(10

2 )×(10

5 ) = R45×252 and b ∈ R45.

The two 5−subsets correspond to the two teams have
no overlap, hence satisfy the Irrepresentable Condi-
tion. In Figure 1-(b), we try to detect the two teams
under different noise levels ǫ ∈ [0, 1]. The two basket-
ball teams can be detected under fairly large noise lev-
els. This example can also be dealt with using spectral
clustering techniques where we normalize the pairwise
interaction data to get the transition matrix, followed
by spectral clustering on eigenspaces. We observed
that both our method and spectral clustering works
very well under noise level less than 0.8.

5.2 Communities in social networks

We consider the social network [10] of Victor Hugo’s
novel Les Miserables, where we extract 33 characters,
and represent the social network of those characters in
a weighted graph manner (Figure 2-(a)). The weights
on edges represent frequencies of co-appearences.

The underlying social community, which is regarded as
the groundtruth for the data can be roughly summa-
rized in figure 2-(a) where several social communities
arise. We can run spectral clustering on this social
network and the result is shown in figure 2-(b) where
the first three red cuts are reasonable while the fol-
lowing three blue cuts destroyed a lot of community
structures within the network.

We test our algorithm directly on this social network.
Our implementation first detects 3-cliques from pair-
wise interactions. Among

(

33
3

)

= 5456 triangles, the
top 5 triangles are shown in Table 1. After that, we re-
move those triangles’ effects and detect 4-cliques from
the residual. The top 3 tetrahedra from

(

33
4

)

= 40929
tetrahedra are shown in Table 1. Figure 2-(c) and (d)
depict these 3 and 4 cliques respectively. The spar-
sity patterns of those cliques satisfy the irrepresentable
condition where overlaps between them are generally
not large. However, they do not necessarily satisfy the
condition in Lemma 1.1 which is based on worst-case
considerations.
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Table 1: The Social Network of Key Characters in Les Miserables

Cliques Names of Characters Relationships

{1, 2, 3} {Myriel, Mlle Baptistine, Mme Magloire} Friendship
{4, 12, 16} {Valjean, Fantine, Javert} Dramatic Conflicts
{4, 13, 14} {Valjean, Mme Thenardier, Thenardier} Dramatic Conflicts
{4, 15, 22} {Valjean, Cosette, Marius} Dramatic Conflicts
{20, 21, 22} {Gillenormand, Mlle Gillenormand, Marius} Kinship
{5, 6, 7, 8} {Tholomyes, Listolier, Fameuil, Blacheville} Friendship

{9, 10, 11, 12} {Favourite, Dahlia, Zephine, Fantine} Friendship
{14, 31, 32, 33} {Thenardier, Gueulemer, Babet, Claquesous} Street Gang

Clearly, the result of our algorithm gives more abun-
dant social structure information than using clustering
techniques. Our algorithm can return social commu-
nities with overlaps which is impossible to happen us-
ing clustering methods. However, searching among all
k−cliques out of n nodes will be intractable for all
but very small n. To resolve this issue, we run spec-
tral clustering to pre-process the data and then within
each cluster we detect cliques using our method, whose
results are shown in figure 2-(e). More important so-
cial cliques, such as the student union clique, can be
identified in this case.

We finally note that some simple schemes will not work
well. For example, one may think of scoring each large
clique by the mean scores of the included small cliques.
In this example, since two or three key characters ap-
pear very often, we will end up with finding that the
top high order cliques always contain them. In fact,
among the top ten 3-cliques, seven of them contain
node 4 and six of them contain node 15, which does
not give us good results.

5.3 Coauthorships in Network Science

In this section, we show an example of application of
our algorithm to large scale social networks. We use
bipartite spectral graph partitioning algorithm to pre-
process the data followed by our cliques identification
algorithms within each cluster whose sizes can be han-
dled. We look at the persistence of identified cliques
in the binary tree decomposition of bipartite spectral
clustering of the network in a bottom-up way. Cliques
which persist through more levels will give us mean-
ingful community structural information.

In particular, we studied coauthorship relations be-
tween scientists working on network theory and exper-
iment. The network contains 379 individuals whose
names appear as authors of papers and weights as-
signed to edges as described in [11](Figure 3-(a)). We
run bipartite spectral clustering on the data which re-
turns us a binary tree decomposition of the network
with each node in the binary tree represents a cluster.

