
 

Identity Management Problem
– Reasoning and Inference 

over Permutations

Xiaoye Jiang
Stanford University

Joint work with J. Huang, C. Guestrin, L. Guibas



Identity management [Shin et al., ‘03]

Identity Mixing @Tracks 1,2

Track 1

Track 2

Where is Donald Duck? 



Identity management

Mixing @Tracks 1,2

Mixing @Tracks 1,3

Mixing @Tracks 1,4

Track 1
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Where is 

?



 

Reasoning with Permutations
 We model uncertainty in identity management with 

distributions over permutations
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[1 3 2 4] means: 
“Alice is at Track 1, 

and Bob is at Track 3, 
and Cathy is at Track 2,
and David is at Track 4
with probability 1/10”

P(σ)



 

How many permutations?
 There are n! permutations!

 Graphical models are not effective due to mutual 
exclusivity constraints (“Alice and Bob cannot both be at 
Track 1 simultaneously”)

n n! Memory required to store n! doubles

9 362,880 3 megabytes

12 4.8x108 9.5 terabytes

15 1.31x1012 1729 petabytes

My advisor won’t buy 
me this much memory!



 

Objectives
 We would like to:

− Find a principled, compact representation 
for distributions over permutations with 
tuneable approximation quality

− Reformulate Markov Model inference 
operations with respect to our new 
representation:

 Marginalization
 Conditioning



 

1st  order summaries
 An idea: For each (identity j, track i) pair, store marginal 

probability that j maps to i 
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“David is at Track 4
with probability: 

     =1/10+1/20+1/5
=7/20              ”
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1st  order summaries
 We can summarize a distribution using a matrix of 1st 

order marginals
 Requires storing only n2 numbers!
 Example:

3/10 0 1/2 1/5

1/5 1/2 3/10 0

3/10 1/5 1/20 9/20

1/5 3/10 3/20 7/20
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“Cathy is at Track 3 with 
probability 1/20”

“Bob is at Track 2 with 
zero probability”



 

The problem with 1st  order
 What 1st  order summaries can capture:

− P(Alice is at Track 1) = 3/5 
− P(Bob is at Track 2) = 1/2

 Now suppose:
− Tracks 1 and 2 are close,
− Alice and Bob are not next to each other

− P({Alice,Bob} occupy Tracks{1,2}) = 0

1st  order summaries cannot capture 
higher order dependencies!



 

2nd  order summaries
 Idea #2: store marginal probabilities that unordered 

pairs of identities {k,l} map to pairs of tracks {i,j}
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“Alice and Bob occupy 
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2nd  order summaries

0 2/5 1/10

1/10 2/5 3/10

1/5 1/5 1/10

{A,B} {A,C} {A,D}

{1,2}

{1,3}

{1,4}

“Alice and Bob occupy 
Tracks 1 and 4 with 
probability 1/5”



 

Et cetera…
 And so forth… We can define:

−  3rd-order marginals
−  4th-order marginals
−  …
−  nth-order marginals 

 (which recovers the original distribution but requires n! 
numbers)

 Fundamental Trade-off: we can capture 
higher-order dependencies at the cost of 
storing more numbers



 

Discarding redundancies

CT   C =

Matrix of high-order 
marginals

Block-diagonal sum of 
coefficients

1st  order information

2nd   order information

3rd   order information

 Matrices of marginal probabilities carry redundant information
− Example on 4 identities: the probability that {Alice,Bob} 

occupy Tracks {1,2} must be the same as the probability 
that {Cathy,David} occupy Tracks {3,4}

 Can efficiently find a matrix C to “remove redundancies“:

 Instead of storing marginals, only store these blocks of 
coefficients (from which marginals can be reconstructed)



 

Completeness
 If we have enough coefficients (by 

removing the redundancies from nth order 
marginals), we can reconstruct the original 
distribution:

1st  order2nd  
order

nth  order
(Complete Basis for functions over 

permutations)



 

The Fourier interpretation
 The compact representations can be viewed as a generalized 

