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Outline

Part I. Solving linear equations

least squares
regularization (ℓ2 penalty method)
regularization (smoothness)
regularization (sparsity ℓ1)

Part II. Imaging localized scatterers

Array imaging
Kirchhoff migration, least square imaging
Multiple signal classification (MUSIC)
Singular value decomposition and ℓ1 based method
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Part I. Solving linear equations – from least square to compressed
sensing
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Solving linear equations

Model:
y = Ax + n (1)

y is data, x is model image, n is noise
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Solving linear equations – least square

n > m (over-determined): Find minimizer of J(x) = ‖Ax − y‖2
2

Solve ∇J(x) = A∗(Ax − y) = 0 for minimizer

If A∗A is invertible, x̂ = A†y and A† = (A∗A)−1A∗ (pseudo-inverse)
If A∗A is not invertible (ker A 6= 0), x̂ = A†y + z, ∀z ∈ ker A
Calculate A† from singular value decomposition (SVD)

n < m (under-determined): infinitely many solutions if any

least square gives least norm solution

x̂ = A†y, A† = A∗(AA∗)−1
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Solving linear equations – ℓ2 penalty

Motivation: consider n = m and (1) has solution

x̂ = A−1y = x + A−1n

bad when A has small singular values

Assume ‖x‖2 small

min ‖x‖2 s.t. ‖Ax − y‖2 ≤ ε (2)

(2) has several equivalent forms

min ‖Ax− y‖2 s.t. ‖x‖2 ≤ ε′

min ‖x‖2
2 + λ‖Ax− y‖2

2

min ‖Ax − y‖2
2 + λ′‖x‖2

2

Solution to Lagrangian form of (2) is x̂ = (A∗A + λI )−1A∗y
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Solving linear equations – smooth solution

Assume ‖Bx‖2 small: variation of ℓ2 penalty

diag(B , 0) = 1, diag(B , 1) = −1, diag(B , k) = 0, k 6= 0, 1

Bx is finite difference approximation to derivative

Tikhonov regularization in image processing and Hodrick-Prescott
filtering in time series analysis

Solution is given by x̂ = (A∗A + λB∗B)−1A∗y

View point from numerical linear algebra: add extra term (λI or
λB∗B) to make A∗A well conditioned to take inverse

A Chai (Stanford) Compressed sensing and imaging MATH00112230 7 / 38



Solving linear equations – ℓ1 penalty

Assume under-determined A and sparse structure of x, i.e.
‖x‖0 = | supp x| = |{i : xi 6= 0}| small

When A = I , choose x s.t.

min ‖x‖0 s.t. ‖Ax− y‖2 ≤ σ (3)

When A 6= I , very difficult to identify nonzeros in x

Relaxation to ℓ1 norm of x: Basis Pursuit Denoising (BPD) or Least
Angle Shrinkage and Selector Operator (LASSO)

min ‖x‖1 s.t. ‖Ax− y‖2 ≤ σ (4)

Solution is given by soft-threshold

x̂i = Sτyi =

{
yi − τ sgn yi , |yi | ≥ τ

0, otherwise.
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Solving linear equations – connection with uncertainty

principle

X is transformed x (e.g. in frequency domain), Nt = | supp x|,
Nω = | supp X |

NtNω ≥ m, Nt + Nω ≥ 2
√

m (Donoho & Stark 1989)
Nt + Nω ≥ m + 1 when m is prime (Tao 2003)

Let A = [I ,F ] where m = 2n and F is normalized Fourier matrix;
T = supp x ∩ {1, 2, . . . , n},W = supp x ∩ {n + 1, n + 2, . . . , 2n}.
Assume there is no noise (Donoho & Huo 1999)

|T | + |W | <
√

n, solution of (3) is unique and equals x

|T | + |W | <
√

n/2, solution of (4) is unique and equals x

∃n,
√

n ∈ Z and |T | + |W | =
√

n, solutions of (3) and (4) are not
unique

if |T | small, no small number of frequencies can recover x
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Solving linear equations – compressed sensing

