
Hodge Decomposition of Paired Comparison  

Flows in Click-through Data 
 

Zhanglong JI
1
, Yang AN

1
,
 
Ying CHEN

1
, Yuan YAO

1
, Jun XU

2
, Hang LI

2
 

1
School of Mathematical Sciences, Peking University 

2
Microsoft Research - Asia, Beijing 

Correspondence Email: YY <yuany@math.pku.edu.cn> 
 

 
Abstract - Hodge theory, as a powerful technique which 

bridges over analysis, geometry and topology, was recently 
introduced to data analysis in metric spaces [1] and statistical 
ranking [2]. When applied to ranking problem, a combinatorial 
version of Hodge Theory leads to an orthogonal decomposition of 
pairwise comparison flows into three components: one is the 
gradient of a global score function which can be used to rate the 
candidates, the other two describe the inconsistency of pairwise 
comparison data, locally and globally respectively. Through this 
decomposition, one not only obtains a global ranking score, but 
also gets two measurements on how consistent are the raters in 

pairwise comparisons.  

Pairwise comparison models for user’s clicks have been made 
popular due to Joachims’ work [3]: the user’s clicks, can derive  
implicit pairwise comparisons between the clicked and the 
skipped webpages, which is shown to reflect user’s preference 
over documents and the relevance of query vs. document. In this 
report, we study an application of combinatorial Hodge theory to 
the pairwise comparison models for click data based on Joachims’ 
work. Our purpose is to investigate both the global ranking of the 
relevant documents and the nature of inconsistency within user’s 
preference. Our studies show that it is not a proper way to 
directly apply Joachim’s models on typical industrial data 
collected from a commercial search engine, which tends to revert 
the order of search engines and thus leaves a larger deviation 
from Human Rating Scores even than random ranking. Most of 
the inconsistency in user’s preference is of local scale, consisting 
of those webpages targeted by different interest groups. Such a 
result suggests to explore novel models to exploit click data for 

web search ranking. 

Key Word: Hodge Theory, Search Ranking, Pairwise Ranking 

I. INTRODUCTION 

The central task of commercial search engines is to rank 

the documents according to the relevance to the queries issued 

by users. There have been lots of algorithms based on features 

of the document and between documents and queries. But 

these algorithms are supervised learning algorithms, and they 

need Human Rating Scores, which are both expensive and 

sparse. To exploit the information in clicked data which are 

cheap and of large amount, Jochaims [3-5] suggests pairwise 

comparison models for implicit feedbacks from user‟s click 

with a ranking SVM. This starts the effort to mine information 

in the user behavior.  

One fact that must be considered when building a model 

based on clicks is position bias, put forward by Jochiams [4], 

which says that the users tend to click the documents that are 

ranked higher. This bias is not related to the quality of the 

documents, because this phenomenon persists in another 

experiment which puts the document in inverse order [4]. The 

eye-tracking experiment in the same paper shows that the 

user‟s eyes mainly focus on the first documents, which can 

explain why those documents are clicked more often. 

The position bias is the main concern and difficulty in 

search ranking with click data, but it also hints that users may 

examine the document from the top to the bottom. Based on 

this assumption, there is high probability that if a user skips 

some documents to clicks on the document ranked lower, he in 

fact conducts a comparison among these documents. With 

different interpretation of users‟ preference, several models of 

pairwise comparisons can be made, and the application of 

Hodge Theory can be hosted here. 

Hodge Theory was developed by W.V.D. Hodge as an 

extension of the theory of the Laplacian on domains of 

Euclidean space or on a manifold. It established some 

beautiful connections between topology, geometry and 

analysis through Laplacian operators. Recently Hodge theory 

has been studied in the setting of data analysis in metric spaces 

[1] and in particular, statistical ranking [2] which enables a 

decomposition of pairwise comparison matrices into three 

orthogonal components. The first one is the gradient of a 

function, which can be regarded as the score of each candidate 

to be ranked. The other two parts characterize the 

inconsistency of users‟ behavior in a local and global way, 

respectively.  

In this paper we report a preliminary study of applying 

Hodge Theory to Joachim‟s pairwise comparison models for 

click data, with data from industrial search engines. The 

experimental result shows that first of all, Joachim‟s pairwise 

comparison models, although successful in his specific setting, 

are not consistent to human rating scores (HRS) in our cases, 

even further from that than random ranking. A discussion will 

be given at the end of the paper. Second the global 

inconsistency is generally close to zero, which indicates the 

absence of large global cycles in data of high frequency. Third, 

the majority of inconsistency is due to local or triangular  

inconsistency, which is not affected by queries‟ frequency or 

number of documents related. The statistical stability of 

Hodge decomposition is also shown through Bootstrap 



experiments. These results motivate novel models for click 

data in search ranking.  