Fourier basis [Diaconis, ‘88]:

− The familiar properties hold: Linearity, Orthogonality, Completeness, 
Plancherel’s (Parseval’s) theorem, Convolution theorem, …

− Used for multi-object tracking in Kondor et al, ‘07

 Simple marginals are “low-frequency”:

− 1st  order marginals are the lowest-frequency

− 2nd  order marginals are the 2nd  lowest-frequency

− 3rd  order marginals are the 3rd  lowest-frequency

To do inference using low 
dimensional Fourier projections, we 
need to cast all inference operations in 
the Fourier domain



 

Hidden Markov model inference

 Problem statement: For each timestep, find 
posterior marginals conditioned on all past 
observations

 Need to formulate inference routines with 
respect to Fourier coefficients!

Identity Observations

Latent Permutations

σ1 σ2 σ3 σ4

z1 z2 z3 z4

Mixing Model – “e.g. Tracks 2 and 3 
swapped identities with probability ½”

Observation Model – “e.g. see 
green blob at track 3”



 

Hidden Markov model inference
 Two basic inference operations for 

Hidden Markov Models:
− Prediction/rollup:

− Conditioning:

 How can we do these operations without 
enumerating all n! permutations?



 

Prediction/Rollup
 We assume that σt+1 is generated by the rule:

− Draw τ∼ Q(τ)
− Set σt+1 = τ⋅σt

 For example, Q([2 1 3 4])=½ means that Tracks 
1 and 2 swapped identities with probability ½.

 Prediction/Rollup can be written as a 
convolution:

Mixing 
Model

Convolution (Q*Pt)!



 

Fourier Domain Prediction/Rollup 
 Convolutions are pointwise products in 

the Fourier domain:

P(σ t)

Q(τ)

P(σ t+1 )

Prediction/Rollup does not increase the 
representation complexity!



 

Conditioning

PriorPosteriorLikelihood

Track 1

 Bayes rule is a pointwise product of the likelihood 
function and prior distribution:

 Example likelihood function: 
− P(z=green | ¾(Alice)=Track 1) = 9/10
− (“Prob. we see green at Track 1 given Alice is at 

Track 1 is 9/10”)



 

Pointwise products correspond to convolution in the 
Fourier domain [Willsky, ‘78] (except with Kronecker 
Products in our case)

Our algorithm handles any prior and any likelihood, 
generalizing the previous FFT-based conditioning 
method [Kondor et al., ‘07]

Kronecker Conditioning



 

Conditioning
 Conditioning increases the representation 

complexity!
 Example: Suppose we start with 1st  order 

marginals of the prior distribution:
− P(Alice is at Track 1 or Track 2)=.9
− P(Bob is at Track 1 or Track 2)=.9
− …

 Then we make a 1st  order observation: 
− “Cathy is at Track 1 or Track 2 with probability 1”

 (This means that Alice and Bob cannot both be 
at Tracks 1 and 2!)

− P({Alice,Bob} occupy Tracks{1,2})=0

Need to store 2nd  order 
probabilities after conditioning!



 

Bandlimiting
 After conditioning, we discard “high-

frequency” coefficients
− Equivalently, we maintain low-order 

marginals
 Example:

Keep! Discard



 

Error analysis
 Fourier domain Prediction/Rollup is exact
 Kronecker Conditioning introduces error
 But… 

− If enough coefficients are maintained, then 
Kronecker conditioning is exact at a subset of low-
frequency terms!

Theorem. If the Kronecker Conditioning Algorithm

is called using pth  order terms of the prior and 

qth  order terms of the likelihood, then the 

(|p-q|)th   order marginals of the posterior can

be reconstructed without error.



 

Kronecker Conditioning 
experiments

Error of Kronecker Conditioning, n=8 
(as a function of diffuseness)

Measured at 1st  order 
marginals

(Keeping 3rd   order marginals is 
enough to ensure zero error for 

1st  order marginals)
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Dealing with negative numbers
 Consecutive Conditioning steps can propagate 

errors to all frequency levels
 Errors can sometimes cause our marginal 

probabilities to be negative!

