Identity Management Problem

 - Reasoning and Inference over PermutationsXiaoye Jiang
Stanford University

Joint work with J. Huang, C. Guestrin, L. Guibas

Identity management [Shin et al., ‘03]

Identity mana

Where is

Reasoning with Permutations

- We model uncertainty in identity management with distributions over permutations

How many permutations?

- There are n ! permutations!

n	$n!$	Memory required to store $n!$ doubles
9	362,880	3 megabytes
12	4.8×10^{8}	9.5 terabytes
15	1.31×10^{12}	1729 petabytes

My advisor won't buy me this much memory!

- Graphical models are not effective due to mutual exclusivity constraints ("Alice and Bob cannot both be at Track 1 simultaneously")

Objectives

- We would like to:
- Find a principled, compact representation for distributions over permutations with tuneable approximation quality
- Reformulate Markov Model inference operations with respect to our new representation:
- Marginalization
- Conditioning

$1^{\text {§ }}$ order summaries

- An idea: For each (identity \mathbf{j}, track i) pair, store marginal probability that \mathbf{j} maps to \mathbf{i}

Identities

"David is at Track 4 with probability:
$=\mathbf{1 / 1 / 2 0}+1 / 20+1 / 5$

$1^{\$}$ order summaries

- We can summarize a distribution using a matrix of $1^{\text {st }}$ order marginals
- Requires storing only n^{2} numbers!
- Example:
 Identities

The problem with $1^{\text { }}$ order

- What $1^{\text { }}$ order summaries can capture:
$-\mathrm{P}($ Alice is at Track 1) $=3 / 5$
$-P($ Bob is at Track 2) $=1 / 2$

.

1^{\star} order summaries cannot capture higher order dependencies!

- P(\{Alice,Bob\} occupy Tracks \{1,2\})=0

$2^{\text {rd }}$ order summaries

- Idea \#2: store marginal probabilities that unordered pairs of identities $\{\mathbf{k}, \mathbf{I}\}$ map to pairs of tracks $\{\mathbf{i}, j\}$

Identities

$2^{\text {nd }}$ order summaries

"Alice and Bob occupy Tracks 1 and 4 with probability 1/5"

Et cetera...

- And so forth... We can define:
- 3rd-order marginals
- 4th-order marginals
- nth-order marginals
- (which recovers the original distribution but requires n ! numbers)
- Fundamental Trade-off: we can capture higher-order dependencies at the cost of storing more numbers

Discarding redundancies

- Matrices of marginal probabilities carry redundant information
- Example on 4 identities: the probability that \{Alice,Bob\} occupy Tracks $\{1,2\}$ must be the same as the probability that \{Cathy,David\} occupy Tracks $\{3,4\}$
- Can efficiently find a matrix C to "remove redundancies":

- Instead of storing marginals, only store these blocks of coefficients (from which marginals can be reconstructed)

Completeness

- If we have enough coefficients (by removing the redundancies from $\mathrm{n}^{\text {t }}$ order marginals), we can reconstruct the original distribution:

The Fourier interpretation

- The compact representations can be viewed as a generalized Fourier basis [Diaconis, '88]:
- The familiar properties hold: Linearity, Orthogonality, Completeness, Plancherel's (Parseval's) theorem. Convolution theorem.
- To do inference using low dimensional Fourier projections, we need to cast all inference operations in the Fourier domain

Hidder

Mixing Model - "e.g. Tracks 2 and 3 swapped identities with probability $1 / 2$ "
Latent Permutations

Identity Observations

- Problem statement: For each timestep, find posterior marginals conditioned on all past observations
- Need to formulate inference routines with respect to Fourier coefficients!

Hidden Markov model inference

- Two basic inference operations for Hidden Markov Models:
- Prediction/rollup:

$$
P_{t+1}\left(\sigma_{t+1}\right)=\sum_{\sigma_{t}} P\left(\sigma_{t+1} \mid \sigma_{t}\right) P_{t}\left(\sigma_{t}\right)
$$

- Conditioning:

$$
P(\sigma \mid z) \propto P(z \mid \sigma) P(\sigma)
$$

- How can we do these operations without enumerating all n ! permutations?

