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Example I: Basket ball teams

Figure: Two teams in a virtual Basketball Game, with large intra-team
interaction and noisy cross-team interaction.
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Example II: Social Network of Les Miserables

Figure: Cliques in the social network of Les Miserables, by Victor Hugo
(data courtesy to Knuth’93).
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Example II continued: Cliques in Les Miserables

Table: Cliques in The Social Network of Les Miserables

Cliques Names of Characters Relationships

{1, 2, 3} {Myriel, Mlle Baptistine, Mme Magloire} Friendship
{4, 12, 16} {Valjean, Fantine, Javert} Dramatic Conflicts
{4, 13, 14} {Valjean, Mme Thenardier, Thenardier} Dramatic Conflicts
{4, 15, 22} {Valjean, Cosette, Marius} Dramatic Conflicts
{20, 21, 22} {Gillenormand, Mlle Gillenormand, Marius} Kinship
{5, 6, 7, 8} {Tholomyes, Listolier, Fameuil, Blacheville} Friendship
{9, 10, 11, 12} {Favourite, Dahlia, Zephine, Fantine} Friendship
{14, 31, 32, 33} {Thenardier, Gueulemer, Babet, Claquesous} Street Gang
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Example III: Coauthorship in Network Science

BRODER A

KUMAR R
MAGHOUL FRAGHAVAN P

RAJAGOPALAN S

STATA RTOMKINS A

WIENER J

KLEINBERG J

FLAKE GLAWRENCE S

GILES C

COETZEE F

KUMAR S

SIVAKUMAR D

UPFAL E

PENNOCK D

GLOVER E

(a) (b)

Figure: Coauthorship in Network Science: (a) coauthorship relations
between scientists working on network theory (Newman’06); (b) A
close-up around Jon Kleinberg
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Example IV: Jester Dataset

In Jester data set, there are 24, 000 users rating over 100
jokes, partially.

From the data we can count votes on all top-3 jokes (or just
the best joke).

Can we infer which 5-tuple is the first tier group?
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Problem

These examples observe low order (pairwise) interactions,
which are often governed by high order cliques (complete
subgraphs: teams, first tier groups)

Cliques may have overlaps, where traditional partition-based
clustering such as spectral clustering fails here

Can we find a mathematical framework for detecting such
cliques?

(Yes!)

Compressive Sensing + algebraic Radon basis
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Look for a representation

Given n nodes, labeled from 1, . . . , n.

Permuation Group: The n! rankings make up of the
permutation group Sn

Homogeneous Space: cosets Hk := {Sn/Sk × Sn−k} can be
identified as all k-subsets of {1, . . . , n}.

Fact

Inferring high order cliques from low order interactions can be
regarded as a mapping between functions on homogeneous spaces
H∗i 7→ H∗k (i < k).
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Inferring High Order Cliques from Low Order Interactions

Example

2-cliques Frequency

{1 2} 10

{1 3} 7

{1 4} 3

{1 5} 6
...

...

Example

3-cliques Frequency

{1 2 3} ?

{1 2 4} ?

{1 2 5} ?

{1 2 6} ?
...

...
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Radon Basis

Interpret the function on 2-subsets as interaction frequency

A 2-subset is randomly from some k-cliques (teams) included

Assume inherent frequency function on k-cliques (teams) is
sparse.

Build matrix A as following:

1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 · · · · · · 3 4 5

1 2 1 1 1 0 0 · · · · · · · · ·
1 3 1 0 0 1 1 · · · · · · · · ·
1 4 0 1 0 1 0 · · · · · · · · ·
1 5 0 0 1 0 1 · · · · · · · · ·
2 3 1 0 0 0 0 · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · ·

4 5 0 0 0 0 0 · · · · · · 1
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Radon Basis

Such a matrix is an example of Radon basis

In general, there is a canonical Radon Transform in algebraic
combinatorics (Diaconis’88) which maps functions on
k-subsets to j-subsets (j ≤ k)

(Rk,j)u(τ) =
∑
σ⊂τ

u(σ), τ ∈ Hk , σ ∈ Hj

Radon basis is just the transpose of Radon Transform, upto a
scaling factor
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Radon Basis Pursuit Formulation

Suppose x0 is a sparse function on k-cliques. To reconstruct this
sparse function based on low order observation data b, consider the
following linear programming first known as Basis Pursuit

P1 : min ‖x‖1

subject to Ax = b

which is a convex relaxation of original NP-hard problem

P0 : min ‖x‖0

subject to Ax = b
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A Result from KKT-Condition for P1

Suppose A is a M-by-N matrix and x0 is a sparse signal. Let
T = supp(x0), T c be the complement of T , and AT (or AT c ) be
the submatrix of A where we only extract column set T (or T c ,
respectively).