 Our Solution: Project to relaxed Marginal 
Polytope (space of Fourier coefficients 
corresponding to nonnegative marginal 
probabilities)

− Projection can be formulated as an efficient 
Quadratic Program in the Fourier domain



 

Simulated data drawn from HMM
Projection to the Marginal polytope 

versus no projection (n=6)

Approximation by a 
uniform distribution
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Running Time comparison
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Tracking with a camera network
 Camera Network data:

− 8 cameras, multiview, 
occlusion effects

− 11 individuals in lab
− Identity observations 

obtained from color 
histograms

− Mixing events declared 
when people walk close 
to each other
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 T
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Omniscient tracker

time-independent 
classification 

w/o Projection with Projection 

Projections are crucial in 
practice!!



 

Summary of Fourier Approach
 Presented an intuitive, principled representation for 

distributions on permutations with
− Fourier-analytic interpretations, and
− Tuneable approximation quality

 Formulated general and efficient inference 
operations directly in the Fourier Domain

 Analyzed sources of error which can be introduced 
by bandlimiting and showed how to combat them by 
projecting to the marginal polytope

 Evaluated approach on real camera network 
application and simulated data



Fourier theoretic approaches
 Approximate distributions over permutations with low 

frequency basis functions [Kondor2007, Huang2007]

+.2 x +.5 x +.3 x.6 xf(x)=

Fourier coefficients Fourier basis functions

low frequency high frequency

Fourier analysis on the 
real line

  sinusoidal basis

Fourier analysis on Sn 
(Permutations of n objects)



Uncertainty principle on a line

Uniform
distribution “time

domain”

hard to
represent

“Fourier
domain”

easy to
represent

Peaked
distribution

“time
domain”

easy to
represent

“Fourier
domain”

hard to
represent

Uncertainty Principle: a signal f cannot be sparsely 
represented in both the time and Fourier domains

Power spectrumSignal f



Uncertainty principle on permutations
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Adaptive decompositions
 Our approach: adaptively factor problem into 

subgroups allowing for higher order representations for 
smaller subgroups

“This is Bob” 

(and Bob was originally in the Blue group)

Claim: Adaptive Identity Management can be highly scalable, more accurate for 
sharp distributions



Contributions
 Characterization of constraints on Fourier 

coefficients on permutations implied by 
probabilistic independence

 Two algorithms: for factoring a distribution 
(Split) and combining independent factors 
in the Fourier domain (Join)

 Adaptive algorithm for scalable identity 
management (handles up to n~100 tracks)



First-order independence condition
• Independence

=

= 0

Alice

Bob
Track k

Alice

Bob
Track kor

Product of first-order marginals

• Mutual Exclusivity
– “Alice and Bob not both at 

Track



First-order independence condition

T
racks

Identities

T
racks

Identities

T
racks

Identities

T
racks

Identities

Not independent Independent

vs.

Can verify condition using first-order marginals



First-order independence
 First-order condition is insufficient:

“Alice is in red team”
“Bob is in blue team”

“Alice guards Bob”

First-order independence ignores the fact that 
Alice and Bob are always next to each other!

image from [sullivan06]



The problem with first-order
 First-order marginals look like:

− P(Alice is at Track 1) = 3/5 
− P(Bob is at Track 2) = 1/2

 Now suppose Alice guards Bob, and…

Tracks 1,2 very far apart

Can write as second-order marginal:

P({Alice,Bob} occupy Tracks{1,2}) = 0



Second-order summaries
 Store summaries for ordered pairs:

 2nd  order summary requires O(n4) storage

(A,B) (B,A) (A,C)

(1,2)

(2,1)

(C,A)

(1,3)

(3,1)