In figure 3-(b), a small fraction of the binary tree de-
composition of bipartite spectral clustering is depicted,

where child nodes are spectral bipartition of the parent
node. We can detect cliques of mixed sizes(up to 10)
within the child nodes, e.g., C and D by solving P1,δ

where basis matrix is concatenation of Radon basis
matrix. Once cliques within clusters C, D are identi-
fied, we then backtrack to the parent node B and A
to see if the identified cliques still persist.

We can identify 3 cliques(c1={KR, RP, RS, TA},
c2={KS, RP, RS}, c3={RP, RS, TA, KS} where
KR=Kumar S, RP=Raghavan P, RS=Rajagopalan
S, TA=Tomkins A, KS=Kumar S) within C and
3 cliques(d1={FG, LS, GC, CF}, d2={FG, LS,
GC, PD, GE}, d3={FG, LS, GC} where FG=Flake
G, LS=Lawrence S, GC=Giles C, CF=Coetzee F,
PD=Pennock D, GE=Glover E ) within D which per-
sist parents to B and A. We can identify papers whose
authors are exactly those cliques. Using only clus-
tering will not get this result since there are heavy
overlaps between them. In figure 3-(b), for simplic-
ity, we only show two persistent cliques: c1={KR,
RP, RS, TA} and d1={FG, LS, GS, CF} which are
the most important cliques(having the largest weights
when solving LP program) in cluster C and D respec-
tively. These two cliques are also the most important
two cliques in cluster B, and if we even further back
track them to clustering A, they are still ranked as #1
and #3 in terms of weights among all cliques identifi-
able in A.

This application example shows that our approach can
be used to identify cliques in social networks with hun-
dreds or even thousands of nodes, with the help of
spectral clustering methods.

6 Conclusion

In this paper, we have proposed a novel algebraic ap-
proach to study the identification of cliques based on
low order interaction information. This approach ex-
ploits the Radon basis with sparse recovery algorithms
rooted in Basis Pursuit. We have shown that noise-
less exact recovery and stable recovery with uniformly
bounded noise hold under some natural conditions.
We have demonstrated successful applications in a sim-
ulated model of the basketball team identification, as
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Figure 2: Decomposition of Les Miserables social network. (a) Social network of characters in Les Miserables;
(b) Spectral clustering result; (c) The identified 3-cliques; (d) The identified 4-cliques. (e) The identified cliques
after spectral clustering

A

B

DC

(a) (b)

Figure 3: (a) Coauthorships in Network Science; (b)
Important cliques identified within clusters in a per-
sistent way. Clustering node B is exactly the blue part
in (a)

well as two real examples of detecting cliques within
medium or large scale social networks. These results
show the potential of broad applications of Radon ba-
sis pursuit in the studies of identity management, so-
cial networks, and statistical ranking.
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A. Appendix

A.1 Notations

Given an M by N matrix A, denote by (vτ ) ∈ RM the
columns of the matrix A. Let x̄ ∈ RN , T = supp(x̄)
and T c be the complement of T . Denote by AT the
submatrix formed by all columns vτ where τ ∈ T and
AT c the submatrix formed by all columns when τ ∈
T c. A∗ denote the conjugate of A, which is simply the
matrix transpose in this paper.

A.2 Proof of Theorem 1 and Corollary 1

Proof of the following lemma can be found in [2].

Lemma A-1 The linear programming P1 has a unique
solution x̄ if the matrix AT has full rank and if one can
find a vector w ∈ RN with the following two properties

1. 〈w, vτ 〉 = sgn((x̄)τ ) for all τ ∈ T ,

2. |〈w, vτ 〉| < 1 for all τ ∈ T c,

where sgn((x̄)τ ) is the sign of (x̄)τ (sgn((x̄)τ ) = 0 for
(x̄)τ = 0).

The following lemma is a result by the Karush-Kuhn-
Tucker (KKT) condition of P1,δ.

Lemma A-2 The two conditions in Lemma A-1 are
necessary and sufficient such that the linear program-
ming P1,δ has a unique solution.

