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ABSTRACT
Subjective visual quality evaluation provides the ground-
truth and source of inspiration in building objective visual
quality metrics. Paired comparison is expected to yield
more reliable results; however, this is an expensive and time-
consuming process. In this paper, we propose a novel frame-
work ofHodgeRank on Random Graphs (HRRG) to achi-
eve efficient and reliable subjective Video Quality Assess-
ment (VQA). To address the challenge of a potentially large
number of combinations of videos to be assessed, the pro-
posed methodology does not require the participants to per-
form the complete comparison of all the paired videos. In-
stead, participants only need to perform a random sample of
all possible paired comparisons, which saves a great amount
of time and labor. In contrast to the traditional determinis-
tic incomplete block designs, our random design is not only
suitable for traditional laboratory and focus-group studies,
but also fit for crowdsourcing experiments on Internet where
the raters are distributive over Internet and it is hard to con-
trol with precise experimental designs.

Our contribution in this work is three-fold: 1) a HRRG
framework is proposed to quantify the quality of video; 2)
a new random design principle is investigated to conduct
paired comparison based on Erdös-Rényi random graph the-
ory; 3) Hodge decomposition is introduced to derive, from
incomplete and imbalanced data, quality scores of videos
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and inconsistency of participants’ judgments. We demon-
strate the effectiveness of the proposed framework on LIVE
Database. Equipped with random graph theory and HodgeR-
ank, our scheme has the following advantages over the tradi-
tional ones: 1) data collection is simple and easy to handle,
and thus is more suitable for crowdsourcing on Internet; 2)
workload on participants is lower and more flexible; 3) the
rating procedure is efficient, labor-saving, and more impor-
tantly, without jeopardizing the accuracy of the results.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems—Evaluation/methodology ; C.4
[Performance of Systems]: Design studies; H.1.2 [Models
and Principles]: User/Machine Systems—Human factors

General Terms
Performance, Experimentation, Human Factors

Keywords
Subjective Video Quality Assessment, HodgeRank, Random
Graphs, Persistence Homology

1. INTRODUCTION
With the rapid development and wide applications of dig-

ital media devices, the number of videos available is growing
at an explosive rate. The Video Quality Assessment (VQA)
issue, has drawn increasing attention from researchers dur-
ing recent years, and now plays an important role in a broad
range of applications, e.g. video enhancement, reconstruc-
tion, compression, communication, displaying, registration,
printing, watermarking, etc.

The existing methods of VQA can be divided into two
categories: subjective assessment and objective assessment.
In subjective viewing tests, video sequences are shown to
a group of viewers and then their opinions are recorded



and averaged to evaluate the quality of each video sequence.
This testing process is labor-intensive and time-consuming.
Therefore, there has been an increasing demand to build
intelligent, objective quality measurement models [33, 24,
27, 34, 15] to predict perceived video quality automatically.
Subjective experiments are often used to provide the ground-
truth and verification for objective models. In typical Mean
Opinion Score (MOS) test [1], individuals are asked to give a
rating from Bad to Excellent (Bad-1, Poor-2, Fair-3, Good-
4, and Excellent-5) to grade the quality of a video. However,
such a test may suffer the following problems [8]:

1. Unable to concretely define the concept of scale;
2. Dissimilar interpretations of the scale among users;
3. Difficult to verify whether a participant gives false rat-

ings either intentionally or carelessly.
Therefore, to address the problems above, recent investi-

gations turn to an alternative approach with paired compar-
ison [8]. In a paired comparison test, a participant is sim-
ply asked to compare two videos simultaneously, and vote
which one has the better quality based on his/her percep-
tion. Therefore individual decision process in paired com-
parison is simpler than in the typical MOS test, as the five-
scale rating is reduced to a dichotomous choice.

However, paired comparison approach leaves a heavier
burden on participants with a larger number of compar-
isons. For example, we are given 15 distorted versions of
1 reference video, i.e. 16 videos in total to be compared; by
adopting the MOS, it only needs to perform 15 judgments.
However, it requires

(
16
2

)
=120 comparisons if adopting the

complete design in existing paired comparison method [8].
When the number of videos to be judged is large, it may
be practically impossible, or at least unacceptable from the
viewpiont of the participants. If the testing time for a single
participant lasts too long [2], participants may become lack
of patience and thus may input random decisions carelessly
or intentionally. Therefore, how to make paired compari-
son method efficient and applicable in reality has become
an urgent issue in the VQA community.

To address this issue, we propose in this paper a novel
methodology which is not only suitable for traditional labo-
ratory and focus-group studies, but also fit for crowdsourcing
experiments, i.e. HodgeRank on Random Graphs.

Our rationale is that, since the number of videos to be
judged can be large, we do not ask a single participant to
perform the complete comparison of all the video pairs. In-
stead, every participant only needs to commit to a fraction of
all possible comparisons. Hence it raises a question: how to
choose the pairs that will be viewed by participants? There
has been a large literature in statistics on deterministic in-
complete block design [9]. However, these designs are not
suitable for crowdsourcing on Internet where the raters are
distributive over Internet with varied backgrounds and it is
hard to control with traditional experimental designs. To
meet this challenge, we propose a random design based on
Erdös-Rényi random graph theory [12], the simplest scheme
among other choices, where video pairs are independently
presented to a participant for rating. Equipped with a re-
cent new development of Hodge theoretical approach to sta-
tistical ranking [18], we can infer a reliable global ranking
from such data.

