Compressive Sensing and Clique Identification in Social Networks

Yuan Yao

Peking University

Selected Topics in Advanced Statistics Nov. 13, 2009

- Examples
 - Basket Ball Teams
 - Les Miserables
 - Coauthorship Network
 - Top-k Partial Ranking
- 2 Radon Basis in Homogeneous Spaces
 - Homogeneous Spaces
 - Radon Basis
 - Radon Basis Pursuit
- 3 Compressive Sensing
 - Exact Recovery Theory in noiseless case
 - Stable Recovery Theory in noisy case
 - Practical Issues
- 4 Conclusion and Acknowledgement
 - Conclusion
 - Acknowledgement

Examples Radon Basis

Compressive Sensing

Conclusion and Acknowledgement

Basket Ball Teams Les Miserables Coauthorship Network Top-k Partial Ranking

Example I: Basket ball teams

Figure: Two teams in a virtual Basketball Game, with large intra-team interaction and noisy cross-team interaction.

Basket Ball Teams Les Miserables Coauthorship Network Top-k Partial Ranking

Example II: Social Network of Les Miserables

Figure: Cliques in the social network of Les Miserables, by Victor Hugo (data courtesy to Knuth'93).

Basket Ball Teams Les Miserables Coauthorship Network Top-k Partial Ranking

Example II continued: Cliques in Les Miserables

Table: Cliques in The Social Network of Les Miserables

Cliques	Names of Characters	Relationships	
$\{1, 2, 3\}$	{Myriel, Mlle Baptistine, Mme Magloire}	Friendship	
$\{4, 12, 16\}$	{Valjean, Fantine, Javert}	Dramatic Conflicts	
$\{4, 13, 14\}$	{Valjean, Mme Thenardier, Thenardier}	Dramatic Conflicts	
$\{4, 15, 22\}$	{Valjean, Cosette, Marius}	Dramatic Conflicts	
$\{20, 21, 22\}$	{Gillenormand, Mlle Gillenormand, Marius}	Kinship	
$\{5, 6, 7, 8\}$	{Tholomyes, Listolier, Fameuil, Blacheville}	Friendship	
$\{9, 10, 11, 12\}$	{Favourite, Dahlia, Zephine, Fantine}	Friendship	
$\{14, 31, 32, 33\}$	{Thenardier, Gueulemer, Babet, Claquesous}	Street Gang	

・ロン ・回と ・ヨン・

3

Basket Ball Teams Les Miserables Coauthorship Network Top-k Partial Ranking

Example III: Coauthorship in Network Science

(a) (b)

Figure: Coauthorship in Network Science: (a) coauthorship relations between scientists working on network theory (Newman'06); (b) A close-up around Jon Kleinberg

Basket Ball Teams Les Miserables Coauthorship Network Top-k Partial Ranking

Example IV: Jester Dataset

- In Jester data set, there are 24, 000 users rating over 100 jokes, partially.
- From the data we can count votes on all top-3 jokes (or just the best joke).
- Can we infer which 5-tuple is the first tier group?

Basket Ball Teams Les Miserables Coauthorship Network Top-k Partial Ranking

Problem

- These examples observe low order (pairwise) interactions, which are often governed by high order cliques (complete subgraphs: teams, first tier groups)
- Cliques may have overlaps, where traditional partition-based clustering such as spectral clustering fails here
- Can we find a mathematical framework for detecting such cliques?

(Yes!)

Compressive Sensing + algebraic Radon basis

イロン イヨン イヨン イヨン

Homogeneous Spaces Radon Basis Radon Basis Pursuit

Look for a representation

Given n nodes, labeled from $1, \ldots, n$.

- Permuation Group: The *n*! rankings make up of the permutation group *S_n*
- Homogeneous Space: cosets H_k := {S_n/S_k × S_{n-k}} can be identified as all k-subsets of {1,..., n}.

Fact

Inferring high order cliques from low order interactions can be regarded as a mapping between functions on homogeneous spaces $H_i^* \mapsto H_k^*$ (i < k).

