Unfolding Manifolds: ISOMAP vs. LLE --.几何数据处理初步

姚 远 高等统计选讲 2009.10.14

Dimensionality Reduction

Need to analyze large amounts multivariate data.

- Human Faces.
- Speech Waveforms.
- •Global Climate patterns.
- Gene Distributions.
- Difficult to visualize data in dimensions just greater than three.
- Discover compact representations of high dimensional data.
 - Visualization.
 - Compression.
 - Better Recognition.
 - Probably meaningful dimensions.

Types of structure in multivariate data..

- Clusters.
 - Density Estimation Techniques.
- On or around low
 Dimensional Manifolds
 - Linear: Principal Component Analysis
 - NonLinear: ISOMAP, LLE, Laplacian Eigenmap, Diffusion Map, etc.

Concept of Manifolds

- "A manifold is a topological space which is locally Euclidean."
- In general, any object which is nearly "flat" on small scales is a manifold.
- Euclidean space is a simplest example of a manifold.
- Concept of submanifold.
- Manifolds arise naturally whenever there is a smooth variation of parameters [like pose of the face in previous example]
- The dimension of a manifold is the minimum integer number of co-ordinates necessary to identify each point in that manifold.

Concept of Dimensionality Reduction:

Embed data in a higher dimensional space to a lower dimensional manifold

Manifolds of Perception...Human Visual System

Generative Models in Manifold Learning

Example: faces

- Given input:
 - randomly ordered sequence of images

- varied in pose and lighting
- Desired output:
 - Intrinsic dimensionality: 3
 - Low-dimensional representation:

Linear methods..

• Principal Component Analysis (PCA)

MultiDimensional Scaling..

- Here we are given pairwise distances instead of the actual data points.
 - First convert the pairwise distance matrix into the dot product matrix XX^T
 - After that same as PCA.

If we preserve the pairwise distances do we preserve the structure??

Example of MDS...

How to get dot product matrix from pairwise distance matrix?

$$d_{ij}^{2} = d_{ki}^{2} + d_{kj}^{2} - 2d_{ki}d_{kj}\cos(\alpha)$$

$$d_{ki}$$

$$d_{ij}$$

$$d_{ij}$$

$$\alpha$$

$$d_{kj}$$

i

$$b_{ij} = \frac{1}{2}(d_{ki}^2 + d_{kj}^2 - d_{ij}^2)$$

MDS..

• MDS—origin as one of the points and orientation arbitrary.

Centroid as origin

$$b_{ij}^* = -\frac{1}{2} \left[d_{ij}^2 - \frac{1}{N} \sum_{l=1}^N d_{il}^2 - \frac{1}{N} \sum_{m=1}^N d_{mj}^2 + \frac{1}{N^2} \sum_{o=1}^N \sum_{p=1}^N d_{op}^2 \right]$$

MDS is more general..

- Instead of pairwise distances we can use paiwise "dissimilarities".
- When the distances are Euclidean MDS is equivalent to PCA.
- Eg. Face recognition, wine tasting
- Can get the significant cognitive dimensions.

Nonlinear Manifolds..

Intrinsic Description..

• To preserve structure, preserve the geodesic distance and not the euclidean distance.

Two Basic Geometric Embedding Methods

- Tenenbaum et.al's Isomap Algorithm
 - Global approach.
 - On a low dimensional embedding
 - Nearby points should be nearby.
 - Farway points should be faraway.
- Roweis and Saul's Locally Linear Embedding Algorithm
 - Local approach
 - Nearby points nearby

Isomap

- Estimate the geodesic distance between faraway points.
- For neighboring points Euclidean distance is a good approximation to the geodesic distance.
- For farway points estimate the distance by a series of short hops between neighboring points.
 - Find shortest paths in a graph with edges connecting neighboring data points

Once we have all pairwise geodesic distances use classical metric MDS

Isomap - Algorithm

- Determine the neighbors.
 - All points in a fixed radius.
 - K nearest neighbors
- Construct a neighborhood graph.
 - Each point is connected to the other if it is a K nearest neighbor.
 - Edge Length equals the Euclidean distance
- Compute the shortest paths between two nodes
 - Floyd's Algorithm
 - Djkastra's ALgorithm
- Construct a lower dimensional embedding.
 - Classical MDS

Isomap

в

Wrist rotation

Locally Linear Embedding

manifold is a topological space which is locally Euclidean

Fit Locally, Think Globally

Fit Locally...

We expect each data point and its neighbours to lie on or close to a locally linear patch of the manifold.

Each point can be written as a linear combination of its neighbors. The weights choosen to minimize the reconstruction Error.

 $min_W \| X_i - \sum_{j=1}^K W_{ij} X_j \|^2$ (1)

Derivation on board

Important property...

- The weights that minimize the reconstruction errors are invariant to rotation, rescaling and translation of the data points.
 - Invariance to translation is enforced by adding the constraint that the weights sum to one.
- The same weights that reconstruct the datapoints in D dimensions should reconstruct it in the manifold in d dimensions.
 - The weights characterize the intrinsic geometric properties of each neighborhood.

Think Globally...

Summary..

ISOMAP	LLE
Do MDS on the geodesic distance matrix.	Model local neighborhoods as linear a patches and then embed in a lower dimensional manifold.
Global approach	Local approach
Might not work for nonconvex manifolds with holes	Nonconvex manifolds with holes
Extensions: Conformal & Isometric ISOMAP	Extensions: Hessian Eigenmaps, Laplacian Eigenmaps etc.

Both needs manifold finely sampled.

Conformal & Isometric Embedding

Y d-dimensional domain in Euclidean space R^D f: $Y - > R^D$ smooth embedding Recover Y and f based on a given set of x_i in R^D .

f is an isometric embedding if f preserves infinitesimal lengths and angles.

f is a conformal embedding if f preserves infinitesimal angles.

At every point y there is a scalar s(y) > 0 such that the infintesimal vectors at y get magnified in length by a factor s(y).

Isometric Mapping and C-Isomap

- Isometric mapping
 - Intrinsically flat manifold
 - Invariants??
 - Geodesic distances are reserved.
 - Metric space under geodesic distance.
- Conformal Embedding
 - Locally isometric upto a scale factor s(y)
 - Estimate s(y) and rescale.
 - C-Isomap
 - Original data should be uniformly dense

C-Isomap

- C-Isomap is similar to Isomap, but the graph weights are renormalised.
- Suitable when observed effect of parameter variation is not constant over the manifold.

More Example: C-Isomap

- C-Isomap succeeds when
 - Y is a convex subsets of Euclidean space
 - Data are densely sampled, uniformly over Y
 - F is a conformal embedding

Short Circuit Problem???

Unstable?

Only free parameter is How many neighbours?

- How to choose neighborhoods.
 - Susceptible to short-circuit errors if neighborhood is larger than the folds in the manifold.
 - If small we get isolated patches.

???

- Isomap might not work on closed manifold, manifolds with holes?
- Noisy Data?
- Sparse Data?

Develop Multiscale analysis to solve some of those '?'.

Acknowledgement

• Slides stolen from Vikas C. Raykar, Vin de Silva, et al.