In HodgeRank, it shows that every edge flow representing
paired ranking can be resolved into two orthogonal compo-
nents, a gradient flow that represents the l2-optimal global

ranking and a divergence-free flow (cyclic) that measures
the validity of the global ranking obtained—if this is large,
it indicates that the data does not have a good global rank-
ing. This divergence-free flow can be further decomposed
orthogonally into a curl flow (locally cyclic) and a harmonic
flow (locally acyclic but globally cyclic); these provide infor-
mation on whether inconsistency in the ranking data arises
locally or globally. In applications, one should avoid large
global inconsistency which indicates some serious conflicts
of interests in ranking data. Through Erdös-Rényi random
graphs, we can efficiently control this kind of inconsistency.

We demonstrate the effectiveness and generality of the
proposed framework on LIVE Database [3]. Experimental
results show that the proposed framework is promising and
has potentially wide applications in subjective VQA.

Our contribution in this work is three-fold:
1. We propose a novel framework of HodgeRank with ran-

dom graphs to quantify the quality of video. The advantages
of our framework over the traditional ones are: 1) data col-
lection is simple, easy to handle, and thus is more suitable
for crowdsourcing on Internet; 2) workload on participants is
lower and more flexible; 3) the rating procedure is efficient,
labor-saving, and more importantly, without jeopardizing
the accuracy of the results. As we shall see later, under
such models the O(n2) complete paired comparisons can be

reduced to O(n3/2), with a lower bound of O(n log n).
2. A new random design principle is investigated to con-

duct paired comparison based on Erdös-Rényi random graph
theory;

3. Hodge decomposition on graphs is introduced to de-
rive, from incomplete (where every participant may only
give partial comparisons) and imbalanced (where different
video pairs may receive different number of comparisons)
data, quality scores of videos and the inconsistency of par-
ticipants’ judgments.

The remainder of this paper is organized as follows. Sec-
tion 2 contains a review of related works. Then Section
3 establishes the statistical ranking models based on the
Hodge decomposition theory, as well as the principles for
random sampling grounded in random graph theory. The
detailed experiments are demonstrated in Section 4. Sec-
tion 5 presents the conclusive remarks along with discussion
for future work.

2. RELATED WORK

2.1 Paired Comparison
Paired comparison generally refers to any process of com-

paring entities in pairs by raters to judge which entity in
each pair is preferred. The method of paired comparison
has been widely studied in social choice, psychology, statis-
tics, and computer science [32, 21, 9, 28, 5]. It has also
drawn increasing attention from the machine learning com-
munity as it may be adapted to classification problems [14,
13, 16].

Among various approaches to analyzing paired compari-
son results, a recent framework based on combinatorial Hodge
Theory [18] will be adopted in this paper, which is par-
ticularly suitable for the analysis of incomplete and imbal-
anced data distributed on a graph. Our work exploits such
a HodgeRank approach with random graph models in the
setting of subjective video quality assessment.



2.2 Crowdsourcing
With the advent of ubiquitous Internet access, it becomes

more and more popular to ask an Internet crowd to conduct
experiments on their personal computers [17, 6]. This new
distributed model advocates mass collaboration and the wis-
dom of the commons. The main difference between crowd-
sourcing and ordinary outsourcing is that a task is carried
out by an unspecific Internet crowd rather than a specific
group of people. For example, researchers can seek help
from the Internet crowd to conduct user studies on image
annotation [30, 26], document relevance [4], and document
evaluation [22].

Most recently, a crowdsourceable framework [8] has been
proposed for VQA which adopts a paired comparison ap-
proach. However, one major shortcoming of [8] lies in that
it makes a strong assumption that all paired data collected
are complete which is impossible for large number of videos.
In this paper, we present a new principle to deal with possi-
bly incomplete and imbalanced data distributed on random
graphs, which reduces the sampling complexity and is easy
to implement in crowsourcing VQA on internet.

2.3 Inconsistency Checking
After collecting the paired data from the participants,

there is a need to assess the consistency of judgment as not
every participant is trustworthy. They may input random
decisions carelessly or intentionally. Like traditional social
choice theory with complete and balanced data, the method
in [8] proposes Transitivity Satisfaction Rate (TSR) to mea-
sure the consistency of a participant’s judgments, which
checks all the transitive triangles such that A> B >C >A.
The TSR is defined as the number of judgment triplets (e.g.,
the three preference relations among A, B, and C) satisfy-
ing transitivity divided by the total number of triplets where
transitivity may apply; thus, the value of the TSR is always
between 0 and 1. If a participant’s judgments are consistent
throughout all the rounds of an experiment, the TSR will
be 1; otherwise it will be less than 1.

However, TSR is only based on complete and balanced
paired comparison data. When the paired data is incom-
plete with missing edges, HodgeRank will give us a general
treatment of inconsistency where both triangular and global
cycles are considered.