Theorem (Exact Recovery Theorem, Candes-Tao’05)

Assume that A∗TAT is invertible and there exists a vector w ∈ RM

such that
(1) A∗Tw = sgn(x0)|T ,
(2) ‖A∗T c w‖∞ < 1,
where ∗ denote matrix transpose and sgn(x0)|T is the restriction of
sgn(x0) on T . Then x0 is the unique solution for P1. The
conditions are also necessary.
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Proof Ideas

1 Consider equivalently

min 1∗ξ

subject to Ax = b, −ξ ≤ x ≤ ξ, ξ ≥ 0

2 Lagrangian is
L(x , ξ; γ, λ, µ) = 1∗ξ+γ∗(Ax−b)−λ∗+(ξ−x)−λ∗−(ξ+x)−µ∗ξ

3 Karush-Kuhn-Tucker (KKT) condition gives
• A∗γ = −(λ+ − λ−)⇒ A∗Tγ = − sign(x0)|T
• 1− (λ+ + λ−)− µ = 0⇒ |A∗T cγ| = 1− µ < 1

Yuan Yao Compressive Sensing and Clique Identification
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Irrepresentable Condition

Searching w satisfying ERT is equivalent to solve the dual problem
of P1, hence one often consider the special case that w ∈ im(AT ).
Then ERT can be simplified to the following

‖A∗T c AT (A∗TAT )−1sgn(x0)T‖∞ < 1

whose sufficient condition is easy to check

(Irrepresentable Condition (IRR), Yu-Zhao’06)

‖A∗T c AT (A∗TAT )−1‖∞ < 1
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Random Design

Candes-Romberg-Tao shows in a series of papers that when A is a
random matrix, such as

random Fourier transform

Berrnoulli matrix

Gaussian matrix

and when |T | < O(M/log(N)), with high probability IRR holds.
This leads to Uniform Recovery such that for any s-sparse signal
(|T | ≤ s), one may recover it by P1 with high probability.
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Restricted Isometry Property

This is a result due to the Restricted Isometry Property (RIP,
Candes-Tao’05, Candes’08) for random matrices.

(Restricted Isometry Property)

For every set of columns T with |T | ≤ s, there exists a certain
universal constant δs ∈ [0, 1) such that

(1− δs)‖x‖2
l2 ≤ ‖AT x‖2

l2 ≤ (1 + δs)‖x‖2
l2 , ∀x ∈ Rs .

This is generalized to other Restricted Eigenvalue conditions (e.g.
Bickel-Ritov-Tsybokov’07, Zhang’08)
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Fixed Design

However many deterministic A in fixed design, RIP fails

This in particular includes Radon basis defined above

In our basis construction of matrix A = R j ,k , RIP is not
satisfied unless s <

(k+j+1
k

)
which cannot scale up with n.

Universal recovery is impossible unless for extremely sparse
signals

But one can look for those T such that IRR etc. holds.
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Exact Recovery Theorem: A lemma

Let A = R j ,k , given data b on all j−subsets, we wish to infer
common interest groups on all k−subsets. Suppose x0 is a sparse
signal on all k−subsets.

Lemma

Let T = supp(x0), and j ≥ 2. Suppose that for any σ1, σ2 ∈ T,
there holds |σ1 ∩ σ2| ≤ r .

If r = j − 2, then ‖A∗T c AT (A∗TAT )−1‖∞ < 1;

If r = j − 1, then ‖A∗T c AT (A∗TAT )−1‖∞ ≤ 1 where equality
holds with certain examples;

If r = j , there are examples such that
‖A∗T c AT (A∗TAT )−1‖∞ > 1.
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Exact Recovery Theorem in Radon Basis Pursuit

Theorem

Let T = supp(x0), if we allow overlaps among k-cliques to be no
larger than r , then the maximum r that can guarantee
Irrepresentable Condition is j − 2.

It says that when cliques have small overlaps, then exact
recovery for sparse signals will hold.

In practice, when overlaps are larger than j − 2, you may
possibly find exact recovery by P1; as the theorem simply says
there exists an example in this case which fails P1, but you
might not meet it.
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Sparse Approximation

In real case, low order information b can be written as
b = Ax0 + z , where z accounts for bounded noises. In this
case, we solve:

P1,δ : min ‖x‖1

subject to ‖Ax − b‖∞ ≤ δ

For Gaussian noise, one may consider BPDN
(Chen-Donoho-Saunders’99), close to Lasso

PBPDN : min ‖x‖1

subject to ‖Ax − b‖2 ≤ δ
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Regularization Path

In our applications, we choose bounded noise assumption which
seems more natural.

Definition

A regularization path of P1,δ refers to the map δ 7→ xδ where xδ is
a solution of P1,δ.