The whole paper is organized as follows: Section 2 will 

introduce some background of web search. Basic notations, 

definitions, concepts and theorems of combinatorial Hodge 

Theory will be introduced in Section 3. Section 4 will give a 

detailed algebraic way to decompose a pairwise comparison 

matrix. In Section 5, the pairwise comparison models by 

Jochaims are formulated and a matrix representation of their 

decompositions is given. In Section 6, we will briefly compute 

the complexity of our model. The experimental result will be 

in Section 7, and a discussion will be in Section 8 with future 

directions. 

 

II. WEB SEARCH 

When a user issues a query, for example, google, search 

engine searches the whole web, ranks the documents (or urls) 

by their relevance to the query, and return the most relevant 

ones to the user. This is called web search. Search companies 

do label some query-document pairs manually. Supervised 

learning technique can thus be exploited to learn to rank based 

on labels and features for query-document pairs. Rank 

learning algorithms can be roughly classified into two 

categories: pair-wise [8-9] and list-wise [6-7] where both 

classification and regression schemes are found helpful. But 

this approach is too expensive and inefficient: every rating 

must be paid, and there are hundreds of millions of queries a 

search engine receives everyday and billions of web pages on 

the whole web. To address this challenge, many algorithms 

have been suggested. 

As implicit feedback from the users are both informative, 

cheap and in huge amount, and computers have gained the 

ability to analyze them, researchers have turned to click log 

for help. Joachims [5] first utilized implicit feedback in web 

search and webpage ranking, he chose pair-wise comparison 

method to train a RankSVM. RankSVM converts the ranking 

problem into a classification problem based on the comparison 

between document pairs. This algorithm uses the features of 

documents as predictors and preference shown by clicks as 

responses, then solves the problem under the framework of 

SVM. 

However, in such a work we are not clear that how 

consistently the click data can be used to approximate the 

users‟ preference behavior. So learning from preference 

models derived from clicks might be misleading. This 

motivates us to explore this issue by Hodge theory, which can 

measure whether user behavior on some queries is consistent.  

III. COMBINATORIAL HODGE THEORY 

Hodge theory, which is a powerful technique in geometry 

and topology, was developed by W.V.D. Hodge in the 1930s 

as an extension of the theory of the Laplacian on domains of 

Euclidean space or on a manifold. In this paper, we will pay 

close attention to its combinatorial version in k-dimensional 

simplicial complex and its relevance in ranking [2]. Although 

simplicial complex of dimension higher than 2 does not make 

any contribution to our study so far, it is promising that 

higher-dimensional simplicial complices would play an 

important role in our future studies. 

A. Definitions to Claim 

Definition 3.1 A simplicial complex K=(V, Σ) is a vertex set 

V={1, …, n} together with a collection Σ of subsets of V that is 

closed in the sense of inclusion. The elements in Σ are called 

simplices. For k ≤ n, a k-simplex is a (k+1)-element subset of 

V and we use Σk to denote all k-simplices in Σ. 

Definition 3.2 Given any undirected graph G=(V, E), one 

obtains a (k-1)-dimensional simplicial complex   
 =(V, Σk-1) 

called the k-clique complex of G by setting Σ={j-clique of G | 

j= 1,…, k}. The k-clique complex of G where k is maximal is 

just called the clique complex of G and denoted KG. 

Definition 3.3 Let K be a simplicial complex and recall that 

Σk denotes the set of all k-simplices in Σ. A k-dimensional 

cochain is a function f : Σk → R that is alternating on each of 

the k-simplex, i.e. 

                                  

for all {            and all σ from the permutation group 

on k+1 elements. The set of all k-cochains on K is denoted 

Ck(K,R).  

For simplic ity, we will often use Ck instead when there is 

no cause for confusion. We note that the k-cochain space Ck 

can be given a choice of inner product < , >k. 

Definition 3.4 The kth coboundary operator δk : C
k(K,R) → 

Ck+1(K,R) is the linear map that takes a k-cochain f to a (k+1)- 

cochain δkf defined by 

                             

   

   

                       

for all {                   and all     . 