A = I : soft-threshold

A = [I ,F ]: uncertain principle

A = [Φ1,Φ2]: mutual incoherence
µ = max{|〈φ1, φ2〉|, φ1 ∈ Φ1, φ2 ∈ Φ2} and ‖x‖0 < (1 + 1/µ)/2 (also
true for sparse solution under general A)

Compressed sensing: sample enough data

Counting faces of random polytope (Donoho 2004, Donoho & Tanner
2009)
Restricted Isometry Property (RIP) (Candés & Tao 2004-2005)

Matrix A is called to satisfy RIP-S if for any subset T ∈ {1, 2, . . . , m}, |T | = S ,
there exists 0 < δS < 1 such that

(1 − δS)‖c‖2
2 ≤ ‖ATc‖2

2 ≤ (1 + δS)‖c‖2
2

for any c ∈ R
S
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Solving linear equations – compressed sensing

Three kinds of matrices are proven to satisfy exact reconstruction using
(4) with high probability

uniformly randomly sampled Fourier matrix

Choose n ≥ 22(1 + δ)‖x‖0 log m rows uniformly at random from Fourier
matrix F . Then (4) recovers x with probability p = 1 −O(m−δ)

Gaussian ensemble: Aij ’s are iid Gaussian random variables up to
normalization constant

If entries of A are sampled from N (0, 1/n) and S ≤ Cn/ log(m/n), then
reconstruction succeeds with probability p = 1 −O(e−γm) for some γ > 0

Bernoulli ensemble: Aij ’s are iid Bernoulli random variables up to
normalization constant

Same as Gaussian ensemble with A sampled from symmetric Bernoulli
±1/

√
n
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Solving linear equations – compressed sensing

Deterministic exact and stability results are proven under RIP

Assume there is no noise and x is S sparse and δ2S + δ3S < 1. Then
solving (4) gives exact solution.

Consider problem (1). If δ3S + 3δ4S < 2, then solution x⋆ to (4) recovers
original solution x satisfying ‖x‖0 ≤ S up to

‖x⋆ − x‖2 ≤ CSσ

If xS is the approximation to any x by keeping only the first S largest
values. Then solution x⋆ to (4) gives approximation

‖x⋆ − x‖2 ≤ CSσ + C ′
S

‖x − xS‖1√
S

A Chai (Stanford) Compressed sensing and imaging MATH00112230 12 / 38



Solving linear equations – numerical solution

Off-shelf: any optimization package

linear programming for equality constraint
second order cone programming for inequality constraint
semi-definite programming for higher order problem

“easy” to implement but extremely inefficient for large scale problem
(good for problem of size less than 100)

iterative methods:

Iterative threshold method (IST)
Breigman, linearized Breigman
Message passing method

straightforward to implement, fast, and efficient for large scale
problem

A Chai (Stanford) Compressed sensing and imaging MATH00112230 13 / 38



Solving linear equations – application

error correction in communication

mathematical image processing (motion correction)

medical imaging (MRI to reduce treatment time expense)

statistics (feature selection)

a lot more, see list at http://dsp.rice.edu/cs/
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Part II. Imaging localized scatterers
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Overview – questions and methods

Compare several imaging methods regarding resolution and stability,
i.e. loss of resolution when signal to noise ratio (SNR) is low at
imaging array or medium between array and targets is inhomogeneous

Methods to be compared are

KM: travel time migration imaging
LSQ: least square imaging

MUSIC: MUlitiple SIgnal Classification
CS: ℓ1 minimization with or without SVD
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Array imaging – schematic

Configuration: range is 100λ0; array size is between 100λ0 and 200λ0 with
transducers half of wavelength apart; target area is box of length 20λ0

with half of wavelength resolution
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Array imaging – formulation

Time harmonic Green function in homogeneous medium with speed c0 is

Ĝ0(x, y, ω) =
e
i ω

c0
|x−y|

4π|x − y|

Response at each sensor xr on the array excited by the signal emitted from
xs and reflected by scatters of reflectivity ρj , j = 1, . . . ,M is given by

Π̂(xr , xs , ω) =

M∑

j=1

ρj Ĝ0(xr , yj , ω)Ĝ0(xs , yj , ω).