3. HODGERANK ON RANDOM GRAPHS
In this section, we propose a new random design principle

to conduct paired comparison and analyze data for a reliable
global ranking and inconsistency. Our sampling mechanism
exploits the Erdös-Rényi random graphs, a simple but effi-
cient approach in our study. Other random graphs can be
applied into the framework, which are left for future stud-
ies. HodgeRank is a particularly suitable tool to analyze
paired comparison data in such graphs by adapting to their
topological structures. We first explain how to develop a
statistical ranking model based on Hodge theory on general
graphs, and then describe the principles that the random
selection must adhere to.

3.1 HodgeRank on Graphs
Let ∧ = {1, ..., m} be a set of participants and V = {1, ..., n}

be the set of videos to be ranked. Paired comparison data is
collected as a function on ∧×V ×V , which is skew-symmetric
for each α, i.e. Y α

ij = −Y α
ji representing the degree that α

Figure 1: An example of paired comparison hyper-
graph for 5 videos.

prefers i to j. The simplest setting is the binary choice,
where1

Y α
ij =

{
1 if α prefers i to j,
−1 otherwise.

(1)

General Y α
ij can be used to represent paired comparison

grades, e.g. Y α
ij > 0 refers to the degree that α prefers

i to j and the vice versa Y α
ji = −Y α

ij < 0 measures the
dispreference degree [18]. In this paper we shall focus on
binary choice, to avoid the scale ambiguity issue discussed
early. However the theory can be applied to the general case.

Such paired comparison data can be represented by a di-
rected graph, or hypergraph, with n nodes, where each di-
rected edge between i and j refers the preference indicated
by Y α

ij . Figure 1 shows an illustration of such hypergraph.
A nonnegative weight function ω : ∧ × V × V −→ [0,∞)

is defined as,

ωα
ij =

{
1 if α makes a comparison for {i, j},
0 otherwise.

(2)

It may reflect the confidence level that a participant com-
pares {i, j} by taking different values, which is however not
pursued in this paper.

Following [18], the statistical rank aggregation problem is
looking for some global ranking score s : V → R such that

min
s∈R|V |

∑
i,j,α

ωα
ij(si − sj − Y α

ij )
2, (3)

which is equivalent to the following weighted least square
problem

min
s∈R|V |

∑
i,j

ωij(si − sj − Ŷij)
2, (4)

where Ŷij = (
∑

α ωα
ijY

α
ij )/(

∑
α ωα

ij) and ωij =
∑

α ωα
ij .

A graph structure arises naturally from ranking data as
follows. Let G = (V,E) be a paired ranking graph whose
vertex set is V , the set of videos to be ranked, and whose
edge set is E, the set of video pairs which receive some com-
parisons, i.e.

E =

{
{i, j}ε

(
V
2

)
|
∑
α

ωα
i,j > 0

}
. (5)

In classical statistical paired ranking theory, a paired rank-
ing is called complete if each participant α in ∧ gives a total
judgment of all videos in V ; otherwise it is called incomplete.
It is balanced if the paired comparison graph is k -regular
with equal weights ωij =

∑
α ωα

ij ≡ c for all {i, j} ∈ E;
otherwise it is called imbalanced. A complete and balanced
ranking induces a complete graph with equal weights on all

1If ties occur, we randomly split them into either preference.



edges. The existing paired comparison methods in VQA of-
ten assume complete and balanced data [8]. However, this
is an unrealistic assumption for real world data. For ex-
ample, in crowdsourcing, different video pairs might receive
different number of comparisons, which leads to different
edge weights ωij . Nevertheless, as to be shown below, it is
efficient to utilize a simple random design based on Erdös-
Rényi random graph theory where for each participant some
video pairs are chosen randomly. The HodgeRank approach
adopted in this paper enables us a unified scheme which can
deal with incomplete and imbalanced data.

The minimization problem (4) can be generalized to a
family of linear models in paired comparison methods [9].
To see this, we first rewrite (4) in another simpler form.
Assume that for each edge as video pair {i, j}, the number
of comparisons is nij , among which aij participants have a
preference on i over j and aji vice versa. So aij + aji = nij

if no tie occurs. Therefore, for each edge {i, j} ∈ E, we have
a preference probability estimated from data π̂ij = aij/nij .
With this definition, the problem (4) can be rewritten as

min
s∈R|V |

∑
{i,j}∈E

nij(si − sj − (2π̂ij − 1))2, (6)

since Ŷij = (aij − aji)/nij = 2π̂ij − 1 due to equation (2).
General linear models, which are firstly formulated by G.

Noether [25], assume that the true preference probability
can be fully decided by a linear scaling function on V , i.e.

πij = Prob{i is preferred over j} = F (s∗i − s∗j ), (7)

for some s∗ ∈ R|V |. F can be chosen as any symmetric
cumulated distributed function. When only an empirical
preference probability π̂ij is observed, we can map it to a
skew-symmetric function by inverse of F ,

Ŷij = F−1(π̂ij), (8)

where Ŷij = −Ŷji. However, in this case, one can only expect
that

Ŷij = s∗i − s∗j + εij , (9)

where εij accounts for the noise. The case in (6) takes a
linear F and is often called a uniform model. Below we
summarize some well known models which have been studied
extensively in literature [9].