Proof. Consider an alternative form of P1,δ,

min 1T ξ

subject to −δ ≤ Ax − b ≤ δ, δ ≥ 0

−ξ ≤ x ≤ ξ, ξ ≥ 0

whose Lagrangian is

Lx,δ,ξ;γ,λ,µ,ν = 1T ξ − µT ξ − νT δ
−γT

+(δ − Ax + b) − γT
−(Ax − b + δ)

−λT
+(ξ − x) − λT

−(ξ + x)

Then the KKT condition gives

1. 0 = ∂L
∂x

= A∗(γ+ − γ−) + (λ+ − λ−),

2. 0 = ∂L
∂ξ

= 1 − (λ+ + λ−) − µ = 0,

with γ, λ, µ ≥ 0 and γ+(τ)γ−(τ) = λ+(τ)λ−(τ) = 0
for all τ .

Clearly T = {τ : δτ > 0}. Define w = γ+ − γ−. Then
the first equation leads to

〈w, vτ 〉 = −(λ+(τ) − λ−(τ)) = −sgn(x̄τ ), τ ∈ T.

On the other hand, by the Strictly Complementary
Theorem for linear programming [13], there are 1 >
µτ > 0 for τ ∈ T c with δτ = 0 such that the second
equation leads to

|〈w, vτ 〉| = |λ+(τ) − λ−(τ)| = 1 − µτ < 1,

which is the necessary and sufficient condition for the
unique solution of P1,δ. ⋄
Theorem 1 is a direct result yielded from the two lem-
mas above. To see Corollary 1, note that with M > |T |
and the injectivity of AT , if w ∈ im(AT ), then the first
condition in Lemma A-1 leads to

w = AT (A∗
T AT )−1ι∗sgn(x̄),

where the imbedding operator ι : l2(T ) → l2(N) ex-
tends a vector on T to a vector in RN by placing zeros
outside of T and ι∗ is the dual restriction ι∗x̄ = x̄|T .
With this the second condition in Lemma A-1 can be
rewritten as

‖A∗
T cAT (A∗

T AT )−1ι∗sgn(x̄)‖∞ < 1,

which is exactly the Irrepresentable condition.

A.3 Proof of Lemma 1

To prove Lemma 1, given any τ ∈ T c, we define

µτ :=
∑

σ∈T

(

|τ∩σ|
j

)

(

k
j

) ,

then supτ∈T c µτ = ‖A∗
T cAT ‖∞. As we will see in the

following proofs, we essentially try to bound µτ for
τ ∈ T c.

A.3.1 Proof of Lemma 1-1

Under condition 1, since any σ1, σ2 ∈ T satisfy |σ1 ∩
σ2| ≤ j−2, hence any two columns in T are orthogonal.
This implies A∗

T AT is an identity matrix.

Now given τ ∈ T c, we will prove µτ < 1 under condi-
tion 1. If this is true, then

sup
τ∈T c

µτ = ‖A∗
T cAT ‖∞ = ‖A∗

T cAT (A∗
T AT )−1‖∞ < 1

Let T = {σ1, σ2, · · · , σ|T |} where σi(1 ≤ i ≤ |T |) are
k−subsets. We need to prove

µτ =

|T |
∑

i=1

(

|τ∩σi|
j

)

(

k
j

) < 1

Let Ai = {ρ : |ρ| = j, ρ ⊂ τ ∩ σi}, so Ai is a collection
of j−subsets of τ ∩ σi (Here if |τ ∩ σi| < j, then Ai
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is simply an empty set). Obviously, we have |Ai| =
(

|τ∩σi|
j

)

. So

|T |
∑

i=1

(|τ ∩ σi|
j

)

=

|T |
∑

i=1

|Ai|.

Now we note the fact that for any 1 ≤ i, l ≤ |T |,
we have Ai ∩ Al = ∅. This is true because otherwise
suppose ρ ∈ A1 ∩ A2, then this mean ρ is a j−subset
of A1 and A2. Hence ρ ⊂ τ ∩ σ1, ρ ⊂ τ ∩ σ2, which
implies that

|σ1 ∩ σ2| ≥ |(τ ∩ σ1) ∩ (τ ∩ σ2)| ≥ |ρ| ≥ j

This contradicts with the condition that σi’s(1 ≤ i ≤
T ) have overlaps at most j−2. So Ai must be pairwise
disjoint. Hence

|T |
∑

i=1

(|τ ∩ σi|
j

)

=

|T |
∑

i=1

|Ai| = | ∪|T |
i=1 Ai|

For any 1 ≤ i ≤ |T |, every ρ ∈ Ai is a j−subset of
τ ∩ σi. Hence ρ is of course a j−subset of τ . The set
τ is of size k. So if we let A0 = {ρ : |ρ| = j, ρ ⊂ τ}
which is the collection of all j−subsets of τ , then we

have ∪|T |
i=1Ai ⊂ A0. So | ∪|T |

i=1 Ai| ≤ |A0| ≤
(

k
j

)

.