Let ĝ0(y, ω) = [Ĝ0(xr , y, ω)] and with excitation f(ω),

[(ĝT
0 (y, ω)f (ω))ĝ0(y, ω)]ρ = Π̂(ω)f(ω)
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Array imaging – formulation

Rewriting by letting Af (ω) = [(ĝT
0 (y, ω)f (ω))ĝ0(y, ω)], reflectivity vector

ρ satisfies
Af (ω)ρ = Π̂(ω)f(ω) (5)

Imaging is inverse problem which needs to solve (5) (with or without
subsampling)
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Kirchhoff migration and least square imaging

LSQ: min ‖ρ‖2 s.t. Af (ω)ρ = Π̂(ω)f(ω) and solution is given by
ρ̂LSQ = A†(ω)Π̂(ω)f(ω)

KM: approximate solution ρKM = AH
f (ω)Π̂(ω)f(ω)

KM only gives the location of scatterers; LSQ computes reflectivity
of scatterers due to additional terms in A† besides A∗.
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Multiple Signal Classification (MUSIC)

MUSIC assumes data are formed by some known basis. In imaging, it
means data are formed by Green function vectors ĝ0(y, ω). Let SVD of
response matrix Π̂(ω) be Π̂(ω) = UΣV ∗ =

∑L
j=1 σjujv

H
j

Can show L ≈ M,uj =
ĝ0(ykj

,ω)

‖ĝ0(ykj
,ω)‖2

, vj = uj , σj = ρj‖ĝ0(ykj
, ω)‖2

2

Assume ĝ0(y, ω)’s are normalized, u∗
k ĝ0(y

S , ω) has peak when yS is
close to a scatterer

MUSIC imaging is given by

ρ̂MUSIC (yS ) =
minyS GMUSIC (yS )

GMUSIC (yS )
,

where
GMUSIC (yS ) = ‖PN ĝ0(y

S , ω)‖2
2

and

PN ĝ0(y
S , ω) =

M∑

j=1

(
uH

j ĝ0(y
S , ω)

)
uj − ĝ0(y

S , ω)
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Multiple Signal Classification (MUSIC)

MUSIC only gives location of scatterers in terms of the peak values of the
functional. Solving resulting overdetermined least square problem by
columns of Af (ω) corresponding to large MUSIC functional
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Imaging with ℓ1 optimization

Solution ρ is sparse

Application of compressed sensing directly

min ‖ρ‖1 s.t. ΦAf (ω)ρ = ΦΠ̂(ω)f(ω)

Φ is uniform random sampling operator

Accurate results subject to high probability of success and hard to
determine the sampling ratio

Physical experiment by group in Georgia Tech (Gurbuz, McClellan,
Scott 2009); theoretical analysis by (Fannjiang 2009)
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Imaging with SVD and ℓ1 optimization

Implementation of random sampling, amount of subsampling,
flexibility of illumination (i.e. f(ω))

SVD of response matrix is powerful to identify number of scatterers
and robust to noise

Green function vectors ĝ0(y, ω) are asymptotically orthogonal, i.e.

