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Markov Model for Identity Management
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σ: true state; z: observations; M: markov matrix; L(z|σ): likelihood function.

Mixing Model: tracks swapped identities with some probability.

Observation Model: identity on a particular track is observed.

Problem: For each timestep, find posterior over σt conditioned on all
past observations.

Our Problem: Find posterior over class characteristics (red or blue)
conditioned on all past observations.
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Our Problem

Define σ(t) ∈ Sn to be a mapping from identities {i1, i2, · · · , im+n} to
tracks T = {t1, t2, · · · , tm+n}.

After a random permutation among tracks τ (t). The association of
identities with tracks at time t + 1 is σ(t+1) = τ (t)σ(t).

Assume n of the identities are red and the remaining m identities are
blue.

We care only about the class characteristics (red or blue) of
identities.
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Homogeneous Space

Homogeneous Space: All k−subsets of {1, 2, · · · , n}.

Permutation groups act on homogeneous spaces.

Example

Suppose n = 3, k = 2, homogeneous space X is all 2−subset of
{1, 2, 3}, i.e. X = {{1, 2}, {2, 3}, {1, 3}}.

Permutation group S3 acts on X , e.g., if

τ =

(

1 2 3
2 3 1

)

then τ({1, 2}) = {2, 3}; τ({2, 3}) = {1, 3}; τ({1, 3}) = {1, 2}.
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Markov Process on Homogeneous Space

A probability distribution Q on permutation groups induces a Markov
process on the homogeneous space X with transition probability

Px(y) =
∑

τ :τx=y

Q(τ)

Naive Model: Maintain beliefs on homogeneous space instead of full
permutation group.
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Running Example

Example (Markov Model on Homogeneous Space)

Suppose m = n = 3 and we are sure that {t1, t2, t3} are red, then
f ∈ L(X )

f (x) =



1 if x = {t1, t2, t3}
0 otherwise

If a mixing happened among tracks t3 and t4, then

Q(τ) =

8

<

:

p τ = id
1 − p τ = (t3, t4)

0 otherwise

The Markov mixing matrix induced from Q would be

{t1, t2, t3} {t1, t2, t4} {t1, t2, t5} · · · {t3, t5, t6} {t4, t5, t6}
{t1, t2, t3} p 1 − p 0 · · · 0 0
{t1, t2, t4} 1 − p p 0 · · · 0 0
{t1, t2, t5} 0 0 1 · · · 0 0

.
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.

.

.

.

.

.

.

.
. . .

.

.
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.
{t3, t5, t6} 0 0 0 · · · p 1 − p

{t4, t5, t6} 0 0 0 · · · 1 − p p
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Mixing Model

Suppose Q is a distribution on permutation group Sm+n, then the
simplest mixing model is

Q(τ) =







p τ = id
1− p τ = (ti , tj)

0 otherwise

Q induces a Markov update of beliefs for f ∈ L(X )

f (y)←
∑

x

Px(y)f (x)

where Px(y) =
∑

τ :τx=y Q(τ).
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Observation Model

The simplest model for observation consist of receiving information z

that with some high probability, target on track ti is red.

Likelihood function have the form (a≫ b):

L(z |x) =

{

a if ti ∈ x

b if ti /∈ x

Posterior by Bayes rule

f (x |z) =
L(z |x) · f (x)

∑

x L(z |x) · f (x)
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Decomposition of Homogeneous Space

Function space of homogeneous space Mm,n decomposes as

Sm+n ⊕ Sm+n−1,1 ⊕ Sm+n−2,2 ⊕ . . .⊕ Sm,n

Sm+n−i ,i is invariant under actions by Sm+n.

Hierarchical structures: Direct sum of the first j subspaces is a
(

m+n
j

)

dimensional subspace, can be regarded as functions defined on all
j−subsets (j th order statistics).