 We may construct the formal adjoint operator of the 

coboundary map,   
 : Ck+1(K,R) → Ck(K,R) by 

                     
        

where                       

Definition 3.5 The combinatorial divergence operator div : 

C1(K,R) → C0(K,R) is the adjoint of δ0, i.e. 

       
  



For convenience, we may usually drop the adjective 

„combinatorial‟ from „combinatorial divergence‟ when there is 

no risk of confusion. 

Definition 3.6 Let K be a simplicial complex. The k- 

dimensional combinatorial Laplacian is the operator Δk : 

Ck(K,R) → Ck(K,R) defined by 

     
 
           

  

B. Theorems to Apply 

The main theorem in combinatorial Hodge theory is the 

Hodge decomposition theorem, which holds in general for any 

simplicial complex and for any dimension k. We will mainly 

concern ourselves with studying a special case k=1, also  

called Helmholtz decomposition theorem. In this section, we 

will state these two theorems in detail and one may refer to [2] 

for a basic proof to the Hodge decomposition theorem. 

Theorem 3.7 (Closedness).          

Theorem 3.8 (Hodge Decomposition Theorem). Ck(K,R) has 

an orthogonal decomposition 

                               
   

Furthermore, 

                          
   

Theorem 3.9 (Helmholtz Decomposition Theorem). Let G be 

an undirected, unweighted graph and recall that KG denotes 

its clique complex. C1(KG ,R) admits an orthogonal decom- 

position 

                              
   

Furthermore, 

                        
   

 

IV. APPLICATION OF HELMHOLTZ DECOMPOSITION THEOREM 

IN RANK LEARNING 

A. Pairwise Rank Learning Problem 

Let             be a set of alternatives to be ranked 

and             be a set of voters. We will first define 

the weight function              as the indicator 

function  

   
           

                                                          
              

  

For each voter    , we use the pairwise ranking 

matrix        , satisfying 

   
      

    

to quantify the degree of preference of the ith alternative over 

the jth alternative of voter α. In this paper, we only consider 

the case that 

   
   

                                    
                                
                                         

  

Thus, we can define the skew- symmetric original comparison 

matrix    to be 

   
      

 

 
   

  

And the final comparison matrix   by 

         
        

where         
 

  and f  indicates a function with    
  and 

    to be its variables. The detailed method to construct such 

pairwise comparison matrices    and   from raw data will 

be performed in Section 5B. 

We can also present the comparison with a graph. Let 

G=(V,E) be an undirected graph with vertex set V and edge 

set 

          
 

 
          

where   

 
  stands for set of all k-element subset of V. 

Furthermore, we can also associate weights on the edges of G 

as capacity      Such G is called a pairwise comparison 

graph. 

 We can then define edge flows on G, i.e. a function X: 

      that satisfies 

 
                            

                                  
  

In particular, an edge flow of the form           is called 

a gradient flow, for it can be regarded as the gradient of a 

function      , which will be called a potential function. A 

collection of all gradient flows is defined as the model class 

and denoted   . A potential function is also called a score 

function or utility function, representing the scores of each 

alternative in V. From s, we can obtain the global ranking of 

the elements in V, on the basis of the rule that      iff 

     , where the former operator “  ” shows that alternative i 

is preferred to j. 

Generally, our goal for rank learning problem is to 

minimize a sum-of-squares loss function over a model class 

  , which can be then rewritten as a weighted l2-minimization 

on a pairwise comparison graph, as is shown below: 

                              
    

          
 

       . 

Bes ides getting global rankings from raw data, we also 

need a statistical measurement to quantify the consistency or 

reliability of the pairwise rankings. 



Similar to edge flow, we define the triangular flow on G, 

i.e. a function           that satisfies that an odd 

permutation of the arguments of   changes its sign while an 

even permutation does not. Let 

               
 

 
                       

be a collection of triangles with every edge in E. Then we can 

define the curl operator that maps edge flows to triangular  

flows by 

                 
                                

                                              
  

 To measure the triangular inconsistencies, we will finally 

define that an edge flow is called globally consistent if it is a 

gradient flow and locally consistent if it is curl-free on every 

triangular in T(E). 

 

B. Relevance of Hodge Theory in rank learning 

In our data ranking problem, it suffices to consider cases 

k=0, 1, 2. Let G=(V,E) be a pairwise comparison graph and 

we will give special attention to a combinatorial object of the 

form (V, E, T(E)). 

