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Example…



Dimensionality Reduction

Need to analyze large amounts multivariate data.
Human Faces.
Speech Waveforms.
Global Climate patterns.
Gene Distributions.

Difficult to visualize data in dimensions just greater than three.

Discover compact representations of high dimensional data.
Visualization.
Compression.
Better Recognition.
Probably meaningful dimensions.



Types of structure in multivariate data..

• Clusters.
– Density Estimation

Techniques.
• On or around low

Dimensional Manifolds
– Linear：Principal Component

Analysis
– NonLinear: ISOMAP, LLE,

Laplacian Eigenmap,
Diffusion Map, etc.



Concept of Manifolds
• “A manifold is a topological space which

is locally Euclidean.”
• In general, any object which is nearly

"flat" on small scales is a manifold.
• Euclidean space is a simplest example

of a manifold.
• Concept of submanifold.
• Manifolds arise naturally whenever there

is a smooth variation of parameters [like
pose of the face in previous example]

• The dimension of a manifold is the
minimum integer number of co-ordinates
necessary to identify each point in that
manifold.

Embed data in a higher dimensional space to a lower dimensional manifold

Concept of Dimensionality Reduction:



Manifolds of Perception..Human Visual System

You never see the 
same face twice.

Preceive constancy when
raw sensory inputs are in flux..



Generative Models in Manifold Learning



Example: faces



Linear methods..

• Principal Component Analysis (PCA)

One Dimensional
Manifold



MultiDimensional Scaling..

• Here we are given pairwise distances instead of
the actual data points.
– First convert the pairwise distance matrix into the dot

product matrix
– After that same as PCA.

If we preserve the pairwise
distances do we preserve the
structure??



Example of MDS…



How to get dot product matrix from
pairwise distance matrix?
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MDS..
• MDS—origin as one of the points and

orientation arbitrary.

Centroid as origin



MDS is more general..
• Instead of pairwise distances

we can use paiwise
“dissimilarities”.

• When the distances are
Euclidean MDS is equivalent
to PCA.

• Eg. Face recognition, wine
tasting

• Can get the significant
cognitive dimensions.



Nonlinear Manifolds..

A

Unfold the manifold

PCA and MDS see the Euclidean
distance

What is important is the geodesic distance



Intrinsic Description..

• To preserve
structure,
preserve the
geodesic
distance and not
the euclidean
distance.



Two Basic Geometric Embedding
Methods
• Tenenbaum et.al’s Isomap Algorithm

– Global approach.
– On a low dimensional embedding

• Nearby points should be nearby.
• Farway points should be faraway.

• Roweis and Saul’s Locally Linear Embedding Algorithm
– Local approach

• Nearby points nearby



Isomap
• Estimate the geodesic distance between

faraway points.
• For neighboring points Euclidean distance is a

good approximation to the geodesic distance.
• For farway points estimate the distance by a

series of short hops between neighboring points.
– Find shortest paths in a graph with edges connecting

neighboring data points

Once we have all
pairwise geodesic
distances use classical
metric MDS



Isomap - Algorithm
• Determine the neighbors.

– All points in a fixed radius.
– K nearest neighbors

•  Construct a neighborhood graph.
– Each point is connected to the other if it is a K nearest neighbor.
– Edge Length equals the Euclidean distance

• Compute the shortest paths between two nodes
– Floyd’s Algorithm
– Djkastra’s ALgorithm

• Construct a lower dimensional embedding.
– Classical MDS



Isomap







Residual Variance

Face Images
SwisRoll

Hand Images 2



Locally Linear Embedding
 manifold is a topological space which is locally Euclidean.”

Fit Locally , Think Globally



We expect each data point and its 
neighbours to lie on or close
 to a locally linear patch of the
manifold.

Each point can be written as a
linear combination of its
neighbors.
The weights choosen to
minimize the reconstruction
Error.

Derivation on board

Fit Locally…



Important property...
• The weights that minimize the reconstruction

errors are invariant to rotation, rescaling and
translation of the data points.
– Invariance to translation is enforced by adding the

constraint that the weights sum to one.
• The same weights that reconstruct the

datapoints in D dimensions should
reconstruct it in the manifold in d
dimensions.
– The weights characterize the intrinsic geometric

properties of each neighborhood.



Think Globally…









Grolliers Encyclopedia



Summary..

Extensions: Hessian Eigenmaps,
Laplacian Eigenmaps etc.

Extensions: Conformal & Isometric
ISOMAP

Nonconvex manifolds with holesMight not work for nonconvex
manifolds with holes

Local approachGlobal approach

Model local neighborhoods as
linear a patches and then embed
in a lower dimensional manifold.

Do MDS on the geodesic distance
matrix.

LLEISOMAP

Both needs manifold finely sampled.



Conformal & Isometric Embedding



Isometric Mapping and C-
Isomap
• Isometric mapping

– Intrinsically flat manifold
– Invariants??

• Geodesic distances are reserved.
• Metric space under geodesic distance.

• Conformal Embedding
– Locally isometric upto a scale factor s(y)
– Estimate s(y) and rescale.
– C-Isomap
– Original data should be uniformly dense





C-Isomap



More Example: C-Isomap

• C-Isomap succeeds when
– Y is a convex subsets of Euclidean space
– Data are densely sampled, uniformly over Y
– F is a conformal embedding



Short Circuit Problem???

Unstable?
Only free parameter is
How many neighbours?
– How to choose

neighborhoods.
• Susceptible to short-circuit

errors if neighborhood is
larger than the folds in the
manifold.

• If small we get isolated
patches.



???

• Isomap might not work on closed manifold,
manifolds with holes?

• Noisy Data?
• Sparse Data?

Develop Multiscale analysis
to solve some of those ‘?’.
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