Till now, we actually proved µτ ≤ 1. All the above
proof about µτ ≤ 1 for any τ ∈ T c will remain valid
for condition 2. In the next, we prove if any σi, σl ∈ T
satisfy |σi ∩ σl| ≤ j − 2, then equality can not hold.

Without loss of generality, we assume |σ1 ∩ τ | ≥ j,
otherwise if none of σi’s satisfies |σi ∩ τ | ≥ j, then
µτ = 0 which actually finishes the proof. In this case,
we can let τ = {1, 2, · · · , k}, σ1 = {1, 2, · · · , s, k+1, k+
2, 2k − s} where j ≤ s ≤ k − 1(s ≤ k − 1 because
otherwise σ1 = τ which contradicts with the fact that
σ1 ∈ T, τ ∈ T c). Now we show that ρ0 = {1, 2, · · · , j−
1, s + 1} is not a member of ∪|T |

i=1Ai. Clearly ρ0 is not
a member of A1 because s+1 6∈ σ1. Now it remains to
show that ρ0 is not a member of any Ai(2 ≤ i ≤ |T |). If
this was not true, say ρ0 ∈ A2, then ρ0 ⊂ (τ∩σ2) ⊂ σ2,
then {1, 2, · · · , j−1} ⊂ σ1∩σ2, which contradicts with
the condition that |σ1 ∩ σ2| ≤ j − 2.

While it is clear that ρ0 ∈ A0, so this means ∪|T |
i=1Ai

is a proper subset of A0. So | ∪|T |
i=1 Ai| <

(

k
j

)

which
means µτ < 1. ⋄

A.3.2 Proof of Lemma 1-2

Under condition 2, then almost the same as proof for
lemma 1. We have A∗

T AT is an identity matrix and
µτ ≤ 1. However, one can not show µτ < 1 in this
case. We have the following example where if n is

large enough, then µτ can happens to be equal to one
exactly.

Let τ = {1, 2, · · · , k} ∈ T c. Denote all the j−subsets
of τ to be ρ1, ρ2, · · · , ρ(k

j)
. For n is large enough,

we choose
(

k
j

)

disjoint (k − j)-subsets of {k + 1, k +

2, · · · , n}, denoted by ω1, ω2, · · · , ω(k

j)
.

Let T = {σ1, σ2, · · · , σ|T |}, where σi = ρi ∪ ωi. Hence

|T | =
(

k
j

)

and σi’s satisfy |σi ∩ σj | ≤ j − 1. But

|T |
∑

i=1

(

|τ∩σi|
j

)

(

k
j

) =

|T |
∑

i=1

1
(

k
j

) = 1

⋄

A.3.3 Proof of Lemma 1-3

Under condition 3, we can construct examples where
‖A∗

T cAT (A∗
T AT )−1‖∞ > 1. Let ρ1, ρ2, · · · , ρ(k

j)
be all

j-subsets of {1, 2, · · · , k}. For large enough n, it is
possible to choose

(

k
j

)

+ 1 disjoint (k − j)-subsets of

{k + 1, k + 2, · · · , n}, say ω0, ω1, ω2, · · · , ω(k

j)
. Let σi =

ρi ∪ ωi for 1 ≤ i ≤
(

k
j

)

and σ0 = ρ1 ∪ ω0. Define

T = {σ0, σ1, σ2, · · · , σ(k

j)
} which is of size |T | =

(

k
j

)

+1.

In this case, |σi ∩σl| = j − 1 for any 1 ≤ i, l ≤
(

k
j

)

and

|σ0∩σ1| = j, |σ0∩σi| ≤ j−1 for any 2 ≤ i ≤
(

k
j

)

. Then

A∗
T AT is a

(

k
j

)

+1 by
(

k
j

)

+1 matrix shown belog with

rows and columns corresponds to {σ0, σ1, · · · , σ(k

j)
}

A∗
T AT =



















1 ǫ 0 0 · · · 0
ǫ 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0

0 0
...