 According to definition 3.1 and definition 3.2 above, (V, 

E, T(E)) is called a 2-dimensional simplicial complex or the 

3-clique complex of G, denoted   
 , and     ,     , 

       ,           . 

 Potential functions (score/utility functions), edge flows 

(pairwise rankings), triangular flows(triplewise rankings), 

gradient(global ranking), curl(local inconsistency) are all 

special instances of those calculus on a simplic ial complex, 

introduced in definition 3.3 to definition 3.5. 

We point out that C0 is the space of potential functions 

(score/utility functions), C1 is the space of edge flows(pairwise 

rankings), and C2 is the space of triangular flows(triplewise 

rankings) as special cases of cochains. 

For coboundary maps, we have, in particular,  0=grad, i.e. 

                 

where      , and  1=curl, i.e. 

                         

where X stands for edge flows on G. 

In conclusion, the relationships between combinatorial 

gradient, curl, and divergence are given by  

                               

                                         

               
           

       

 

with respect to the inner products on both C0 and C1 to be the 

unweighted Euclidean inner products, 

           

 

   

 

             

       

 

for all         and all         
To better understand the application of Helmholtz 

decomposition theorem in rank learning, we need to clarify the 

ranking theoretic interpretations of each subspace in the 

theorem. 

(1)                 denotes the subspace of pair- 

wise rankings that are globally consistent or acyclic. 

(2)                    denotes the subspace of 
curl-free pairwise rankings and they are precisely 
locally consistent. According to the Closedness 
theorem, we have im(grad) is a subset of 
ker(curl), and its orthogonal complement in 
ker(curl) is         discussed below. 

(3)       
            denotes the subspace of 

divergence-free pairwise rankings, i.e. for each 
alternative    , whose total out-flow equals its 
total in-flow. So such rankings may be considered 
to be inconsistent or cyclic.  

(4)                         
   denotes the sub- 

space of pairwise rankings that are both curl-free 
and divergence-free. Thus this subspace 
comprises only locally but not globally consistent 
pairwise rankings. 

(5)      
             denotes the subspace of 

locally cyclic pairwise rankings. By the 
Closedness theorem, im(curl*) is a subspace of 
ker(div), and the orthogonal complement of 
im(curl*) in ker(div) is         discussed above. 

 

C. Application of Helmholtz Decomposition Theorem 

In order to discuss the solutions and residuals of our 

optimization problem (1) in the Hodge theoretic framework, 

we need to restate the inner products of   mentioned in 

Section 4B. 

 The optimization problem (1) is then equivalent to the 

following equation 

   
    

            
    

               

which is an l2- projection of an edge flow representing a 

pairwise ranking onto im(grad) or       , for the Helmholtz 

decomposition assures that     three subspaces         
        and      

   are orthogonal with respect to the inner 

products on     and   . 

Then the condition for a stationary point gives the normal 

equation 

  
       

    

By substituting      
 
   and        

 , we get the 

following theorem. 

Theorem 4.1 Solutions of (8) satisfy the following normal 

equation 



            

The minimum norm solution is then given by 

      
        

where + indicates a Moore-Penrose inverse. 

Furthermore, Hodge theory provides us with information 

about the l2-norm of the least squares residual, which 

represents the validity of the global ranking of s*. If the 

residual is small, then the global ordering obtained is expected 

to be a majority consensus and we may conclude that s* gives 

a reasonably reliable ranking of the alternatives. On the other 

hand, if the residual is large, we may see that it is hard to 

assign any reliable ranking to it and it may need to be labeled 

manually. 

Theorem 4.2 The residual         
  is divergence-free, 

i.e.         . Moreover, it has a further orthogonal decom- 

position 

                                 

where                is a local cyclic ranking accounting for 

local inconsistencies and             
  is a harmonic ranking 

accounting for global inconsistencies. In particular, the first 

projection is given by  

                                         

V.  MODELS 

A. Pair-wise comparison of documents 

First of all, information of comparisons of documents 

should be extracted from search engine‟s log file. How to get 

them given logs of users‟ clicks on pages? Since the users 

examine the documents from the top to the bottom of the 

search result block according to our hypothesis, it is 

reasonable to assume that users‟ clicks represent their 

preference for the clicked documents to the others as follows: 

here we use five methods on the pair-wise comparison 

from[14]: clicked    skipped above, clicked    former 

clicked, clicked    skipped above + next, last click    the 

previous and clicked    the unclicked previous. 

