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Reasoning with Permutations

* We model uncertainty in identity management with
distributions over permutations

Identities

IABCD| |P(o)]

\1234 0 \

[13 2 4] means:
“Alice is at Track 1,

and Bob is at Track 3,
and Cathy is at Track 2,
and David is at Track 4
ith probability 1/10/

Probability of
each track
permutation
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How many permutations?

* There are n! permutations!
Memory required to store n! doubles

n!
9 | 362,880 3 megabytes
12| 4.8x108 9.5 terabytes

1.31x10% 1729 petabytes

My advisor won’t buy
me this much memory!

* Graphical models are not effective due to mutual
exclusivity constraints (“Alice and Bob cannot both be at

Track 1 simultaneously”)




Objectives

* We would like to:

- Find a principled, compact representation
for distributions over permutations with
tuneable approximation quality

- Reformulate Markov Model inference
operations with respect to our new
representation:

* Marginalization
* Conditioning



1¢ order summaries

* An idea: For each (identity j, track 1) pair, store marginal
probability that j maps to i

Identities

“David is at Track 4
with probability:
=1/10+1/20+1/5

=7/20 "
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1¢ order summaries

* We can summarize a distribution using a matrix of 1¢
order marginals

* Requires storing only n? numbers!
* Example:

syped ]

N

W

3/10
1/5 |3/10|3/20|7/20
A B C D

Identities

“Bob is at Track 2 with
zero probability”
“Cathy is at Track 3 with
probability 1/20”



The problem-with 1¢ order

* What 1¢ order summaries can capture:
- P(Alice is at Track 1) = 3/5
- P(Bob is at Track 2) = 1/2

1¢ order summaries cannot capture

higher order dependencies!

- P({Alice,Bob} occupy Tracks {1,2}) =0



2" order summaries

* |dea #2: store marginal probabilities that unordered
pairs of identities {k,I} map to pairs of tracks {i,j}

Identities

“Alice and Bob occupy
Tracks 1 and 2 with
zero probability”

suoinielnuiad doea]




2" order summaries

{A,B} {AC} {AD}

{1,231 O | 2/5|1/10

“Alice and Bob occupy
Tracks 1 and 4 with
""" probability 1/5”

{1,3}]1/10| 2/5 |3/10




Et cetera...

* And so forth... We can define:
- 3rd-order marginals
- 4th-order marginals

- nth-order marginals

* (which recovers the original distribution but requires n!
numbers)

* Fundamental Trade-off: we can capture
higher-order dependencies at the cost of
storing more numbers



Discarding redundancies

* Matrices of marginal probabilities carry redundant information

- Example on 4 identities: the probability that {Alice,Bob}
occupy Tracks {1,2} must be the same as the probability
that {Cathy,David} occupy Tracks {3,4}

* Can efficiently find a matrix C to “remove redundancies”:

CT

Matrix of high-order

marginals

C

J3:

+

1

Block-

<«—— 1% order information
«— 2" order information

<+ 37 grder information

diagonal sum of

coefficients

* Instead of storing marginals, only store these blocks of
coefficients (from which marginals can be reconstructed)



Completeness

* |If we have enough coefficients (by
removing the redundancies from n" order
marginals), we can reconstruct the original
distribution:

- [ o

1¢ ordé&xr nt order

(Qﬂﬂﬂte Basis for functions over
permutations)




The Fourier interpretation

« The compact representations can be viewed as a generalized
Fourier basis [Diaconis, ‘88]:
- The familiar propertles hold: Linearity, Orthogonallty Completeness,

‘To do inference using low
dimensional Fourier projections, we

need to cast all inference operations in
the Fourier domain
Y




Mixing Model - “e.g. Tracks 2 and 3
swapped identities with probability ¥2”

@)=
Identity Observations

* Problem statement: For each timestep, find
posterior marginals conditioned on all past
observations

* Need to formulate inference routines with
respect to Fourier coefficients!

b




Hidden Markov model inference

* Two basic inference operations for
Hidden Markov Models:

- Prediction/rollup:

Pii1(oe41) = ) Plovyiloe) Pi(or)

O¢
- Conditioning:

P(o|2) x P(z|0)P(c)

* How can we do these operations without
enumerating all n! permutations?



