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Example…



Dimensionality Reduction

Need to analyze large amounts multivariate data.
Human Faces.
Speech Waveforms.
Global Climate patterns.
Gene Distributions.

Difficult to visualize data in dimensions just greater than three.

Discover compact representations of high dimensional data.
Visualization.
Compression.
Better Recognition.
Probably meaningful dimensions.



Types of structure in multivariate data..

• Clusters.
– Density Estimation

Techniques.
• On or around low

Dimensional Manifolds
– Linear：Principal Component

Analysis
– NonLinear: ISOMAP, LLE,

Laplacian Eigenmap,
Diffusion Map, etc.



Concept of Manifolds
• “A manifold is a topological space which

is locally Euclidean.”
• In general, any object which is nearly

"flat" on small scales is a manifold.
• Euclidean space is a simplest example

of a manifold.
• Concept of submanifold.
• Manifolds arise naturally whenever there

is a smooth variation of parameters [like
pose of the face in previous example]

• The dimension of a manifold is the
minimum integer number of co-ordinates
necessary to identify each point in that
manifold.

Embed data in a higher dimensional space to a lower dimensional manifold

Concept of Dimensionality Reduction:



Manifolds of Perception..Human Visual System

You never see the 
same face twice.

Preceive constancy when
raw sensory inputs are in flux..



Generative Models in Manifold Learning



Example: faces



Linear methods..

• Principal Component Analysis (PCA)

One Dimensional
Manifold



MultiDimensional Scaling..

• Here we are given pairwise distances instead of
the actual data points.
– First convert the pairwise distance matrix into the dot

product matrix
– After that same as PCA.

If we preserve the pairwise
distances do we preserve the
structure??



Example of MDS…



How to get dot product matrix from
pairwise distance matrix?
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MDS..
• MDS—origin as one of the points and

orientation arbitrary.

Centroid as origin



MDS is more general..
• Instead of pairwise distances

we can use paiwise
“dissimilarities”.

• When the distances are
Euclidean MDS is equivalent
to PCA.

• Eg. Face recognition, wine
tasting

• Can get the significant
cognitive dimensions.



Nonlinear Manifolds..

A

Unfold the manifold

PCA and MDS see the Euclidean
distance

What is important is the geodesic distance



Intrinsic Description..

• To preserve
structure,
preserve the
geodesic
distance and not
the euclidean
distance.



Two Basic Geometric Embedding
Methods
• Tenenbaum et.al’s Isomap Algorithm

– Global approach.
– On a low dimensional embedding

• Nearby points should be nearby.
• Farway points should be faraway.

• Roweis and Saul’s Locally Linear Embedding Algorithm
– Local approach

• Nearby points nearby



Isomap
• Estimate the geodesic distance between

faraway points.
• For neighboring points Euclidean distance is a

good approximation to the geodesic distance.
• For farway points estimate the distance by a

series of short hops between neighboring points.
– Find shortest paths in a graph with edges connecting

neighboring data points

Once we have all
pairwise geodesic
distances use classical
metric MDS



Isomap - Algorithm
• Determine the neighbors.

– All points in a fixed radius.
– K nearest neighbors

•  Construct a neighborhood graph.
– Each point is connected to the other if it is a K nearest neighbor.
– Edge Length equals the Euclidean distance

• Compute the shortest paths between two nodes
– Floyd’s Algorithm
– Djkastra’s ALgorithm

• Construct a lower dimensional embedding.
– Classical MDS



Isomap







Residual Variance

Face Images
SwisRoll

Hand Images 2



Locally Linear Embedding
 manifold is a topological space which is locally Euclidean.”

Fit Locally , Think Globally



We expect each data point and its 
neighbours to lie on or close
 to a locally linear patch of the
manifold.

Each point can be written as a
linear combination of its
neighbors.
The weights choosen to
minimize the reconstruction
Error.

Derivation on board

Fit Locally…



Important property...
• The weights that minimize the reconstruction

errors are invariant to rotation, rescaling and
translation of the data points.
– Invariance to translation is enforced by adding the

constraint that the weights sum to one.
• The same weights that reconstruct the

datapoints in D dimensions should
reconstruct it in the manifold in d
dimensions.
– The weights characterize the intrinsic geometric

properties of each neighborhood.



Think Globally…









Grolliers Encyclopedia



Summary..

Extensions: Hessian Eigenmaps,
Laplacian Eigenmaps etc.

Extensions: Conformal & Isometric
ISOMAP

Nonconvex manifolds with holesMight not work for nonconvex
manifolds with holes

Local approachGlobal approach

Model local neighborhoods as
linear a patches and then embed
in a lower dimensional manifold.

Do MDS on the geodesic distance
matrix.

LLEISOMAP

Both needs manifold finely sampled.



Conformal & Isometric Embedding



Isometric Mapping and C-
Isomap
• Isometric mapping

– Intrinsically flat manifold
– Invariants??

• Geodesic distances are reserved.
• Metric space under geodesic distance.

• Conformal Embedding
– Locally isometric upto a scale factor s(y)
– Estimate s(y) and rescale.
– C-Isomap
– Original data should be uniformly dense





C-Isomap



More Example: C-Isomap

• C-Isomap succeeds when
– Y is a convex subsets of Euclidean space
– Data are densely sampled, uniformly over Y
– F is a conformal embedding



Short Circuit Problem???

Unstable?
Only free parameter is
How many neighbours?
– How to choose

neighborhoods.
• Susceptible to short-circuit

errors if neighborhood is
larger than the folds in the
manifold.

• If small we get isolated
patches.



???

• Isomap might not work on closed manifold,
manifolds with holes?

• Noisy Data?
• Sparse Data?

Develop Multiscale analysis
to solve some of those ‘?’.
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