a) Clicked    skipped above 

This model is mainly based on the fact that users tend to 

read urls from top to bottom, according to the result of an 

eye-tracking study mentioned before. This means that if the 

i-th document is clicked, then it is preferred by the user to all 

the documents presented before it (from the first to the (i-1)-th 

document). There is neither comparison between this 

document and the documents after it, or comparison between 

it and the clicked documents before it. 

b) Clicked    former clicked 

This means that if the i-th document is clicked, then it is 

better than the clicked documents before it. This is because 

users continue searching when they are not satisfied with the 

former clicked documents, and only more relevant documents 

can attract their attentions. There is no comparison between 

the clicked and non-clicked documents, and among the 

non-clicked documents, there are no comparison, either. 

c) Clicked    skipped above + next 

This means that except the comparison mentioned in the 

first method, the clicked document is also better than the 

document next to it. This is because people make the decision 

to click the result after evaluating not only the higher-ranked 

results, but the result right after it as well.  

d) Last click    the previous 

This means that comparison only happens between the 

last click and the document before it. When this method is 

applied, each page provides at most one comparison, so the 

comparison is very sparse compared with the former methods. 

Figure 1 Ways to construct pairwise comparison model 

 

e) Clicked    unclicked previous 

This is also a method which produces very sparse 

comparison matrix. It believes that comparison occurs only 

between the clicked document and the document before it. 

The operator “  ” indicates that the left one is preferred 

by the user according to the amount of useful information on 

this page. Figure 1 shows those five methods of pairwise com- 

parisons introduced above on a single page. This simplif ied 

page has five documents in a row, and the second and the 

fourth are clicked, while the others are not. We use arrows to 

present the preference: if an arrow is from document    to 

document   , then    is thought to be superior to   . 

B. Form of Comparison Matrix 

After the extraction of information on users‟ preference 

from a large number of log files, the next step is to use them to 

form an original comparison matrix        
  

           
. In 

this matrix,    
  denotes the times that document i is preferred 

to document j minus the times document j is preferred to 

document i. When calculating    
 , we need to go though all 

log files and once there is a page indicating users‟ preference 

for document i to document j based on one of the five methods 

discussed above,    
  should be added by 1 and    

  should be 

added by -1. 



If all the documents presented are regarded as vertices, 

and two vertices are connected when they are compared at 

least once, all the documents and their connections will form a 

graph. Only those components having connections with many 

other vertices should be paid attention to, and vertices that 

have no edges should be left out. In our experiment, we only 

study the largest connected subgraph of the whole graph. And 

for most situations, this subgraph and the original graph is the 

same. 

After this dealing with all log file, an original comparison 

matrix    will be obtained. The number of its rows and 

columns should be the same as the number of documents 

shown in the logs. Then some modifications will be done to 

form the final comparison matrix                   
 and 

there are three methods to accomplish such modification:  

Thurstone-Mosteller Model, Uniform Model and Bradley- 

Terry Model.  

Before introducing these three models in detail, It should 

be pointed out that all these models are built on the probability 

      , and     should be a monotone increasing function 

of       . Here        is defined as   
 

 
 
   
  

   
   . From 

the large number theorem, this is reasonable when i and j are 

compared many times. For the first and third model below, a 

smoother can be used to avoid              . 

(1) Thurstone-Mosteller Model 

                      , and        is the inverse  

of error function. This model is on the assumption that the 

score of every document to a single user obeys independent 

normal distributions with the same variance. 

(2) Uniform Model 

                 , and this is a simple and intuitive  

model. 

(3) Bradley-Terry Model 

                               , and   is a smoother. 

All these three models fit the requirement that     is a 

monotone increasing function of       . Besides, they are 

all even functions, making the comparison matrix   a skew- 

symmetric matrix. 

C. Decomposition of Comparison Matrix 

In Section 3 and Section 4, we take a deep look at Hodge 

theory and its relevance in rank learning problem basically 

from the linear algebra view. In this section, we will rely on a 

comparatively simple matrix view of Hodge theory to find a 

practical way to solve our problem, at the sacrifice of losing 

some important geometric insights.  

After the comparison matrix   is obtained, it can be 

decomposed into three orthogonal components as described in 

Section 3C. 

           

while    corresponds to the       ,    corresponds to the 

       , and    the      
  . The decomposition is restricted 

to the positions where i and j have been compared. 