1/6 1/12 1/8

1/12

1/12

1/8 1/24

1/24 1/8

1/6 1/12

1/12

1/8 1/12

1/12

1/12

Identities

T
racks

“Bob is at Track 1
and
Alice is at Track 3 
with probability 1/12”

store marginal probability 
that identities (k,l) map to 
tracks (i,j)



 Trade-off – capture higher frequencies by storing more 
numbers

 Remark: high-order marginals contain low-order 
information

Higher orders and connections to Fourier
Sum over entire distribution 
(always equal to 1)

Recovers original distribution, 
requires storing n! numbers



Fourier coefficient matrices
 Fourier coefficients on permutations are a collection of 

square matrices ordered by “frequency”:

 Bandlimiting - keep a truncated set of coefficients
 Fourier domain inference – prediction/conditioning in 

the Fourier domain
− [Kondor et al,AISTATS07]
− [Huang et al,NIPS07]

0th order1st  order2nd  ordernth order



Back to independence
 Need to consider two operations

 Groups join when tracks from two groups mix
 Groups split when an observation allows us to reason 

over smaller groups independently

“This is Bob” 

(and Bob was originally in the Blue group)



Problems
 If the joint distribution h factors as a product of 

distributions f  and g:

Distribution over tracks 
{1,…,p}

Distribution over tracks 
{p+1,…,n}

(Join problem) Find Fourier coefficients of the joint h 
given Fourier coefficients of factors f and g?

(Split problem) Find Fourier coefficients of factors f 
and g given Fourier coefficients of the joint h?



First-order join
• Given first-order marginals of f and g, what does 

the matrix of first-order marginals of h look like?

first-order marginals

f

h

g

zeroes



Higher-order joining
 Given Fourier coefficients of the factors f and g at each 

frequency level:

 Compute Fourier coefficients of the joint distribution h at 
each frequency level

factors

joint



Higher-order joining
 Joining for higher-order coefficients gives similar block-

diagonal structure

− Also get Kronecker product structure for each 
block

Blocks appear multiple times (multiplicities related to 
Littlewood-Richardson coefficients)

same block



Problems
 If the joint distribution h factors as a product of 

distributions f  and g:

Distribution over tracks 
{1,…,p}

Distribution over tracks 
{p+1,…,n}

(Join problem) Find Fourier coefficients of the joint h 
given Fourier coefficients of factors f and g?

(Split problem) Find Fourier coefficients of factors f 
and g given Fourier coefficients of the joint h?



Splitting
 Want to “invert” the Join process:

Consider recovering 2nd  
Fourier block

Need to recover A, B from    
 –  only possible to do 

up to scaling factor

Our approach: search for 
blocks of the form:                    

Theorem: these blocks 
always exist! (and are 
efficient to find)



Marginal preservation
 Problem: In practice, never have entire set of Fourier 

coefficients!  

 Marginal preservation guarantee:

 Conversely, get a similar guarantee for splitting
 (Usually get some higher order information too)

Theorem: Given mth-order marginals for 
independent factors, we exactly recover 
mth-order marginals for the joint.  

bandlimited representation



Detecting independence
To adaptively split large distributions, need to detect 
independent subsets

Recall first-order independence condition:

 Can use (bi)clustering on matrix of marginals
to discover an appropriate ordering!

matrix of marginals with appropriate
ordering on identities and tracks

In practice, get unordered 
identities, tracks…Balance constraint: force 

nonzero blocks to be square

p

p



First-order independence
 First-order condition is insufficient:

Can check for higher order independence after detecting at first-
order

 What if we call Split when only the first-order condition is 
satisfied?

“Alice is in red team” “Bob is in blue team”

“Alice guards Bob”

Even when higher-order independence does not hold:

Theorem: Whenever first-order independence 
holds, Split returns exact marginals of each 
subset of tracks.



Experiments - accuracy
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Experiments – running time
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Final Conclusions

Completely Fourier-theoretic 
characterization of probabilistic 
independence

marginalization, 
conditioning, 
join, split 

Two new algorithmsScalable and adaptive identity 
management algorithm to track up 
to n=100 objects

Thank you ! 
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