・ロン ・回と ・ヨン ・ヨン

Homogeneous Spaces Radon Basis Radon Basis Pursuit

Inferring High Order Cliques from Low Order Interactions

Example			
	cliques		

2-cliques	Frequency		
{1 2}	10		
{1 3}	7		
{1 4}	3		
{1 5}	6		
:	:		

E	Example					
ĺ	3-cliques	Frequency				
	{1 2 3}	?				
	{1 2 4}	?				
	{1 2 5}	?				
	{1 2 6}	?				
		:				

Homogeneous Spaces Radon Basis Radon Basis Pursuit

Radon Basis

- Interpret the function on 2-subsets as interaction frequency
- A 2-subset is randomly from some k-cliques (teams) included
- Assume inherent frequency function on k-cliques (teams) is sparse.
- Build matrix A as following:

	123	124	125	134	135	 	345
12	1	1	1	0	0	 	
13	1	0	0	1	1	 	
14	0	1	0	1	0	 	
15	0	0	1	0	1	 	
23	1	0	0	0	0	 	
•						 	
45	0	0	0	0	0	 	1

Homogeneous Spaces Radon Basis Radon Basis Pursuit

Radon Basis

- Such a matrix is an example of Radon basis
- In general, there is a canonical Radon Transform in algebraic combinatorics (Diaconis'88) which maps functions on k-subsets to j-subsets (j ≤ k)

$$(R^{k,j})u(\tau) = \sum_{\sigma \subset \tau} u(\sigma), \quad \tau \in H_k, \sigma \in H_j$$

• Radon basis is just the transpose of Radon Transform, upto a scaling factor

Homogeneous Spaces Radon Basis Radon Basis Pursuit

Radon Basis Pursuit Formulation

Suppose x_0 is a sparse function on k-cliques. To reconstruct this sparse function based on low order observation data b, consider the following linear programming first known as Basis Pursuit

$$\mathcal{P}_1$$
: min $||x||_1$
subject to $Ax = b$

which is a convex relaxation of original NP-hard problem

$$\mathcal{P}_0$$
: min $||x||_0$
subject to $Ax = b$

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

A Result from KKT-Condition for \mathcal{P}_1

Suppose A is a M-by-N matrix and x_0 is a sparse signal. Let $T = \text{supp}(x_0)$, T^c be the complement of T, and A_T (or A_{T^c}) be the submatrix of A where we only extract column set T (or T^c , respectively).

Theorem (Exact Recovery Theorem, Candes-Tao'05)

Assume that $A_T^*A_T$ is invertible and there exists a vector $w \in \mathbb{R}^M$ such that (1) $A_T^*w = sgn(x_0)|_T$, (2) $||A_{T^c}^*w||_{\infty} < 1$, where * denote matrix transpose and $sgn(x_0)|_T$ is the restriction of $sgn(x_0)$ on T. Then x_0 is the unique solution for \mathcal{P}_1 . The conditions are also necessary.

イロト イポト イヨト イヨト

æ

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

Proof Ideas

Consider equivalently

$$\begin{array}{ll} \min & 1^{*}\xi \\ \text{subject to} & Ax=b, & -\xi \leq x \leq \xi, \ \xi \geq 0 \end{array}$$

・ロト ・回ト ・ヨト ・ヨト

Э

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

Irrepresentable Condition

Searching w satisfying ERT is equivalent to solve the dual problem of \mathcal{P}_1 , hence one often consider the special case that $w \in im(A_T)$. Then ERT can be simplified to the following

$$\|A_{T^c}^*A_T(A_T^*A_T)^{-1}sgn(x_0)_T\|_{\infty} < 1$$

whose sufficient condition is easy to check

(Irrepresentable Condition (IRR), Yu-Zhao'06)

 $\|A_T^* A_T (A_T^* A_T)^{-1}\|_{\infty} < 1$

・ロン ・回と ・ヨン ・ヨン

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

Random Design

Candes-Romberg-Tao shows in a series of papers that when A is a random matrix, such as

- random Fourier transform
- Berrnoulli matrix
- Gaussian matrix

and when $|\mathcal{T}| < O(M/\log(N))$, with high probability IRR holds. This leads to Uniform Recovery such that for any *s*-sparse signal $(|\mathcal{T}| \leq s)$, one may recover it by \mathcal{P}_1 with high probability.

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

Restricted Isometry Property

This is a result due to the Restricted Isometry Property (RIP, Candes-Tao'05, Candes'08) for random matrices.

(Restricted Isometry Property)

For every set of columns T with $|T| \le s$, there exists a certain universal constant $\delta_s \in [0, 1)$ such that

$$(1-\delta_s)\|x\|_{l_2}^2\leq \|A_Tx\|_{l_2}^2\leq (1+\delta_s)\|x\|_{l_2}^2, \quad \forall x\in R^s.$$

This is generalized to other Restricted Eigenvalue conditions (e.g. Bickel-Ritov-Tsybokov'07, Zhang'08)

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

Fixed Design

- However many deterministic A in fixed design, RIP fails
- This in particular includes Radon basis defined above
- In our basis construction of matrix $A = R^{j,k}$, RIP is not satisfied unless $s < \binom{k+j+1}{k}$ which cannot scale up with n.
- Universal recovery is impossible unless for extremely sparse signals
- But one can look for those T such that IRR etc. holds.