Since the three subspaces are orthogonal with respect to 

   and    inner products, the decomposition can simply be 

completed by projecting the matrix   into the three subspaces. 

Then a mathematical solution to this decomposition comes: 

To calculate the first part, we should find a vector 

                satisfying 

                 

Or represented by matrix view: 

                     
  

Let     be the number of documents related to the 

matrix, or vertices in the subgraph,     be the number of 

compared pairs of documents, or edges in the graph.    is a 

matrix with     rows and     columns, each row 

corresponds to an edge and each column to a vertex. The entry 

of    at the i-th row and j-th column is 0 if the i-th edge 

doesn‟t have connection with the j-th vertex, and as for the 

two vertices that the i-th edge connects, the one with smaller 

index, let‟s call it    for convenience, the   -th entry in this 

row is 1, and the other is -1.   is a sparse matrix of C, i.e. a 

vector whose length is    . Each entry of   corresponds to 

an edge: If the edge is between i-th vertex and j-th vertex, and 

i < j, then      . With these parameters, S is the solution of 

the following formula: 

                 

Since S is the coefficients of projection of w on the space 

spanned by columns of   , S is also the solution of 

           
       

     

Further, 

  
       

   

After calculating the Moore-Penrose inverse (or Pseudo- 

inverse, or Generalized inverse) of   
   , the value of S is got, 

and so is   : 

   
        

Thus           , and    can be calculated with 

the similar method. Since    is the projection of   on the 

space      
  . There hold: 

     
    

where T is a vector with a length of       satisfying 

           
       



Figure 2 NDCG of five pair-wise comparison models in 

Section 5A, compared with that of the random model 

 

Then we have metrical representation: 

                 

                    
        

  

And      
    

       is the set of all triangles (a set of three vertices among 

which each pair is connected), and    is a matrix with     
rows and       columns. If a triangle j consists of three edges 

        , then the j-th column of D1 has only three 

non-zero entries, 1 at the   -th and   -th positions 

respectively, and -1 at the   -th. The j-th entry of    is  

           . Applying the Moore-Penrose inverse again, 

we can get the value of T. 

 If the edge between the i-th and j-th vertices responds to 

the k-th edge, then 

   
          

Thus, the value of    is got, and so is   : 

            

 

VI. COMPUTATIONAL COMPLEXITY 

The whole computational complexity is low compared 

with algorithms such as RankSVM. If there are n pages, m 

queries, and at most l documents for each query, the time 

complexity is at most         , and memory required is at 

most       . The analysis below will give details. 

A. Complexity in Forming the Comparison Matrices 

When the original comparison matrices are calculated, all 

the data are only dealt once and the time required for dealing 

one page doesn‟t grow with the size of data. So the time 

require for this step is no longer than     . As for the 

memory, they only need to remember a comparison matrix for 

each query, and the matrices have no more than l columns or 

rows. Thus the step requires memory less than       . 

When the original matrices are converted into final ones, 

there is no additional memory required, and the time required 

is just        (each pair in a matrix requires one operation). 

B. Complexity in Decomposing the Matrices 

Here the decomposition of matrix of each query is 

independent, so we can simply calculate the complexity of  

Figure 3 NDCG of the three models and the random model 

 

each of them and add them up. The time required by each 

matrix is      , which is the result of calculating pseudo- 

inverse matrix. This step requires       space to conduct the 

operation. In total it needs        time and       space. 

After these two steps, to output the result requires       

time. Then we come to the conclusion that the time required is 

no more than          and memory requires       .  

Compared with the iterative algorithms such as RankSVM, it 

is very competitive. 

 

VII. EXPERIMENT 

A. Dataset 

Our data come from the log of a search engine. Only the 

data from the US and whose query is both frequent and has 

Human Rating Scores (HRS) have been selected. There are 

about 300 queries and about 1,800,000 pages. They are 

grouped according to their frequencies as follows: 

 

 

 

 

a

     

and according to the total number of documents compared: 

Documents Queries 

<25 71 

25~40 81 

>40 142 

Total 294 

B. Criteria 

NDCG is a criterion to judge whether a kind of ranking is 

similar to another [13], where in this paper we compare all the 

methods with HRS. As the first document is of the most 

Frequency Query Pages 

<5000 182 450735 

5000~10000 65 448363 

>10000 47 884237 

Total 294 1783335 



importance and NDCG@1 is used as a common criterion in 

measuring ranking of web search, we are using it to measure 

all kinds of models. 