1. Uniform model:

Ŷij = 2π̂ij − 1. (10)

2. Bradley-Terry model:

Ŷij = log
π̂ij

1− π̂ij
. (11)

3. Thurstone-Mosteller model:

Ŷij = F−1(π̂ij). (12)

where F is essentially the Gauss error function

F (x) =
1√
2π

∫ ∞

−x/[2σ2(1−ρ)]1/2
e−

1
2
t2dt. (13)

Note that unknown constants σ and ρ will only contribute
to a rescaling of the solution of (4).

4. Angular transform model:

Ŷij = arcsin(2π̂ij − 1). (14)

Figure 2: Hodge decomposition of paired rankings.

Different models will give different Ŷij from the same ob-
servation π̂ij , followed by the same weighted least square
problem (4) for the solution. Therefore, a deeper analysis of
problem (4) will disclose more properties about the ranking
problem.

HodgeRank on graph G = (V,E) provides us such a tool,
which characterizes the solution and residue of (4), adap-
tive to topological structures of G. The following theorem
adapted from [18] describes a decomposition of Ŷ , which can
be visualized as edge flows on graph G with direction i → j
if Ŷij > 0 and vice versa. Before the statement of the theo-
rem, we first define the triangle set of G as all the 3-cliques
in G.

T =

{
{i, j, k}ε

(
V
3

)
|{i, j}, {j, k}, {k, i}εE

}
. (15)

Equipped with T , graph G becomes an abstract simplicial
complex, the clique complex χ(G) = (V,E, T ).

Theorem 1 [Hodge Decomposition of Paired Rank-

ing] Let Ŷij be a paired comparison flow on graph G =

(V,E), i.e. Ŷij = −Ŷji for {i, j} ∈ E and 0 otherwise. There

is a unique decomposition of Ŷ satisfying

Ŷ = Ŷ (1) + Ŷ (2) + Ŷ (3), (16)

where

Ŷ
(1)
ij = ŝi − ŝj , for some ŝ ∈ RV , (17)

Ŷ
(2)
ij + Ŷ

(2)
jk + Ŷ

(2)
ki = 0, for each {i, j, k} ∈ T , (18)

∑
j∼i

ωijŶ
(2)
ij = 0, for each i ∈ V . (19)

The decomposition above is orthogonal under the following
inner product on R|E|, 〈u, v〉ω =

∑
{i,j}∈E ωijuijvij .

The following provides some remarks on the decomposi-
tion.

1. Ŷ
(1)
ij is a rank two skew-symmetric matrix and gives a

linear score function ŝ ∈ RV up to a translation constant.
We thus call Ŷ (1) a gradient flow since it is given by the
difference (discrete gradient) of the score function ŝ on graph
nodes,

Ŷ
(1)
ij = (δ0ŝ)(i, j) := ŝi − ŝj , (20)

where δ0 : RV → RE is a finite difference operator (matrix)
on G. ŝ can be chosen as any least square solution of (4),
where we often choose the minimal norm solution,

ŝ = Δ†
0δ

∗
0 Ŷ , (21)



where δ∗0 = δT0 W (W = diag(ωij)), Δ0 = δ∗0 · δ0 is the
unnormalized graph Laplacian defined by (Δ0)ii =

∑
j∼i ωij

and (Δ0)ij = −ωij , and (·)† is the Moore-Penrose (pseudo)
inverse. On a complete and balanced graph, (21) is reduced

to the ŝi = 1
n−1

∑
j �=i Ŷij , often called Borda Count as the

earliest preference aggregation rule in social choice [18].

2. Ŷ (2) satisfies two conditions (18) and (19), which are
called curl-free and divergence-free conditions respectively.
The former requires the triangular trace of Ŷ to be zero, on
every 3-clique in graph G; while the later requires the total
sum (inflow minus outflow) to be zero on each node of G.
These two conditions characterize a linear subspace which
is called harmonic flows.

3. The residue Ŷ (3) actually satisfies (19) but not (18).
In fact, it measures the amount of intrinsic (local) inconsis-

tancy in Ŷ characterized by the triangular trace. We often
call this component curl flow. In particular, the following
relative curl,

curlrijk =
|Ŷij + Ŷjk + Ŷki|

|Ŷij |+ |Ŷjk|+ |Ŷki|
∈ [0, 1], (22)

can be used to characterize triangular intransitivity; curlrijk =

1 iff {i, j, k} contains an intransitive triangle of Ŷ . Note that
computing the percentage of curlrijk = 1 is equivalent to cal-
culating the Transitivity Satisfaction Rate (TSR).

Figure 2 illustrates the Hodge decomposition for paired
comparison flows. The readers may refer to [18] for the
detail of theoretical development. Below we just make a few
comments on the application of HodgeRank in our setting.

1. To find a global rankng ŝ in (21), recent developments
of Spielman-Teng [31] and Koutis-Miller-Peng [23] give fast
(almost linear in |E|Poly(log |V |)) algorithms for this pur-
pose.