Mm,n = Sm+n ⊕ Sm+n−1,1 ⊕ Sm+n−2,2 ⊕ · · · ⊕ Sm,n

= Mm+n−j ,j ⊕ Sm+n−j−1,j+1 ⊕ · · · ⊕ Sm,n

◮ Mm,n: all n−subsets of {1, 2, · · · ,m + n}.
◮ Mm+n−j,j : all j−subsets of {1, 2, · · · ,m + n}.
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Radon Up Transformations

For 1 ≤ k ≤ n define the Radon up transform

R+ : Mm+n−k,k → Mm,n by R+f (s) =
∑

s⊃r

f (r)

where r ∈ Mm+n−k,k is a k−subset and s ∈ Mm,n is an n−subset.

Example

Suppose f 2 ∈ M4,2 is
{t1, t2} {t1, t3} {t2, t3} {t1, t4} · · · {t4, t6} {t5, t6}

4 4 4 2 · · · 0 0

After Radon transformation, f 3 = R+
2,3f

2 would be

{t1, t2, t3} {t1, t2, t4} {t1, t4, t5} · · · {t4, t5, t6}
4+4+4 4+2+2 2+2+0 · · · 0+0+0
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Radon Down Transformations

If Mm,n and Mm+n−k,k are given bases consisting of delta functions
on n−subsets and k−subsets. For 1 ≤ k ≤ n define Radon down

transform R− : Mm,n → Mm+n−k,k , the (r , s) element of R− is

(−1)n−k(n − k)

(−1)|s−r ||s − r |
(

m+n−k
|s−r |

)

where r ∈ Mm+n−k,k is a k−subset and s ∈ Mm,n is an n−subset.

Radon transform R+ and R− satisfy
◮ R−R+ = I
◮ R+R− is an orthogonal projection.
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Bandlimited Mixing Model

Bandlimiting: Maintain kth order statistics f k ∈ Mm+n−k,k , which
can be interpreted as the likelihood of a particular k−subset being all
red.

Induce mixing model Q to Mm+n−k,k and update f k by

f k(y)←
∑

x

Px(y)f k(x)

f n
0

M
n
0−−−−→ f n

1

M
n
1−−−−→ f n

2

M
n
2−−−−→ f n

3

M
n
3−−−−→ · · ·

R−
n,k





y

R−
n,k





y

R−
n,k





y

R−
n,k





y

f k
0

M
k
0−−−−→ f k

1

M
k
1−−−−→ f k

2

M
k
2−−−−→ f k

3

M
k
3−−−−→ · · ·

Theorem

Both R+ and R− commute with the Markov mixing matrices induced from

probability Q on permutation group Sm+n.
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Bandlimited Observation Model

Observation consists of first order statistics (observing the identity on
track ti is red with high probability)

Lift first order statistics to kth order statistics by Radon up transform.

Use Bayes update to get posterior.
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Classification Criteria

We project kth order statistics to first order statistics using Radon
down transform.

Predict the tracks with highest n scores as red members.
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Real Camera Data

Real Network with 8 Cameras

11 People (5 red, 6 blue)

Experiments with different
number of mixing events and
observation events

Figure: Sample Image.

Table: Experiments Data Summary

Experiment #Mixings #Observations Explanations

1 8 76 few mix, lots of obs
2 169 184
3 226 116
4 261 64 lots of mix, few obs
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Energy Distributions
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Figure: Energy distributions for four experiments
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Classification Accuracy

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
average accuracy of all time steps

statistical order

ac
cu

ra
cy

 

 

experiment 1

experiment 2

experiment 3

experiment 4

Figure: Classification accuracy of implementation with different statistical order.
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Conclusions and Future Work

Conclusions

Distributions on homogeneous spaces can be compactly summarized.

Radon transforms useful for mapping distributions between different
statistical orders.

Evaluation of our model on a real camera network.

Future

Use similar ideas to study other machine learning problems arising
from ranking and voting.

Smarter ways of projecting data on homogeneous spaces to low order
statistics.
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