ĝH
0 (yi , ω)ĝ0(yj , ω) =

{
‖ĝ0(yi , ω)‖2

2, if i = j ,

0 (approximately), otherwise,

provided λ ≪ ‖y − yS‖2 ≪ L
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Imaging with SVD and ℓ1 optimization

Use SVD to reduce dimension (subsample) of data

Project to space spanned by vectors according to nonzero singular
values

u∗
k(ω)Af (ω)ρ = u∗

k(ω)Π̂(ω)f(ω), k = 1, . . . ,M

Apply illumination vectors vk(ω)

u∗
k(ω)Avk(ω)(ω)ρ = u∗

k(ω)Π̂(ω)vk(ω) = σk , k = 1, . . . ,M

Rewrite new linear system as Bρ = b

Bij = (ĝT
0 (yj , ω)vi (ω))ĝ∗

0 (yj , ω)ui (ω) =
(
u∗

i ĝ0(yj , ω)
)2

b = [σ1, · · · , σM ]T
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Imaging with SVD and ℓ1 optimization

Lower-bound: reduce dimension of data to minimum

Optimality: use singular vector as illumination

Guaranteed solution in specific regime (λ ≪ ‖y − yS‖2 ≪ L):

B = [I + E S ] is full row-rank and contains an identity matrix up to
normalization
If ‖E‖1 ≤ ε and ‖S‖1 ≤ 1 − ε, then solving

min ‖ρ‖1 s.t. Bρ = b

gives the exact solution
Proof relies on the fact that the solution to (4) is unique if there exists
vector w such that inner product of w and any column vector in B is
no greater than 1 (Candés & Tao 2006)
No specific numerical method is need since problem size becomes small
and B is approximately sparse
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Imaging with additive noise

Use inequality constraint ‖Af (ω)ρ − Π̂(ω)f(ω)‖2 ≤ ε in LSQ and CS

Noise is generated on imaging array in homogeneous medium and
only affect high frequency data, i.e. space corresponding to
zero/small singular values (Borcea, Papanicolaou, Vasquez 2008)

Π̂(ω) + ∆Π̂(ω) = [U1 U2U∆Π̂
]

[
Σ

Σ
∆Π̂

] [
V ∗

1

V ∗
∆Π̂

V ∗
2

]

SVD filters out noisy terms in ℓ1 optimization; no more additional
denoising process is needed
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Numerical simulation

Setup of simulation

two dimension three dimension
length of array 100λ0 100λ0

distance between detectors h λ0/2 4λ0

array to IW distance L 100λ0 100λ0

size of IW 20λ0 × 20λ0 20λ0 × 5λ0 × 20λ0

sampling rate within IW k λ0/2 λ0/2

The size of Af is 201 × 1681 in two dimension and 676 × 18491 in
three dimension

Perturbation to Π̂(ω) is simulated by generating iid complex
N (0, δpavg ) and signal-to-noise ratio (SNR) is −10 log10 δ
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Numerical simulation

MUSIC
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Numerical simulation

MUSIC ℓ1 ℓ2

loc val loc val loc val

(8, 1, 12) 1 (24, 5, 4) 29.5949 (8, 1, 12) 5.5948
(24, 5, 4) 0.689 (31, 9, 17) 27.6028 (21, 11, 13) 4.1529
(31, 9, 17) 0.4031 (8, 1, 12) 20.4518 (7, 1, 12) 3.4482
(25, 8, 30) 0.2139 (21, 11, 13) 15.4289 (24, 5, 4) 3.4439
(21, 11, 13) 0.1296 (25, 8, 30) 13.4591 (8, 1, 11) 3.263
(21, 10, 13) 0 (21, 11, 14) 0 (31, 9, 17) 3.2249
(31, 10, 17) 0 (7, 1, 12) 0 (31, 10, 17) 3.0859
(25, 9, 30) 0 (31, 10, 17) 0 (24, 4, 4) 3.058
(31, 8, 17) 0 (25, 9, 30) 0 (24, 6, 4) 3.0249
(25, 7, 30) 0 (24, 4, 4) 0 (31, 8, 17) 2.6741
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Numerical simulation