Prediction/Rollup

- We assume that σ_{t+1} is generated by the rule:
- Draw $\tau \sim \mathbf{Q}(\tau)$

Mixing Model

- Set $\sigma_{\mathrm{t}+1}=\tau \cdot \sigma_{\mathrm{t}}$
- For example, $\mathbf{Q}\left(\left[\begin{array}{lll}2 & 1 & 3\end{array}\right]\right)=1 / 2$ means that Tracks 1 and 2 swapped identities with probability $1 / 2$.
- Prediction/Rollup can be written as a convolution:

$$
P_{t+1}\left(\sigma_{t+1}\right)=\underbrace{\sum_{\sigma_{t}} P\left(\sigma_{t+1} \mid \sigma_{t}\right) P_{t}\left(\sigma_{t}\right)}_{\text {Convolution }\left(\mathbf{Q} * \mathbf{P}_{t}\right)!}
$$

Fourier Domain Prediction/Rollup

- Convolutions are pointwise products in the Fourier domain:

Prediction/Rollup does not increase the representation complexity!

$$
\mathbf{P}\left(\sigma_{t+1}\right)
$$

Conditioning

- Bayes rule is a pointwise product of the likelihood function and prior distribution:

- Example likelihood function:
- $\mathbf{P}(\mathbf{z}=$ green $\mid \sigma($ Alice $)=$ Track $\mathbf{1})=9 / 10$
- ("Prob. we see green at Track 1 given Alice is at Track 1 is $9 / 10 "$)

Kronecker Conditioning

Pointwise products correspond to convolution in the Fourier domain [Willsky, '78] (except with Kronecker Products in our case)

Our algorithm handles any prior and any likelihood, generalizing the previous FFT-based conditioning method [Kondor et al., '07]

Conditioning

- Conditioning increases the representation complexity!
- Example: Supnacn un ctart with 1s ardner marginals of \quad Need to store $2^{\text {rd }}$ order
- P (Alice is at probabilities after conditioning!
$-P(B$
-
-
- Then we make a $1^{\text {st }}$ order cbservation:
- "Cathy is at Track 1 or Track 2 with probability 1"
- (This means that Alice and/Bob cannot both be at Tracks 1 and 2!)

P(\{Alice,Bob\} occupy Tracks $\{1,2\})=0$

Bandlimiting

- After conditioning, we discard "highfrequency" coefficients
- Equivalently, we maintain low-order marginals
- Example.

Error analysis

- Fourier domain Prediction/Rollup is exact
- Kronecker Conditioning introduces error

11

- But...
- If enough coefficients are maintained, then Kronecker conditioning is exact at a subset of lowfrequency terms!

Theorem. If the Kronecker Conditioning Algorithm is called using $\mathrm{p}^{\text {th }}$ order terms of the prior and $q^{\text {th }}$ order terms of the likelihood, then the (|p-q|) ${ }^{\text {th }}$ order marginals of the posterior can be reconstructed without error.

experiments

Dealing with negative numbers

- Consecutive Conditioning steps can propagate errors to all frequency levels
- Errors can sometimes cause our marginal probabilities to be negative! !
- Our Solution: Project to relaxed Marginal Polytope (space of Fourier coefficients corresponding to nonnegative marginal probabilities)
- Projection can be formulated as an efficient Quadratic Program in the Fourier domain

Simulated data drawn from HMM

Projection to the Marginal polytope

Running Time comparison

Tracking with a camera network

- Camera Network data:
- 8 cameras, multiview, occlusion effects
- 11 individuals in lab
- Identity observations obtained from color

Omniscient tracker

 histogram- Mixing eve when peot to each ot

Projections are crucial in practice!!

time-independent classification
w/o Projection

Summary of Fourier Approach

- Presented an intuitive, principled representation for distributions on permutations with
- Fourier-analytic interpretations, and
- Tuneable approximation quality
- Formulated general and efficient inference operations directly in the Fourier Domain
- Analyzed sources of error which can be introduced by bandlimiting and showed how to combat them by projecting to the marginal polytope
- Evaluated approach on real camera network application and simulated data

Fourier theoretic approaches

- Approximate distributions over permutations with low frequency basis functions [Kondor2007, Huang2007]

Fourier coefficients Fourier basis functions Fourier analysis on the

Uncertainty principle on a line Signal $f \quad$ Power spectrum

Uniform distribution

Uncertainty Principle: a signal f cannot be sparsely represented in both the time and Fourier domains

Peaked distribution

Uncertainty principle on permutations

Keep Bulhiddiptedideritution diseribstions over S_{1}

Adaptive decompositions

- Our approach: adaptively factor problem into subgroups allowing for higher order representations for smaller subgroups

Claim: Adaptive Identity Management can be highly scalable, more accurate for sharp distributions

"This is Bob"

(and Bob was originally in the Blue group)

Contributions

- Characterization of constraints on Fourier coefficients on permutations implied by probabilistic independence
- Two algorithms: for factoring a distribution (Split) and combining independent factors in the Fourier domain (Join)
- Adaptive algorithm for scalable identity management (handles up to $n \sim 100$ tracks)

First-order independence condition

- Independence
$P\left(\sigma(i)=k_{1}\right.$ ॥a $\left.\sigma(j)=k_{2}\right)$
$P\left(\sigma(i)=k_{1}\right) \cdot P\left(\sigma(j)=k_{2}\right)$
Product of first-order marginals

$$
P(\sigma(i)=k) P(\sigma(j)=k)=0
$$

Alice

Bob

Alice
Bob

- Mutual Exclusivity
- "Alice and Bob not both at Track

$$
P(\sigma(i)=k \text { and } \sigma(j)=k)
$$

$$
=0
$$

First-order independence condition
Not independent

Identities

Can verify condition using first-order marginals

First-order independence

- First-order condition is insufficient:
"Alice guards Bob"

"Alice is in red team"
"Bob is in blue team"

The problem with first-order

- First-order marainals look like:

Can write as second-order marginal:

$$
P(\{\text { Alice, Bob }\} \text { occupy Tracks }\{1,2\})=0
$$

- Now suppose Alice guards Bob, and...