2. Inconsistency of Ŷ has two parts: global inconsis-
tency measured by harmonic flow Ŷ (2) and local inconsis-
tency measured by curls in Ŷ (3). Due to the orthogonal
decomposition, ‖Ŷ (2)‖2ω/‖Ŷ ‖2ω and ‖Ŷ (3)‖2ω/‖Ŷ ‖2ω provide
percentages of global and local inconsistencies, respectively.

3. A nontrivial harmonic component Ŷ (2) �= 0 implies the
fixed tournament issue, i.e. for any candidate i ∈ V , there is
a paired comparison design by removing some of the edges
in G = (V,E) such that i is the overall winner.

4. One can control the harmonic component by controlling
the topology of clique complex χ(G). In a loop-free clique
complex χ(G) where β1 = 0, harmonic component vanishes.
In this case, there are no cycles which traverse all the nodes,
e.g. 1>2>3>4> . . .>n>1. All the inconsistency will be
summarized in those triangular cycles, e.g. i>j>k>i.

Theorem 2. The linear space of harmonic flows has di-
mension equal to β1, i.e. the number of independent loops
in clique complex χ(G), which is called the first order Betti
number.

Fortunately, for Erdös-Rényi random graphs, it is not hard
to obtain graphs whose β1 are zero.

3.2 Erdös-Rényi Random Graphs
Erdös-Rényi random graphs G(n, p) start from n vertices

and draw their edges independently according to a fixed
probability p. Such random graph model is chosen to meet
the scenario that in crowdsourcing ranking raters and videos
come in an unspecified way. Among various models, Erdös-
Rényi random graph is the simplest one equivalent to I.I.D.

Figure 3: Persistence barcodes of Betti numbers.

sampling. Therefore, such a model is systematically studied
in the paper. Other random graph models (e.g. k-regular,
preference attachment) can also be developed with HodgeR-
ank on general graphs, which is however left to our future
pursuit.

However, to exploit Erdös-Rényi random graphs in crowd-
sourcing experimental designs, one has to meet some condi-
tions depending on our purpose:

1) The resulting graph should be connected, if we hope to
derive global scores for all videos in comparison;

2) The resulting graph should be loop-free in its clique com-
plex, if we hope to get rid of the global inconsistency in har-
monic component.

The two conditions can be easily satisfied for large Erdös-
Rényi random graphs.

Theorem 3. Let G(n, p) be the set of Erdös-Rényi ran-
dom graphs with n nodes and edge appearance probability
p. Then the following holds as n → ∞,

1. [Erdös-Rényi 1959] [12] if p 
 logn/n, then G(n, p) is
almost always connected; and if p ≺ logn/n then G(n, p) is
almost always disconnected;

2. [Kahle 2009] [19] if p = O(nα), with α < −1 or α >
−1/2, then the expected β1 of the clique complex χ(G(n, p))
is almost always equal to zero, i.e. loop-free.

These theories imply that when p is large enough, Erdös-
Rényi random graphs will meet the two conditions above
with high probability. In particular, almost linear O(n log n)

edges suffice to derive a global ranking, and with O(n3/2)
edges harmonic-free condition is met.

However, it remains a question how to ensure that a given
graph instance satisfies the two conditions? This issue is
important since in the future we might even develop further
experimental designs beyond merely Erdös-Rényi random
graphs, e.g., considering confidence levels on edges. Fortu-
nately, recent development in computational topology pro-
vides us such a tool, persistent homology.



3.3 Persistence Homology Barcodes
Persistence homology is firstly introduced by [11] in com-

putational topology, and later developed by [35] into an al-
gebraic theory. Roughly speaking, it provides us an online
algorithm to compute the Betti numbers when simplexes
enter in a sequential way. For more details of persistent ho-
mology, readers may refer to the surveys in [7, 10]. Here we
just discuss in brief the application of persistent homology
to monitor the number of connected components (β0) and
loops (β1) .

To use persistent homology, we will put the nodes, edges
and triangles in χ(G) = (V,E, T ) in a linear order, such that
a node appears no later than its associated edge and an edge
no later than its associated triangle. For example, in ran-
dom graph designs for video comparisons, we can assume the
videos (nodes) come in a certain order (e.g. production time,
or all created in the same time), after that pairs of videos
(edges) are presented to us independently one by one. A
triangle {i, j, k} is created whenever all the three associated
edges appeared. Persistent homology may return the evolu-
tion of the number of connected components (β0) and the
number of independent loops (β1) at each time when a new
node/edge/triangle is born. Figure 3 illustrates a birth pro-
cess of clique complex and its associated Betti numbers (β0

and β1) that are computed and plotted by JPlex [29].
With the aid of persistent homology, one can compute the

mean Betti numbers for random graphs. For example, with
16 videos (n = 16), the expected β0 and β1 (with 100 random
graphs) are plotted in Figure 4(a). Note that with p > 0.7
with high probability the expected β1 for G(16, p) equals to
0. This phase transition probability will drop as the number
of nodes increases, and this can be seen from the cases of
n = 32 (p > 0.5) and n = 64 (p > 0.4), as plotted in Figure
4(b) and (c). As [19] shows, this probability asymptotically

drops at the rate p ∼ n−1/2.