Prediction/Rollup

 We assume that o, Is generated by the rule:
- Draw 10Q(1) <  Mixing
- Set 0,, = 100, Model

* For example, Q([2 1 3 4])="2 means that Tracks
1 and 2 swapped identities with probabillity 7-.

* Prediction/Rollup can be written as a
convolution:

Piyi(oig1) = ZP(UtJrl\Ut)Pt(Ut)
\ Ot J

Convolution (Q*P,)!



Fourier Domain Prediction/Rollup

* Convolutions are pointwise products In
the Fourier domain:

P(o,) O @

Prediction/Rollup does not increase the
representation complexity!




Conditioning

* Bayes rule is a pointwise product of the likelihood
function and prior distribution:

P(o|z) o< P(z|o)P(0o)
PosteriorLikelihoodPrior

* Example likelihood function:
- P(z=green | o(Alice)=Track 1) = 9/10

- (“Prob. we see green at Track 1 given Alice is at
Track 1 is 9/107)

> Track 1
ﬁ rac A 4

e W IS R >



Kronecker Conditioning

Pointwise products correspond to convolution in the
Fourier domain [Willsky, ‘78] (except with Kronecker
Products in our case)

Our algorithm handles any prior and any likelihood,
generalizing the previous FFT-based conditioning
method [Kondor et al., ‘07]



Conditioning

* Conditioning increases the representation
complexity!

* Example: Su
marginals o
- P(Alice is at
- P(Bob is at

’ aVa - R - R - -~ - alla
Need to store 2™ order
probabilities after conditioning!

* Then we make a 1¢ order dbservation:
- “Cathy is at Track 1 or Track 2 with probability 1”

* (This means that Alice and/Bob cannot both be
a : and 2!

P({Alice,Bob} occupy Tracks {1,2})=0




Bandlimiting

* After conditioning, we discard “high-
frequency” coefficients

- Equivalently, we maintain low-order
marginals

 Examnle:

Discard



Error analysis

* Fourier domain Prediction/Rollup is exact I

* Kronecker Conditioning introduces error 9
* But...

- If enough coefficients are maintained, then

Kronecker condition.i.ng is exact at a subset of low-
frequency terms! )

Theorem. If the Kronecker Conditioning Algorithm
Is called using p* order terms of the prior and

qt order terms of the likelihood, then the

(Ip-q|)* order marginals of the posterior can
be reconstructed without error.
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Error of Kronecker Conditioning, n=8
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Dealing with negative numbers

* Consecutive Conditioning steps can propagate
errors to all frequency levels

* Errors can sometimes cause our marginal
probabilities to be negative! &)

* Our Solution: Project to relaxed Marginal &)
Polytope (space of Fourier coefficients
corresponding to nonnegative marginal
probabilities)

- Projection can be formulated as an efficient
Quadratic Program in the Fourier domain



Simulated data drawn from HMM

Projection to the Marginal polytope
versus no projection (n=6)
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Running Time comparison

Running time of 10 forward algorithm iterations
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Tracking with a .camera network

Camera Network data:

occlusion effects
- 11 individuals in lab

- ldentity observations
obtained from color
histogram

- Mixing eve
when peoj
to each ot

¢ time- mdependent
classification

w/o Projection with Projection



Summary of Fourier Approach

* Presented an intuitive, principled representation for
distributions on permutations with

- Fourier-analytic interpretations, and
- Tuneable approximation quality

* Formulated general and efficient inference
operations directly in the Fourier Domain

* Analyzed sources of error which can be introduced
by bandlimiting and showed how to combat them by
projecting to the marginal polytope

* Evaluated approach on real camera network
application and simulated data



Fourier theoretic approaches

* Approximate distributions over permutations with low
frequency basis functions [Kondor2007, Huang2007]

Fourier coefficients Fourier basigjunctions
L d ’/ C\\ e ..—"‘:-:;9:, Sa

-

-
. /
Fourier anaksTs on the
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Uncertainty Principle on a line

Signal Power spectrum
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Uncertainty principle on permutations

\ .;nrm = :
- confusion between tracks 3,4

2 subgroups
of 4
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Adaptive decompositions

* Our approach: adaptively factor problem into
subgroups allowing for higher order representations for
smaller subgroups

(and Bob was originally in the Blue group)

—




Contributions

* Characterization of constraints on Fourier
coefficients on permutations implied by
probabilistic independence