Second-order summaries

- Store summaries for ordered pairs:

- $2^{\text {rd }}$ order summary requires $O\left(n^{4}\right)$ storage

Higher orders and connections to Fourier

Sum over entire distribution (always equal to 1)
 Margimp

$3^{\text {rd }}$ order Reconstructible from $O\left(n^{6}\right)$ lowest frequency coefficients
$\mathbf{n}^{\text {th }}$ order \quad Requires all \mathbf{n} ! Fourier coefficients
Recovers original distribution,

- Trade-of requires storing n! numbers toring more numbers
- Remark: high-order marginals contain low-order information

Fourier coefficient matrices

- Fourier coefficients on permutations are a collection of square matrices ordered by "frequency":

(1tw
- Bandlimiting - keep a truncated set of coefficients
- Fourier domain inference - prediction/conditioning in the Fourier domain
- [Kondor et al,AISTATS07]
- [Huang et al,NIPS07]

Back to independence

- Need to consider two operations

- Groups join when tracks from two groups mix
- Groups split when an observation allows us to reason over smaller groups independently

Problems

- If the joint distribution h factors as a product of distributions f and g :

$$
h(\sigma)=f(\sigma) \cdot g(\sigma)
$$

Distribution over tracks $\{1, \ldots, p\}$

Distribution over tracks $\{p+1, \ldots, n\}$
(Join problem) Find Fourier coefficients of the joint h given Fourier coefficients of factors f and g ?
(Split problem) Find Fourier coefficients of factors f and g given Fourier coefficients of the joint h ?

sense
 learn First-order join

- Given first-order marginals of f and g, what does the matrix of first-order marginals of h look like?
first-order marginals

Higher-order joining

- Given Fourier coefficients of the factors f and g at each frequency level:

$$
\hat{f}_{\lambda_{1}}, \hat{f}_{\lambda_{2}}, \hat{f}_{\lambda_{3}}, \ldots \quad \hat{g}_{\lambda_{1}}, \hat{g}_{\lambda_{2}}, \hat{g}_{\lambda_{3}}, \ldots
$$

$$
\begin{array}{r}
\hat{h}_{\lambda_{1}}, \hat{h} \\
\text { joint }
\end{array}
$$

- Compute Fourier coefficients of the joint distribution h at each frequency level

Higher-order joining

- Joining for higher-order coefficients gives similar blockdiagonal structure
- Also get Kronecker product structure for each block
Blocks appear multiple times (multiplicities related to Littlewood-Richardson coefficients)

Problems

- If the joint distribution h factors as a product of distributions f and g :

$$
h(\sigma)=f(\sigma) \cdot g(\sigma)
$$

Distribution over tracks $\{1, \ldots, p\}$

Distribution over tracks $\{, \ldots, p\} \quad\{p+1, \ldots, n\}$
(Join problem) Find Fourier coefficients of the joint h given Fourier coefficients of factors f and g ?
(Split problem) Find Fourier coefficients of factors f and g given Fourier coefficients of the joint h ?

Splitting

- Want to "invert" the Join process:

Marginal preservation

- Problem: In practice, never have entire set of Fourier coefficients!
bandlimited representation

\square
- Marginal preservation guarantee:

> Theorem: Given $m^{\text {th}}$-order marginals for independent factors, we exactly recover $m^{\text {th}}$-order marginals for the joint.

- Conversely, get a similar guarantee for splitting
- (Usually get some higher order information too)

Detecting independence

-

Can use (bi)clustering on matrix of marginals

- to discover an appropriate ordering!

First-order independence

- First-order condition is insufficient:
"Alice guards Bob"

Even when higher-order independence does not hold:
Theorem: Whenever first-order independence holds, Split returns exact marginals of each subset of tracks.
"Alice is in red team" "Bob is in blue team"
Can check for higher order independence after detecting at firstorder

- What if we call Split when only the first-order condition is satisfied?

Experiments - accuracy

Experiments - running time

Final Conclusions

Scalable and adaptive identity management algorithm to track up to $\mathrm{n}=100$ objects

Two new algorithms marginalization, conditioning, join, split

Completely Fourier-theoretic characterization of probabilistic independence

Thank you!