4. EXPERIMENTS
In this section, we systematically evaluate the effectiveness

of our proposed HRRG method for subjective VQA. First,
the dataset used for the experiments is briefly explained, fol-
lowed by the experimental design of obtaining paired com-
parison data. Next, a procedure is presented to obtain the
ground-truth as a set of complete data. Finally, the results
with incomplete data are demonstrated with three random
sampling schemes.

4.1 Dataset
We adopt the publicly-accessible database for VQA, LIVE

Database [3], which includes 10 different reference videos
and 15 distorted versions of each reference, for a total of 160
videos. The distorted videos are obtained using four differ-
ent distortion processes—MPEG-2 compression (4 distorted
videos per reference), H.264 compression (4 distorted videos
per reference), lossy transmission of H.264 compressed bit-
streams through simulated IP networks (3 distorted videos
per reference) and lossy transmission of H.264 compressed
bitstreams through simulated wireless networks (4 distorted
videos per reference). Nine out of ten videos are 10 seconds
long, while the 10th video is 8.68 seconds long. Seven se-
quences have a frame rate of 25 frames per second, while the
remaining three have a frame rate of 50 frames per second.
The videos are diverse in content and include a wide range

Figure 4: Average Betti numbers of random graphs.

of objects, textures, motions and camera movements. In
subjective testing, the observers are asked to provide their
opinion of video quality on a continuous scale. In other
words, the MOS is adopted to analyze the perceived quality
of each video. Note that we do not use the subjective scores
in LIVE [3], we only borrow the video sources it provides.
Different from LIVE [3], we propose to assess video quality
with paired comparison.

4.2 Paired Data Collection
We now present our experiment design for collecting the

set of paired data. The complete comparisons of this video
database will require 10 × (

16
2

)
= 1200 decisions. Consider-

ing that the order of presentation may bias final results, we
need to balance them out at the design stage. A complete
balancing-out would be achieved by repeating the whole ex-
periment with the order that each pair reversed. However,
this is too expensive and time-consuming. Therefore, our
playlists will be based on a random permutation of 1200 test
pairs with a random within-pair order. Moreover, we hope
to avoid the situation with successive pairs of test videos
from the same reference, to avoid contextual and memory
effects in their judgments of quality. For this purpose, after
the playlist is constructed, our program would go over the
entire playlist to determine if adjacent pairs correspond to
the same reference. If such a case is detected, one of the
pairs would be swapped with another randomly chosen pair
in the playlist which does not suffer from the same problem.

A benefit of such a random presentation scheme is to make
it impossible for participants to cheat our system by in-
putting “smart” answers. This is because the order of each
pair and the order within each pair are totally random in



Figure 5: Global ranking scores and inconsistency distribution of 32 complete rounds on Live Database [3].
The Angular transform model has the smallest mean inconsistency at 0.1611 shown by the purple line.

each experiment, and the order is not disclosed to the par-
ticipants before the test.

Before starting the experiment, each participant is briefed
about the goal of the experiment and given a short training
session to familiarize themselves with the testing procedure.
In the testing process, videos are displayed at their native
resolutions to prevent any distortions due to scaling opera-
tions performed by software or hardware. As each compar-
ison takes approximately 30-40 seconds, the total time for
each subjective experiment will vary from 10 up to 14 hours.
According to [2], the execution time of one experiment by
each observer should not exceed 30 minutes. Thus, we split
the playlist into 30 sessions where each session consists of
40 video pairs and thus will not exceed a half hour. Finally
209 random observers, each of whom perform varied number
of comparisons, provide 41800 paired comparisons in total.
These paired comparisons can compose 32 rounds of com-
plete comparisons. Because each round needs 1200 paired
comparisons, the total number of comparisons for 32 rounds
is 38400 = 32× 1200.

The results of paired comparisons can be collectively sum-
marized by Y α,r

ij , where for each reference video r = 1, . . . , 10,
Y α,r
ij follows the same definition in Section 3.1 with α =

1, . . . , 32 for round (group) index. Note that the experi-
ments below will run in the same way for each reference
video, whence the index r will be omitted when we don’t
need to specify it. For each reference video, such paired
comparison data can be represented by a directed graph (or
hypergraph) with 16 nodes, and between every pair of nodes
there are 32 directed edges indicating the preferences.

4.3 Experimental Results

4.3.1 Ground-truth
The purpose of this paper is to show that with some ran-

dom samplings, incomplete data could provide good approx-
imation of the results from the complete data. In other
words, HodgeRank with incomplete data could well approx-
imate the global ranking derived from complete data. There-
fore, results obtained from 32 rounds of complete compar-
isons are treated as the ground-truth in our experiment.
HodgeRank with such a complete and balanced data will
be reduced to the Borda Count following (21). The total
inconsistency is measured by

Inc.Total(Ŷ) =
‖Ŷ − Ŷ (1)‖2ω

‖Ŷ ‖2ω
=

∑
ij ωij(ŝi − ŝj − Ŷij)

2∑
ij ωij Ŷ 2

ij

,

(23)

which equals to the sum of ‖Ŷ (2)‖2ω/‖Ŷ ‖2ω (global/harmonic

inconsistency) and ‖Ŷ (3)‖2ω/‖Ŷ ‖2ω‖ (local/curl inconsistency).
We also define the harmonic percentage as the ratio

Percentage.Harm(Ŷ) =
‖Ŷ (2)‖2ω

Inc.Total(Ŷ )
. (24)

With complete and balanced data, global/harmonic incon-
sistency vanishes according to Section 3.1.

