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Dimensionality Reduction

*Need to analyze large amounts multivariate data.
*Human Faces.
»Speech Waveforms.
*Global Climate patterns.
*Gene Distributions.

=Difficult to visualize data in dimensions just greater than three.

»Discover compact representations of high dimensional data.
*\isualization.
=Compression.
»Better Recognition.
*Probably meaningful dimensions.



Types of structure in multivariate data..

e Clusters.
— Density Estimation
Techniques.
 On or around low
Dimensional Manifolds

— Linear: Principal Component
Analysis

— NonLinear: ISOMAP, LLE,
Laplacian Eigenmap,
Diffusion Map, etc.




Concept of Manifolds £

« “A manifold is a topological space which
is locally Euclidean.”

* In general, any object which is nearly
"flat" on small scales is a manifold.

« Euclidean space is a simplest example
of a manifold.

« Concept of submanifold.

« Manifolds arise naturally whenever there
is a smooth variation of parameters [like
pose of the face in previous example]

« The dimension of a manifold is the
minimum integer number of co-ordinates
necessary to identify each point in that
manifold.

Concept of Dimensionality Reduction:

Embed data in a higher dimensional space to a lower dimensional manifold




Manifolds of Perception..Human Visual System

. Photoreceptors
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You never see the
same face twice.

'. Preceive constancy when
' raw sensory inputs are in flux..
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Generative Models in Manifold Learning
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Example: faces

e Given input:

- e 151 e
sequence of images

— varied in pose and lighting

* Desired output: i Q
— Intrinsic dimensionality: 3 g '

— Low-dimensional B
representation: ﬂ




Linear methods..

«  Principal Component Analysis (PCA)

Xpxn = [X1]X2]....| X N]
EigenValue Decomposition of X X1

A

>

> One Dimensional

Manifold



MultiDimensional Scaling..

* Here we are given pairwise distances instead of
the actual data points.

— First convert the pairwise distance matrix into the dot
oroduct matrix X X1

— After that same as PCA.

If we preserve the pairwise
distances do we preserve the
structure??
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How to get dot product matrix from
pairwise distance matrix?

di; = diy; + di; — 2dyidyjcos(e)
ki




MDS..

« MDS—origin as one of the points and
orientation arbitrary.

Centroid as origin

bi; =5 dz__zdzz—— Z dim ‘|‘—7 Yd

0—1 p=1




MDS is more general..

Instead of pairwise distances

we can use paiwise (C) B é

“dissimilarities”.

When the distances are >
Euclidean MDS is equivalent @

to PCA.

Eg. Face recognition, wine \ F
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Nonlinear Manifolds..

A

PCA and MDS see the Euclidean
distance

What is important is the geodesic distance

Unfold the manifold
o)




Intrinsic Description..

« To preserve
structure,
preserve the
geodesic

distance and not
the euclidean
distance.




Two Basic Geometric Embedding
Methods

 Tenenbaum et.al's Isomap Algorithm

— Global approach.

— On a low dimensional embedding
» Nearby points should be nearby.
« Farway points should be faraway.

 Roweis and Saul’'s Locally Linear Embedding Algorithm

— Local approach
* Nearby points nearby



Isomap

- Estimate the geodesic distance between
faraway points.

« For neighboring points Euclidean distance is a
good approximation to the geodesic distance.

« For farway points estimate the distance by a
series of short hops between neighboring points.

— Find shortest paths in a graph with edges connecting
neighboring data points

Once we have all
pairwise geodesic
distances use classical
metric MDS




Isomap - Algorithm

Determine the neighbors.

— All points in a fixed radius.

— K nearest neighbors

Construct a neighborhood graph.

— Each point is connected to the other if it is a K nearest neighbor.
— Edge Length equals the Euclidean distance
Compute the shortest paths between two nodes
— Floyd’s Algorithm

— Djkastra’s ALgorithm

Construct a lower dimensional embedding.

— Classical MDS
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Bottom loop articulation
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Residual Varia
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Locally Linear Embedding

manifold is a topological space which is locally Euclidean

Fit Locally , Think Globally




Fit Locally...

We expect each data point and its

‘ © () select neighbors neighbours to lie on or close
0 o i
0 Oreaee to a locally linear patch of the
. manifold.
0 s .
0 Xi. o Each point can be written as a
° 5 linear combination of its
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el ML = ‘ Y0 The weights choosen to
~ minimize the reconstruction
\ @ |° Error.
Reconstruct with
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Derivation on board



Important property...

* The weights that minimize the reconstruction
errors are invariant to rotation, rescaling and
translation of the data points.

— Invariance to translation is enforced by adding the
constraint that the weights sum to one.
 The same weights that reconstruct the
datapoints in D dimensions should
reconstruct it in the manifold in d
dimensions.

— The weights characterize the intrinsic geometric
properties of each neighborhood.



Think Globally...
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Map to embedded coordinates
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Summary..

ISOMAP

LLE

Do MDS on the geodesic distance
matrix.

Model local neighborhoods as
linear a patches and then embed
in a lower dimensional manifold.

Global approach

Local approach

Might not work for nonconvex
manifolds with holes

Nonconvex manifolds with holes

Extensions: Conformal & Isometric
ISOMAP

Extensions: Hessian Eigenmaps,
Laplacian Eigenmaps eftc.

Both needs manifold finely sampled.




Conformal & Isometric Embedding

Y d-dimensional domain in Euclidean space R”
f:Y—> RP smooth embedding

Recover Y and f based on a given set of z; in
RP.

f Is an isometric embedding if f preserves in-
finitesimal lengths and angles.

f is a conformal embedding if f preserves in-
finitesimal angles.

At every point y there is a scalar s(y) > 0 such
that the infintesimal vectors at y get magnified
in length by a factor s(y).



Isometric Mapping and C-
Isomap

* |sometric mapping
— Intrinsically flat manifold
— Invariants??
» Geodesic distances are reserved.
» Metric space under geodesic distance.
« Conformal Embedding
— Locally isometric upto a scale factor s(y)
— Estimate s(y) and rescale.
— C-lsomap
— Original data should be uniformly dense



Isometric Embedding
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C-lsomap

e C-Isomap is similar to Isomap, but the
graph weights are renormalised.

 Suitable when observed effect of parameter
variation is not constant over the manifold.




More Example: C-lsomap

« C-lsomap succeeds when
— Y is a convex subsets of Euclidean space
— Data are densely sampled, uniformly over Y
— F is a conformal embedding



Short Circuit Problem???

Unstable?
Only free parameter is
How many neighbours?

— How to choose
neighborhoods.

» Susceptible to short-circuit
errors if neighborhood is
larger than the folds in the
manifold.

« If small we get isolated
patches.
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* Isomap might not work on closed manifold,
manifolds with holes?

* Noisy Data?
« Sparse Data?

Develop Multiscale analysis
to solve some of those ‘?’.
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