MUSIC
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Numerical simulation

MUSIC ℓ1 ℓ2

loc val loc val loc val

(24, 5, 4) 1 (24, 5, 4) 30.0554 (8, 1, 12) 5.8243
(31, 9, 17) 0.8352 (31, 9, 17) 28.0076 (21, 11, 13) 4.3916
(8, 1, 12) 0.5154 (8, 1, 12) 21.0721 (7, 1, 12) 3.5743
(31, 8, 17) 0.3179 (21, 11, 13) 16.374 (24, 5, 4) 3.508
(31, 10, 17) 0.3121 (25, 8, 30) 14.5407 (8, 1, 11) 3.3794
(24, 6, 4) 0.3078 (31, 8, 17) 0.1677 (31, 9, 17) 3.2939
(24, 4, 4) 0.2941 (21, 10, 13) 0.139 (31, 10, 17) 3.1467

(21, 11, 13) 0.2711 (25, 7, 30) 0.1294 (24, 4, 4) 3.1138
(8, 2, 12) 0.2375 (24, 6, 4) 0.0972 (24, 6, 4) 3.0835
(25, 8, 30) 0.2225 (8, 2, 12) 0.0874 (21, 11, 14) 2.7385
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Random medium

Phase only perturbation model of random medium.

Realization of random medium with strength of fluctuation σ0 = 3% and
correlation length half of wavelength
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Formulation: random medium

Wave speed in a random medium is modeled by

c−2 = c−2
0 (1 + σ0µ)

where µ(·) is zero mean, isotropic, weakly stationary random fluctuation.
Green function in random medium is modeled by

Ĝ(x, y, ω) = Ĝ0(x, y, ω)e
i

ωσ0
c0

|x−y|
∫ 1
0

µ( x
ℓ
+ s

ℓ
(y−x))ds

and response matrix is obtained by substituting Ĝ0 by Ĝ . As in the case of
additive noise, inequality constraints are used in LSQ and CS, but the
noise level ε is usually impossible to estimate accurately, which limits the
use of minimization approaches in random medium.
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Analysis: moment formula & effective aperture

The moment formula holds for random medium model:

E

(
Ĝ (x, y, ω)Ĝ (x, y′, ω)

)
≈ Ĝ0(x, y, ω)Ĝ0(x, y′, ω)e−

( ω
c0

)
2
|y−y′|2

2L2 a2
e ,

where

ae = σ0L

(
−R(0) − 2

3

L

ℓ

∫ ∞

0
dt

R ′(t)

t

)1/2

is the effective aperture of random medium.
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Analysis: statistical stability

As size of array becomes larger, the random medium model satisfies

E

∣∣∣Ĝ(x, y, ω)Ĝ (x, y′, ω) − E

(
Ĝ (x, y, ω)Ĝ (x, y′, ω)

)∣∣∣
2

≈ 1

(4π)4|x − y|2|x − y′|2

(

1 − e
−
(

ω

c0

)2 a2e
L2 |y−y′|2

)

,

E

∣∣ĝH(y, ω)ĝ (y′, ω) − E
(
ĝH(y, ω)ĝ (y′, ω)

)∣∣2

E |ĝ(y, ω)|2
→ 0, a → ∞.
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Numerical simulation – random medium

KM MUSIC SVD LSQ CS
migration image σ

0
=0.3% array size100λ
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Array length: 100λ0 (top), 150λ0 (middle), 200λ0 (bottom). Fluctuation
of random medium is 0.3%. Resolution improvement is clear for KM,

MUSIC, SVD which implies statistical stability
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Conclusion: Performance of methods

KM: Simple to implement for large arrays, low resolution, wide
area imaging, robust to additive noise and random media

LSQ: More costly to implement for large arrays, improves
resolution, localized or wide area imaging, not so robust to
noise and random media

MUSIC: Simple to implement for small (sparse) targets using the
SVD, has good resolution, relatively robust to noise and
random media; the modified method can be the basis of
more elaborate imaging algorithms to achieve various effects

CS: Very effective for sparse targets in homogeneous media, fast
algorithm, excellent accuracy even with substantial
subsampling. Not robust to noise or random media (physical
experiment by group from Duke).
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