Global ranking scores ŝ for each reference and inconsis-
tency distribution are given in Figure 5, where “ref” repre-
sents 10 different reference videos in Live Database [3] and
“hrc1-15” are 15 distorted versions of each reference. It can



be seen that Hodge decomposition with Angular transform
model has the smallest mean inconsistency. Therefore, we
will adopt this model in the following experiments for in-
complete data.

4.3.2 Results of Incomplete Data
In the following experiments, we adopt the Kendall rank

correlation (τ ) coefficient [20] to measure the rank corre-
lation between global rankings from complete and incom-
plete data. Given two global scores xi and yi on V , define
Xij = sign(xi − xj) and Yij = sign(yi − yj). Then Kendall’s
τ coefficient is defined as

τ (x, y) =

∑
{i,j}∈E XijYij√∑
X2

ij ·
∑

Yij
2
, (25)

which measures the percentage of concordance (XijYij > 0)
minus the percentage of mismatch (XijYij < 0) between two
rankings. The coefficient is normalized such that two identi-
cal rankings produce a correlation of +1, while a ranking and
its perfect inverse gives a −1, and the expected correlation
of two random rankings is 0.

As illustrated in Section 3.3 Figure 4, for n = 16, if more
than 25% random edges are added, the resulting graph is
connected with high probability, and with more than 70%
edges, the resulting clique complex is loop-free with high
probability. Connectivity is necessary if we would like to
derive a global score on all videos. The existence of har-
monic ranking may jeopardize the global score by incurring
the fixed tournament issue. To illustrate this point, Fig-
ure 6 shows the Kendall’s τ , total inconsistency, harmonic
inconsistency, and percentage of harmonic over total incon-
sistency, against the edge sampling percentage ranging from
20% to 80%. In this example, harmonic inconsistency ac-
counts for more than 50% total inconsistency before 25%
edges, and rapidly drops to zero after 70% edges (where
Kendall’s τ coefficient goes beyond 0.9 and total inconsis-
tency stabilizes below 0.2).

Therefore in the following experiments, to avoid the possi-
ble issue of harmonic ranking, we choose an upper bound for
the thresholding probability above, i.e. 75% (120 × 0.75 =
90) for n = 16 node graphs. In this case, with high probabil-
ity the total inconsistency will be fully characterized by the
local inconsistency. For general large Erdös-Rényi graphs,
we can choose any upper bound for p = O(n−1/2) with

O(n3/2) edges. Note that such a choice is only a sufficient
condition to avoid harmonic ranking. In the cases where har-
monic inconsistency is small enough, one can choose much
smaller thresholding probability, up to p = O(n−1 log n)
with almost linear O(n log n) edges which is the lower bound
to guarantee connectivity.

In the following, we study three random sampling schemes,
guided by this principle from Erdös-Rényi random graphs.
These sampling schemes exhibit an increasing order of free-
dom, which is thus increasingly adaptive to crowdsourcing
applications.

The following sampling schemes are the same for each r
of the reference video. The first sampling scheme, called
here group balanced random sampling, draws 75% random
pairs from each round α ∈ {1, . . . , 32} of complete compar-
isons. Note that each group thus has the same number of
pairs. The second scheme, called here group imbalanced ran-

Figure 6: Inconsistency decomposition and
Kendall’s τ to ground truth, versus percentage
of edge samples. Results are averaged over 10
reference videos with 100 bootstrapped samples.

Table 1: Kendall’s τ and inconsistency of Exp-I.
min mean max std

Kendall’s τ 0.9567 0.9716 0.9917 0.0058
Inconsistency 0.1643 0.1740 0.1817 0.0032

dom sampling, draws 75% random paired comparisons from
the whole collection over α = 1, . . . , 32, with some groups
covering possibly more than 75% of edges while others less.
The third one, called here sufficient-coverage random sam-
pling, simply draws arbitrary number of paired comparisons
from the whole collection, with the only requirement that at
least 75% distinct pairs are covered. We will examine the
average performance of each sampling. Other complicated
sampling schemes are possible. However, we focus on the
three schemes here due to their simplicity and thus can be
regarded as a foundation for further developments.

All the three sampling schemes above could guarantee that
75% distinct pairs of 16 videos are compared, whence with
high probability the harmonic ranking induced from such
data vanishes.

Exp-I: group balanced random sampling

The first sampling scheme is studied here. For each of
the 10 reference videos, and for each of the 32 groups of
complete paired comparisons, 75% (i.e. 90) video pairs are
drawn independently without replacement from 120 edges.
The name, group balanced random sampling, refers to the
fact that each group contains the same number of pairs.
Then, HodgeRank (4) is applied to obtain quality scores
of each video from this incomplete dataset. To ensure the
statistical stability, we run the random sampling process 100
times.