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

Exact Recovery Theorem: A lemma

Let $A = R^{j,k}$, given data *b* on all *j*-subsets, we wish to infer common interest groups on all *k*-subsets. Suppose x_0 is a sparse signal on all *k*-subsets.

Lemma

Let $T = supp(x_0)$, and $j \ge 2$. Suppose that for any $\sigma_1, \sigma_2 \in T$, there holds $|\sigma_1 \cap \sigma_2| \le r$.

- If r = j 2, then $||A_{T^c}^* A_T (A_T^* A_T)^{-1}||_{\infty} < 1$;
- If r = j − 1, then ||A^{*}_T A_T (A^{*}_T A_T)⁻¹||_∞ ≤ 1 where equality holds with certain examples;

• If
$$r = j$$
, there are examples such that $\|A_{T^c}^*A_T(A_T^*A_T)^{-1}\|_{\infty} > 1.$

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

Exact Recovery Theorem in Radon Basis Pursuit

Theorem

Let $T = supp(x_0)$, if we allow overlaps among k-cliques to be no larger than r, then the maximum r that can guarantee Irrepresentable Condition is j - 2.

- It says that when cliques have small overlaps, then exact recovery for sparse signals will hold.
- In practice, when overlaps are larger than j 2, you may possibly find exact recovery by \mathcal{P}_1 ; as the theorem simply says there exists an example in this case which fails \mathcal{P}_1 , but you might not meet it.

イロン 不同と 不同と 不同と

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

Sparse Approximation

• In real case, low order information *b* can be written as $b = Ax_0 + z$, where *z* accounts for bounded noises. In this case, we solve:

$$\mathcal{P}_{1,\delta}$$
: min $\|x\|_1$
subject to $\|Ax - b\|_{\infty} \leq \delta$

• For Gaussian noise, one may consider BPDN (Chen-Donoho-Saunders'99), close to Lasso

$$\mathcal{P}_{BPDN}: \min \|x\|_1$$
 subject to $\|Ax - b\|_2 \leq \delta$

・ロト ・回ト ・ヨト ・ヨト

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

Regularization Path

In our applications, we choose bounded noise assumption which seems more natural.

Definition

A regularization path of $\mathcal{P}_{1,\delta}$ refers to the map $\delta \mapsto x_{\delta}$ where x_{δ} is a solution of $\mathcal{P}_{1,\delta}$.

A natural theoretical question asks: when the true signal x_0 lies on a unique regularization path?

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

A Result from KKT-Condition for $\mathcal{P}_{1,\delta}$

Theorem (Exact Recovery in Noisy Case)

Assume that A_T is of full column-rank. Then $\mathcal{P}_{1,\delta}$ has a unique solution x_0 if and only if there exists a $w \in \mathbb{R}^N$ such that (1) $A_T^* w = sgn(x_0)|_T$, (2) $\|A_{T^c}^* w\|_{\infty} < 1$. In other words, x_0 must lie on a unique regularization path.

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

Stable Recovery Theory in Noisy Case

Theorem

Using the same notation as before, assume that $||z||_{\infty} \le \epsilon$, |T| = s, and the Irrepresentable condition

$$\|A_{T^c}^*A_T(A_T^*A_T)^{-1}\|_{\infty} \leq \alpha < \frac{1}{s}.$$

Then the following error bound holds for any solution \hat{x}_{δ} of $\mathcal{P}_{1,\delta}$,

$$\|\hat{x}_{\delta}-x_0\|_1\leq rac{2s(\epsilon+\delta)}{1-lpha s}\|A_T(A_T^*A_T)^{-1}\|_1.$$

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

Proof Ideas

• Small tail bound: $\|h_{T^c}\|_1 \le \|h_T\|_1$ where $h = \hat{x}_{\delta} - x_0$, i.e. $\|h_T\|_1 = \|x_0 - \hat{x}_{\delta}|_T\|_1 \ge \|x_0\|_1 - \|\hat{x}_{\delta}|_T\|_1 \ge \|\hat{x}_{\delta}\|_1 - \|\hat{x}_{\delta}|_T\|_1 = \|\hat{x}_{\delta}|_{T^c}\|_1 = \|h_{T^c}\|_1$, by $\|\hat{x}_{\delta}\|_1 \le \|x_0\|_1$