...
. . . 0

0 0 0 0 · · · 1



















Here ǫ = 1

(k

j)
. The inverse of the matrix is

(A∗
T AT )−1 =



















1
1−ǫ2

− ǫ
1−ǫ2

0 0 · · · 0

− ǫ
1−ǫ2

1
1−ǫ2

0 0 · · · 0

0 0 1 0 · · · 0
0 0 0 1 · · · 0

0 0
...

...
. . . 0

0 0 0 0 · · · 1



















Consider τ = {1, 2, · · · , k} ∈ T c, then the row cor-
responds to τ for A∗

T cAT is a vector of length |T | =
(

k
j

)

+1 with each entry being ǫ = 1

(k

j)
. So the row vec-

tor corresponds to τ in A∗
T cAT (A∗

T AT )−1 is a vector
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of length
(

k
j

)

+1, [ ǫ
1+ǫ

, ǫ
1+ǫ

, ǫ, ǫ, · · · , ǫ]. This vector has
row sum

2ǫ
1+ǫ

+ (
(

k
j

)

− 1)ǫ = 2ǫ
1+ǫ

+ (1
ǫ
− 1)ǫ

= 1+2ǫ−ǫ2

1+ǫ

> 1+2ǫ−ǫ
1+ǫ

= 1

Hence in this example ‖A∗
T cAT (A∗

T AT )−1‖∞ > 1. ⋄

A.4 Proof of Theorem 3 and Corollary 2

Lemma A-3 Assume that ‖z‖∞ ≤ ǫ, |T | = s, and the
Irrepresentable condition

‖A∗
T cAT (A∗

T AT )−1‖∞ ≤ α < 1.

Then the following error bound holds for any solution
x̂δ of P1,δ,

‖x̂δ − x̄‖1 ≤ 2s(ǫ + δ)

1 − αs
‖AT (A∗

T AT )−1‖1.

Proof of Lemma A-3. Note that ‖Ax̂δ − b‖∞ ≤ δ
and z = Ax̄ − b with ‖z‖∞ ≤ ǫ. Then

‖Ah‖∞ = ‖Ax̂δ − Ax̄‖∞ = ‖Ax̂δ − b + b − Ax̄‖∞
≤ ‖Ax̄δ − b‖∞ + ‖z‖∞ ≤ δ + ǫ.

(3)
Let h = x̂δ − x̄. By ‖x̄‖1 ≥ ‖x̂‖1,

‖hT‖1 = ‖x̄ − x̂δ|T ‖1 ≥ ‖x̄‖1 − ‖x̂δ|T ‖1

≥ ‖x̂δ‖1 − ‖x̂δ|T ‖1 = ‖x̂δ|T c‖1 = ‖hT c‖1.
(4)

Therefore,

|〈Ah, AT (A∗
T AT )−1hT 〉|

= |〈AT hT , AT (A∗
T AT )−1hT 〉 + 〈AT chT c , AT (A∗

T AT )−1hT 〉|
≥ ‖hT‖2

2 − |〈hT c , A∗
T cAT (A∗

T AT )−1hT 〉|
≥ ‖hT‖2

2 − ‖hT c‖1‖A∗
T cAT (A∗

T AT )−1hT ‖∞
≥ 1

s
‖hT ‖2

1 − α‖hT c‖1‖hT ‖∞

≥ 1

s
‖hT ‖2

1 − α‖hT c‖1‖hT ‖1

≥
(

1

s
− α

)

‖hT ‖2
1

where the last step is due to ‖hT ‖1 ≥ ‖hT c‖1 in the
inequality (4). On the other hand,

|〈Ah, AT (A∗
T AT )−1hT 〉|

≤ ‖Ah‖∞‖AT (A∗
T AT )−1hT ‖1

≤ (δ + ǫ)‖AT (A∗
T AT )−1‖1‖hT‖1

using (3). Combining these two inequalities yields

‖hT‖1 ≤ s(δ + ǫ)

1 − αs
‖AT (A∗

T AT )−1‖1,

as desired. ⋄
Proof of Corollary 2 This corollary follows follows
from the Lemma above. Note that when the conditions

in Theorem 2 hold, A∗
T AT = I and ‖AT ‖1 ≤

√

(

k
j

)

=
√

j + 1.