Table 1 shows the mean Kendall’s τ and inconsistency
results of 100 times achieved by this scheme. From these
experimental results, we make the following comments.

First, it is shown that this sampling approach could pro-
vide good approximate results of the complete data, with an
average Kendall’s τ of 0.9716.

Second, we observe that the mean inconsistency of this



Table 2: Kendall’s τ and inconsistency of Exp-II.
min mean max std

Kendall’s τ 0.9550 0.9699 0.9867 0.0066
Inconsistency 0.1661 0.1734 0.1812 0.0031

sampling scheme (0.1740) is only slightly higher than the
complete data (0.1611), which is within our acceptable level.

In a summary, these results show that the random sam-
pling mechanism based on random graph theory is good in
providing approximations of complete data via HodgeRank.

Exp-II: group imbalanced random sampling

Different from Exp-I, for each of the 10 reference videos, in
this experiment we randomly select 75% of all paired com-
parisons, i.e. 32 × 120 × 0.75 = 2880 comparisons. The
number of pairs selected from each of the 32 rounds in this
case might be different, where the name, group imbalanced
random sampling, comes from. However, the total number
of the selected samples for each reference video is the same
to Exp-I.

Table 2 shows the mean Kendall’s τ -coefficients and in-
consistencies which indicates that this method could pro-
duce comparable results of Exp-I. The Kendall’s τ between
the ground-truth and the 100 random experiments has an
average of 0.9699 ± 0.0066 (in contrast to 0.9716 ± 0.0058
in Exp-I), while the average inconsistency is 0.1734±0.0031
(in contrast to 0.1740 ± 0.0032 in Exp-I).

Exp-III: sufficient-coverage random sampling

Our last experiment is to examine the performance un-
der sufficient-coverage random sampling settings. That is,
we randomly sample arbitrary number of pairs from each
of 32 rounds, with the only requirement that at least 75%
(90) edges of the graph are covered, i.e. at least a paired
comparison occurs on 75% (90) distinct video pairs. Due to
the multiple comparisons between a pair of videos, a natural
question is raised that how many percentage of samples are
needed to reach this 75% coverage. Similar to Erdös-Rényi
random graph theory on simple graphs, Figure 7 draws per-
centage of samples versus median number of edges (or dis-
tinct pairs) covered. As we can see, after 4% of samples on
this hypergraph, with high probability 75% distinct pairs
will be covered.

Moreover, Table 3 shows the mean Kendall’s τ -coefficient
and inconsistency of 100 random experiments. The high
average performance (0.9337 ± 0.0415 for Kendall’s τ and
0.2256 ± 0.0606 for inconsistency) shows the promising ap-
plication of this simple sampling scheme.

More complicated sampling schemes can be developed based
on various combinations of the prototype methods above.
Considering a more practical situation, the available time
that can be used for testing of each participant may be dis-
tinctly different. From this point of view, the number of
pairs (k) shown to participants can be adjusted according to
their time limit. That is, when a participant’s time is com-
paratively adequate, k can be set up as a larger value and
thus could provide opportunity for him/her to view more
pairs. But if he/she is under the pressure of limited time,
k should be smaller. In the extreme case for online crowd-

Figure 7: Percentage of samples versus number of
distinct pairs. For each percentage level, the ex-
periments are repeated 100 times and the median
number of distinct pairs with [0.25, 0.75] confidence
interval are plotted in the figure.

Table 3: Kendall’s τ and inconsistency of of Exp-III.
min mean max std

Kendall’s τ 0.8067 0.9337 0.9857 0.0415
Inconsistency 0.1623 0.2256 0.3777 0.0606

sourcing experiments, a complete random sampling scheme
can be used to select both participants and video pairs ran-
domly. As shown above, HodgeRank and random graph
theory can guide us to find the global ranking efficiently.

5. CONCLUSIONS
In this paper, we have proposed an efficient approach

called HodgeRank on Random Graphs towards subjec-
tive VQA. Our approach is based on random graph theory
and HodgeRank on graphs. In particular, we study three
random sampling schemes inspired by Erdös-Rényi random
graph theory, followed by HodgeRank to analyze the incom-
plete and imbalanced data collected in these ways. In these
sampling schemes, participants only need to perform a ran-
dom fraction of all possible paired comparisons. But with a
sufficiency of coverage satisfied, HodgeRank may give reli-
able results without jeopardizing the accuracy of the result.
In contrast to the traditional deterministic incomplete block
designs, our random design is not only suitable for tradi-
tional laboratory and focus-group studies, but also fit for
crowdsourcing experiments on Internet.

Additionally, we would like to point out here that incon-
sistencies are not necessarily due to untrustworthy inputs
of the participants but may very well be an inherent char-
acteristic of the data. In future, we plan to focus on this
problem to investigate into more sophisticated techniques
to detect the part of the inconsistencies only resulting from
the careless inputs of participants. Moreover, with the rapid
advent of technologies on rich user interface, the proposed
framework can be extended to assess users’ experience in in-
teractive applications with an online learning setting where
random graph models may take into account of sampling or-
der (e.g. preference attachment graphs), which will also be
part of our future work.
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