C. Baseline 

In this experiment, we use the random ranking as a 

baseline.  

D. Result 

a) NDCG of five models in the Section 5A (using 

Bradley Terry Model): From the Figure 2, the third 

model works best, and we will use it for the rest of  

our experiment. Surprisingly, even this model cannot 

compete with random ranking in terms of fitting 

human rating scores! For this phenomenon, we will 

try to give a discussion at the end of this paper. 

Moreover, we note that the frequency and number of 

documents related to a query does not affect the 

result significantly. So it is unnecessary to draw their 

influence here. 

b) Comparison of the three models in Section 5B: 

Figure 3 shows that even the best model, 

Bradley-Terry Model, is worse than random ranking 

in consistency with human rating scores. 

E. Inconsistency 

Figure 4&5 Total inconsistency of different groups 

 

As mentioned at the beginning of this paper, the other 

two parts of Hodge decomposition represent whether the users‟ 

behavior is consistent. Large inconsistency means that users 

have different views on whether one document is more 

relevant than another, and total inconsistency consists of the 

local and the global inconsistency. 

After examining all the queries, we found that only one 

of them has a global inconsistency larger than 0. So in the 

analysis followed, we will only consider local inconsistency 

measured by triangular curls. 

The experimental results in Figure 4 and 5 show that the 

inconsistency doesn‟t change with frequency or number of 

documents of a query at group level. 

F. Statistical Stability 

Here the query citizen bank is used as a sample to 

measure the statistical stability of ranking and inconsistency. 

There are about 30,000 pages in the dataset and bootstrap 

method is used here. We conducted resampling 1000 times 

and record the model‟s performance on the resampled sets. 

a) Number of Documents in the Largest Connected 

Subgraph 

Figure 6 Number of documents in a resampled set 

Figure 7 the Cumulated Distribution Function curve 

 

Figure 8 the new CDF curve after removing some sets  

 

In the original dataset, there are 23 documents in the 

largest component, and Figure 6 is the distribution of numbers 

of documents in the result of resampled sets. It proves that for 

most instances (86%), the number of documents in the largest 

connected component is stable and approximates the largest 

size. 

b) Ranking 

Since we are using NDCG@1 to measure the 

performance of our model, which is only affected by the 

document ranked best, we also use the highest ranked 

document to measure the stability of ranking here.  

Surprisingly, in the 1000 resampled dataset, the same 

document is always the highest. This means that our ranking 

algorithm is very stable. But the distribution of the score of 

this document is very strange (see the cumulated distribution 

function in Figure 7). It has a heavy tail, which is partly due to 

the absence of some documents. If we can get rid of those 

resampled sets whose largest connected subgraph is very small,  

the new CDF curve is as the Figure 8. The tail in this graph is 

much lighter. 

c) Inconsistency 



Figure 9 Stability of inconsistency 

 

Figure 10 Stability of inconsistency after removing some 

resampled sets 

 

Inconsistency is also very stable here, which has a 

standard deviation of 0.045 (its mean is 0.174). Yet it has a 

very heavy tail in the left: the 95% confidential interval is  

about [0.05, 0.243] (Figure 9). If we get rid of all the 

resampled sets that have a small largest connected subgraph, 

the tail will be much lighter (Figure10). After the filter ing of 

resampled set, the mean is 0.188, the standard deviation of 

inconsistencies is 0.03 and the interval is [0.132, 0.244]. 

 

VIII. FUTURE WORK 

Above we conducted experiments based on pairwise 

comparison models by Joachims, whose deviation from HRS 

is even larger than random rank in a sharp contrast to their 

original proposal. Why? A closer inspection reveals that the 

pairwise comparison models above tend to revert the orders of 

search engine, i.e. move up rapidly the documents that are 

ranked lower by search engine. In these pairwise comparison 

models, except for a small number of situations, only the 

documents ranked lower can be thought preferred by the user 

to the documents ranked higher. The direct consequence of 

this comparison is that the order of the documents is reversed. 

To improve its performance, we may modify the weights in 

Section 4A. Although it is hard to say a click at the second 

position means that the second is more preferred to the third, 

these is a probability that the second is better. If we can 

consider this fact, and admit that the comparison between a 

former clicked and latter non-clicked may happen, the model 

probably work better. We leave this aspect to further pursuit. 
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