Now it suffice to eatablish the fact that in this special
case, we have

‖A∗
T cAT (A∗

T AT )−1‖∞ ≤ 1

j + 1
< 1

Note that since any σ1, σ2 ∈ T satisfy |σ1 ∩ σ2| ≤
j − 2, we have A∗

T AT is an identity matrix. So
‖A∗

T cAT (A∗
T AT )−1‖∞ = ‖A∗

T cAT ‖∞. Now assume
τ ∈ T c, let Sτ = {σ : |σ∩τ | ≥ j, σ ∈ T }, then |Sτ | ≤ 1.
This is because otherwise, suppose {σ1, σ2} ⊂ Sτ such
that |Sτ | ≥ 2, then we have

|τ | ≥ |τ ∩ (σ1 ∪ σ2)| = |τ ∩ σ1| + |t ∩ σ2| − |t ∩ σ1 ∩ σ2|
≥ j + j − (j − 2) = j + 2

which contradicts with the fact that τ is a j+1-subset.
So there exist at most one σ0 ∈ T such that |τ∩σ| ≥ j.
Let vτ be the row vector of A∗

T cAT with row index

correspond to τ . Then ‖vτ‖∞ ≤ (j

j)
(j+1

j )
= 1

j+1 < 1. ⋄

A.5 Proof of Theorem 4

We prove under the condition that any σ1, σ2 ∈ T
satisfy |σ1∩σ2| = 0, then solve P1 will exactly identify
x0.

For simplicity, given any τ ∈ T c, we define

µτ =
∑

σ∈T

1
(

|τ |
j

)(

|σ|
j

)

(|τ ∩ σ|
j

)

Note that the intersection of σ1 and σ2 is zero implies
that A∗

T AT = I, moreover, given τ ∈ T c, the colleciton
of sets {τ ∩σ|σ ∈ T } are disjoint. Note that if there is
only one σ0 satisfies |τ ∩ σ0| ≥ j, then

µτ =
1

√

(

|τ |
j

)(

|σ0|
j

)

(|τ ∩ σ0|
j

)

< 1

because it is the inner product of two column vectors
corresponds to τ and σ0 of A, where there are no two
columns in A are identical.

Now suppose there are at least two σ’s satisfy, |τ∩σ| ≥
j, then we have

µτ =
∑

σ∈T

1
√

(

|τ |
j

)(

|σ|
j

)

(|τ ∩ σ|
j

)
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≤
∑

σ∈T,|τ∩σ|≥j

1
√

(

|τ |
j

)(

|τ∩σ|
j

)

(|τ ∩ σ|
j

)

=
∑

sk∈T,|τ∩σ|≥j

√

(

|τ∩σ|
j

)

√

(

|τ |
j

)

Since the collection of sets {τ ∩ σ|σ ∈ T } are dis-

joint, so if we can prove
√

(

|τ∩σ1|
j

)

+
√

(|τ∩σ2|
j|

)

<
√

(

|τ∩(σ1∪σ2)|
j

)

, then we know that

µτ ≤ ∑

σ∈T,|τ∩σ|≥j

√

(|τ∩σ|
j )

√

(|τ|
j )

<
√

(|τ∩(∪σ∈T,|τ∩σ|≥jσ)|
j

)

/
√

(

|τ |
j

)

≤ 1

So now we only need to prove the following inequality:
suppose j ≥ 2, given n1 ≥ j, n2 ≥ j, we need to prove
√

(

n1

j

)

+
√

(

n2

j

)

<
√

(

n1+n2

j

)

The case of j = 2 can be verified directly, while for
j ≥ 3, we square both sides and we now that we only

need to prove
(

n1

j

)

+
(

n2

j

)

+ 2
√

(

n1

j

)(

n2

j

)

<
(

n1+n2

j

)

.

Since
(

n1+n2

j

)

=
∑

s=0j

(

n1

j−s

)(

n2

s

)

. So we know we only

need to prove 2
√

(

n1

j

)(

n2

j

)

< n2

(

n1

j−1

)

+ n1

(

n2

j−1

)

. Since

n2

(

n1

j−1

)

+ n1

(

n2

j−1

)

≥ 2
√

n1n2

(

n1

j−1

)(

n2

j−1

)

, so we only

need to verify n1

(

n1

j−1

)

>
(

n1

j

)

, this can be easily veri-
fied by writing out explicitly both sides.