A natural theoretical question asks: when the true signal x0 lies on
a unique regularization path?
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A Result from KKT-Condition for P1,δ

Theorem (Exact Recovery in Noisy Case)

Assume that AT is of full column-rank. Then P1,δ has a unique
solution x0 if and only if there exists a w ∈ RN such that
(1) A∗Tw = sgn(x0)|T ,
(2) ‖A∗T c w‖∞ < 1.
In other words, x0 must lie on a unique regularization path.
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Stable Recovery Theory in Noisy Case

Theorem

Using the same notation as before, assume that ‖z‖∞ ≤ ε,
|T | = s, and the Irrepresentable condition

‖A∗T c AT (A∗TAT )−1‖∞ ≤ α <
1

s
.

Then the following error bound holds for any solution x̂δ of P1,δ,

‖x̂δ − x0‖1 ≤
2s(ε+ δ)

1− αs
‖AT (A∗TAT )−1‖1.
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Proof Ideas

1 Small tail bound: ‖hT c‖1 ≤ ‖hT‖1 where h = x̂δ − x0, i.e.
‖hT‖1 = ‖x0 − x̂δ|T‖1 ≥ ‖x0‖1 − ‖x̂δ|T‖1 ≥
‖x̂δ‖1 − ‖x̂δ|T‖1 = ‖x̂δ|T c‖1 = ‖hT c‖1, by ‖x̂δ‖1 ≤ ‖x0‖1

2 Lower bound: (let A†T = AT (A∗TAT )−1)

|〈Ah,A†ThT 〉| = |〈AThT ,A
†
ThT 〉+ 〈AT c hT c ,A†ThT 〉|

≥ ‖hT‖2
2 − ‖hT c‖1‖A∗T c A

†
ThT‖∞

≥ 1

s
‖hT‖2

1 − α‖hT c‖1‖hT‖∞

≥ 1

s
‖hT‖2

1 − α‖hT c‖1‖hT‖1

≥
(

1

s
− α

)
‖hT‖2

1, (‖hT c‖1 ≤ ‖hT‖1)
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Proof Ideas: continued

3 Given ‖Ax̂δ − b‖∞ ≤ δ and z = Ax0 − b with ‖z‖∞ ≤ ε.
Then ‖Ah‖∞ = ‖Ax̂δ − Ax0‖∞ = ‖Ax̂δ − b + b − Ax0‖∞ ≤
‖Ax̂δ − b‖∞ + ‖z‖∞≤ δ + ε.

4 Upper bound: (let A†T = AT (A∗TAT )−1)

|〈Ah,A†ThT 〉| ≤ ‖Ah‖∞‖A†ThT‖1≤ (δ + ε)‖A†T‖1‖hT‖1

5 Combining lower and upper bounds gives

‖hT‖1 ≤
s(δ + ε)

1− αs
‖AT (A∗TAT )−1‖1,

and the theorem follows from ‖h‖1 ≤ 2‖hT‖1.
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Stability Theory

Corollary

Assume that k = j + 1, |T | = s, and overlap |σ1 ∩ σ2| ≤ j − 2 for
any σ1, σ2 ∈ T. Then there holds

‖A∗T c AT (A∗TAT )−1‖∞ ≤ 1/(j + 1)

and the following error bound for solution x̂δ of P1,δ,

‖x̂δ − x0‖1 ≤
2s(ε+ δ)

1− s
j+1

√
j + 1, s < j + 1.
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Practical Concerns: Mixed Cliques

Stagewise algorithm: solving P1,δ with different basis matrices
(A = R j ,k with the same j but different k) to detect cliques of
different sizes.

Concatenating different basis matrices A = R j ,k together,
solve for all cliques at the same time.

Both actually work in practice.
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Practical Concerns: Scalability

The basis matrix R j ,k is of size
(n

j

)
by
(n
k

)
which makes it

impossible to solve the linear programming P1 or P1,δ for all but
very small n. Possible ways to deal with that

Down-sample columns of A

Divide-and-Conquer: use spectral clustering to pre-cluster the
data, followed by Radon Basis Pursuit

Iterative algorithms to solve LP
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Divide-and-Conquer in coauthorship network

A

B

DC

(a) (b)

Figure: (a) coauthorship relations between scientists working on network
theory (Newman’06); (b) Binary spectral clustering tree with Radon
Basis Pursuit
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Conclusions

Radon Basis Pursuit provides a novel approach for clique
identification in social networks, with possible overlaps where
traditional partition-based clustering fails

Its shortcoming lies in the combinatorial explosion in basis
size, which however can be alleviated with the aid of spectral
clustering preprocessing, etc.

Can we exploit random design in this problem?
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