* Two algorithms: for factoring a distribution
(Split) and combining independent factors
in the Fourier domain (Join)

* Adaptive algorithm for scalable identity
management (handles up to n~100 tracks)



First-order independence condition

* Independence * Mutual Exclusivity
P(o(i) = kluand g =% 3 Tﬁ\ggi and Bob not both at
P(o(i) = kand o (j) = k)
P(o(i) = k1) - P(o(j) = ko) =
Product of first-order marginals m — J
\ T

¥ ¥

P(o(i) = K)P(o(j) = k) =0

Alice Alice Qv
rack k or =T rack k
Bob

¥l
BOb . _._..-.-.-.-.-.-.-




First-order independence condition

mot independent \ Independent \

Saljjuap|
syoed |

VS.

syoed |

\ |dentities /

Can verify condition using first-order marginals




First-order independence

* First-order condition is insufficient:

- e
T o

“Alice guards Bob”

“Alice is in red team” “ S q
Bob is in blue team
image from [sullivan06] \

N
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(1,2)

(2,1)

(1,3)

(3,1)

2r’d

Second-order summaries

* Store summaries for ordered pairs:

|dentities
(A,B) (B,A) (A,C) (CA)

1/6

1/12

1/8

1/12

/“Bob is at Track 1
and

1/12

1/6

1/12

y

-

Alice is at Track 3

with probability 1/12”
U P y

-

/

1/12

1/12 <

rd
1/24

1/12

1/12

1/24

1/8

o
store marginal probability

that identities (k,I) map to
tracks (i)
b

.

order summary requires O(n*) storage



Higher orders and connections to Fourier

Sum over entire distribution

1ys equal to 1)
Mar§‘. = . ) roue: mcerpretation

1st order Reconstructible from O(r?) lowest frequency coefficients
3rd order Reconstructible from O(rn¢) lowest frequency coefficients
nth order Requires all n! Fourier coefficients
Recovers original distribution,
* Trade-ofl requires storing n! numbers toring more
numbers

* Remark: high-order marginals contain low-order
information

b



Fourier coefficient matrices

* Fourier coefficients on permutations are a collection of
square matrices ordered by “frequency”:

A

A% ondier P

* Bandlimiting - keep a truncated set of coefficients

* Fourier domain inference — prediction/conditioning in
the Fourier domain
- [Kondor et al, AISTATSO07]
- [Huang et al,NIPS07]



Back to independence

* Need to consider two operations

* Groups join when tracks from two groups mix

* Groups split when an observation allows us to reason
over smaller groups independently



7

/ Problems

* If the joint distribution h factors as a product of
distributions f and g:

high=Y @) Agla
()/{()g((

Distribution over tracks Distribution over tracks




< First-order join

* Given first-order marginals of fand g, what does
the matrix of first-order marginals of /1 look like?

first-order marginals

f.\
o

Zeroes



' Higher-order joining
* Given Fourier coefficients of the factors fand g at each

fj frequency level:

* Compute Fourier coefficients of the joint distribution h at

each frequency level



Higher-order joining

* Joining for higher-order coefficients gives similar block-
diagonal structure

- Also get Kronecker product structure for each
block :
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/ Problems

* If the joint distribution h factors as a product of
distributions f and g:




Splitting

* Want to “invert” the Join process:

S

Theorem: these blocks
always exist! (and are
efficient to find)



Marginal preservation

* Problem: In practice, never have entire set of Fourier
coefficients!

bandlimited representation

e Ny
-..

* Marginal preservation guarantee:

= : : O
Theorem: Given m?-order marginals for

independent factors, we exactly recover

(77”7 -order marginals for the joint. _

* Conversely, get a similar guarantee for splitting
* (Usually get some higher order information too)




Detecting independence

~

| I\anfc constraint: force

zero blocks to be square _ :
— s with appropriate
~ordering on identities and tracks

5




First-order independence

* First-order condition is insufficient:
“Alice guards Bob”
A N S R s

'-.I ’ _. g

Can check for higher order independence after detecting at first-
order

* What if we call Split when only the first-order condition is
satisfied?
N

W
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Experiments - accuracy

nonadaptive

e a

20 ants
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dataset from [Khan et al. 20006]
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Experiments — running time
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Thank you ! \ N
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