2 Lower bound: (let $A_T^{\dagger} = A_T (A_T^* A_T)^{-1}$)

$$\begin{aligned} |\langle Ah, A_T^{\dagger}h_T \rangle| &= |\langle A_Th_T, A_T^{\dagger}h_T \rangle + \langle A_{T^c}h_{T^c}, A_T^{\dagger}h_T \rangle| \\ &\geq \|h_T\|_2^2 - \|h_{T^c}\|_1 \|A_{T^c}^*A_T^{\dagger}h_T\|_{\infty} \\ &\geq \frac{1}{s} \|h_T\|_1^2 - \alpha \|h_{T^c}\|_1 \|h_T\|_{\infty} \\ &\geq \frac{1}{s} \|h_T\|_1^2 - \alpha \|h_{T^c}\|_1 \|h_T\|_1 \\ &\geq \left(\frac{1}{s} - \alpha\right) \|h_T\|_1^2, \quad (\|h_{T^c}\|_1 \le \|h_T\|_1) \end{aligned}$$

イロト イポト イヨト イヨト

3

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

Proof Ideas: continued

- $\begin{aligned} & \textbf{Oiven } \|A\hat{x}_{\delta} b\|_{\infty} \leq \delta \text{ and } z = Ax_0 b \text{ with } \|z\|_{\infty} \leq \epsilon. \\ & \text{Then } \|Ah\|_{\infty} = \|A\hat{x}_{\delta} Ax_0\|_{\infty} = \|A\hat{x}_{\delta} b + b Ax_0\|_{\infty} \leq \\ & \|A\hat{x}_{\delta} b\|_{\infty} + \|z\|_{\infty} \leq \delta + \epsilon. \end{aligned}$
- Upper bound: (let $A_T^{\dagger} = A_T (A_T^* A_T)^{-1}$) $|\langle Ah, A_T^{\dagger} h_T \rangle| \le ||Ah||_{\infty} ||A_T^{\dagger} h_T ||_1 \le (\delta + \epsilon) ||A_T^{\dagger} ||_1 ||h_T ||_1$
- Ombining lower and upper bounds gives

$$\|h_{\mathcal{T}}\|_{1} \leq \frac{s(\delta+\epsilon)}{1-\alpha s} \|A_{\mathcal{T}}(A_{\mathcal{T}}^{*}A_{\mathcal{T}})^{-1}\|_{1},$$

and the theorem follows from $\|h\|_1 \leq 2\|h_T\|_1$.

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

Stability Theory

Corollary

Assume that k = j + 1, |T| = s, and overlap $|\sigma_1 \cap \sigma_2| \le j - 2$ for any $\sigma_1, \sigma_2 \in T$. Then there holds

$$\|A_{T^c}^*A_T(A_T^*A_T)^{-1}\|_{\infty} \leq 1/(j+1)$$

and the following error bound for solution \hat{x}_{δ} of $\mathcal{P}_{1,\delta}$,

$$\|\hat{x}_\delta - x_0\|_1 \leq rac{2s(\epsilon+\delta)}{1-rac{s}{j+1}}\sqrt{j+1}, \qquad s < j+1.$$

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

Practical Concerns: Mixed Cliques

- Stagewise algorithm: solving P_{1,δ} with different basis matrices
 (A = R^{j,k} with the same j but different k) to detect cliques of
 different sizes.
- Concatenating different basis matrices $A = R^{j,k}$ together, solve for all cliques at the same time.
- Both actually work in practice.

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

Practical Concerns: Scalability

The basis matrix $R^{j,k}$ is of size $\binom{n}{j}$ by $\binom{n}{k}$ which makes it impossible to solve the linear programming \mathcal{P}_1 or $\mathcal{P}_{1,\delta}$ for all but very small *n*. Possible ways to deal with that

- Down-sample columns of A
- Divide-and-Conquer: use spectral clustering to pre-cluster the data, followed by Radon Basis Pursuit
- Iterative algorithms to solve LP

Exact Recovery Theory in noiseless case Stable Recovery Theory in noisy case Practical Issues

Divide-and-Conquer in coauthorship network

Figure: (a) coauthorship relations between scientists working on network theory (Newman'06); (b) Binary spectral clustering tree with Radon Basis Pursuit

Conclusion Acknowledgement

Conclusions

- Radon Basis Pursuit provides a novel approach for clique identification in social networks, with possible overlaps where traditional partition-based clustering fails
- Its shortcoming lies in the combinatorial explosion in basis size, which however can be alleviated with the aid of spectral clustering preprocessing, etc.
- Can we exploit random design in this problem?

Conclusion Acknowledgement

Acknowledgement

Collaborators:

- Xiaoye Jiang, Stanford ICME
- Leo Guibas, Stanford CS

Thanks to:

- Persi Diaconis
- Risi Kondor
- Minyu Peng

- 4 同 6 4 日 6 4 日 6

3