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TECHNOMETRICS 

The 2k" Fractional Factorial Designs* 
Part I. 

G. E. P. Box AND J. S. HUNTER 
Statistics Department, University of Wisconsin and Mathematics Research Center, 

University of Wisconsin 

"Cats is dogs and dogs is dogs and rabbits is dogs, and squirrels in cages is parrots ...." 

1: THE TWO-VERSION FACTORIALS AND FRACTIONALS 

A full 2k factorial design requires all combinations of two versions of each of k 
variables. If a variable is continuous, the two versions become the high and 
low level of that variable. If a variable is qualitative the two versions correspond 
to two types, sometimes the presence and absence of the variable. 

The runs comprising the experimental design are conveniently set out in 
either of two notations as illustrated for the eight runs comprising a 23 factorial 
'in Table 1. 

TABLE 1 

Alternative Notations for the 23 Factorial Design 

Notation 1 Notation 2 
Run Variables Variables 

Number A B C 123 

1 1 - - - 
2 a + - - 
3 b - + - 
4 ab + - 
5 c - - + 
6 ac + - + 
7 bc - + + 
8 abc + + + 

In the first notation the variables are identified by capital letters, and their 
two versions by the presence or absence of the corresponding lower case letter. 
When all the variables are at their "low" level or version a "1" is used. In the 
second notation the variables are identified by numbers and the two versions 
of each variable by either a minus and plus sign, or by minus and plus one. 
The experimental design can then be viewed geometrically. A run is represented 
by a point whose coordinates are the -1 versions for that run. For example, 

* Sponsored by the United States Army under Contract No. DA-11-022-ORD-2059. 
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the 23 factorial will provide the eight vertices of a cube in a three-dimensional 
coordinate system. The notation using minus and plus signs is used in this 
paper. The list of experimental runs is called the design matrix and is denoted 
by D. For a 2k factorial, the design matrix contains k columns and N = 2k rows. 
There is a column for each of the k variables, and each row gives the combination 
of versions for each run. 

In Table 1 the runs are listed in standard order. The elements of the first 
column are alternate minus and plus signs. The elements of the second column 
are alternate pairs of minus and plus signs, the elements of the third column 
alternate groups of four minus and plus signs and so on. The last column consists 
of 2k-~ minus signs followed by 2k-1 plus signs. 

The Estimates 

On the assumptions that the observations are uncorrelated and have equal 
variance, then the 2k factorial designs provide independent minimum variance 
estimates of the grand average and of the 2k-1 effects: 

k main effects, 

k(l - 1) k ~(k ~-1) two-factor interaction effects, 2 

k(k- 1)(k -2) 'three-factor interaction effects, 
2.3 (1) 

k(k - 1)(k - 2) ... (ki - h - 1) h-factor interaction effects, 
h! 

and finally a single k-factor interaction effect. 
Although the Yates' Algorithm (1) provides a quick method for calculating 

these estimates, a longer, but more basic calculation technique will now be 
described. In Table 2, where for convenience a 23 design is used, a matrix, of 
independent variables X is generated from the design matrix D. In general the 
individual elements for an ij interaction column in X are obtained by multi- 

TABLE 2 

Design Matrix Matrix of Independent Variables Observations 
D X Y 

1 2 3 I 1 2 3 12 13 23 123 

-- - --+ -+ + + - 2 
+ -- ++ -- - + + 10 
- + + - +- + - + 8 
+ + - + + + - - -12 
- - + + - - + + + 6 
+ - + ++ - + - - 8 
- + + +- ++ - - + - 6 
+ + + + + + ++ + + 4 
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plying the corresponding elements of the separate i and j columns. Similarly, 
the elements of the ijk interaction column are given by the product of the ele- 
ments of the columns labelled ij and k and so on. The first column of X consists 
entirely of plus signs and is used to provide an estimate of the mean. For a 2k 

design the full matrix of independent variables X contains 2k columns as well 
as 2k rows. The elements of the column Y in Table 2 are the observations re- 
corded at each of the 2k experiments. The estimate of the effect ij *.. k is 
obtained by taking the sum of products between the elements of Y and the 
corresponding elements of the column ij ... k and dividing this product by 
N/2 where N = 2k, e.g., 

ij ...k effect = 2 E y{i.j. .. k} (2) 

where {i.j. ... k } stands for the elements of the ij ... k column and the summa- 
tion is taken over all N products. Thus, using the data from Table 2 the 1 3 
interaction effect is 

13 = (2- 10 + 8- 12 -6 8-6 +4)= -3.0. 

where here and henceforth numerals appearing in bold type are used to identify 
the main effects and interactions. Solving for all the effects gives: 

Main Effects Two-factor Interactions Three-factor Interaction 

1 = 3.0 12 = -2.0 123 = zero 
2 = 1.0 13 = -3.0 
3 = -2.0 23 = -3.0 

Each estimated effect has variance 

Variance (effect) = 4a2/N (3) 
where -2 is the variance of the individual observations. 

The average is obtained by taking the sum of products of the column I with 
the observation column Y and dividing the result by N, thus 

average = = E y {I}/N. (4) 
Thus y = 56/8 = 7.0 with variance o2/N. By this process 2k estimates can be 
obtained from 2k runs and when k is large the wealth of such estimates becomes 
almost an embarrassment. However, in many practical situations, the higher 
order interaction effects can .often be hopefully supposed to be negligible 
in size. For example, with continuous variables it is reasonable to expect the 
response to vary smoothly. When factorial designs are correctly used to study 
qualitative variables it is because certain aspects of similarity are expected 
in the'responses at the different versions. Thus, two solvents and two differently 
shaped particles may with profit be studied in a factorial design when at least 
some aspect of similarity in behavior of these variables might be expected. 

In the conditions of smoothness and similarity commonly encountered, the 
three-factor and multi-factor interaction effects are often negligible. When 
this is the case, fractional designs using a smaller number of runs may be em- 
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ployed for although in these fractional designs the effects of the major interest 
are confused with higher order effects, nevertheless, the latter are small enough 
to be ignored. In some situations the total number of variables k is large, but 
only a few (say p = 2 or 3) are expected to have any effect. In this situation 
designs which are fractional in the k variables may be chosen which have the 
property that they are complete factorials in any sub-group of p variables. 

For illustration, we first discuss the one half fraction of the 24 design. 

One-half Fraction of the 24 Factorial 

Since the design is to contain 24-" = 8 runs a 23 factorial design is first written 
down. The - and + elements associated with the 1 2 3 interaction column then 
are used to identify the - and + versions of variable 4. The resulting eight 
combinations shown in Table 3 give a particular half replicate or "fractional" 
of the complete 24 design. A (1) fraction of a 2k factorial design is called a 2k- 

fractional, or more exactly, a 2k-p fractional factorial. The present design is 
therefore a 24-l fractional. 

TABLE 3 

Constructing the 24-1 Fractional Factorial Design 

Design Matrix Observations 
1 2 3 123=4 Y 

- - - - 8.7 
+ - - + 15.1 
- + - + 9.7 
+ + - 11.3 
- - + + 14.7 
+ - + - 22.3 
- + + - 16.1 
+ + + + 22.1 

With a full 24 design, sixteen effects can be estimated: the grand average, 
four main effects, six two-factor interactions, four three-factor interactions and 
a single four factor interaction. With only eight observations it is clearly im- 
possible to obtain sixteen independent estimates. We note that the combina- 
tion of observations used to estimate the main effect 4 is identical to that used 
to estimate the three-factor interaction effect 1 2 3. The estimates of 4 and 
1 2 3 are said to be confounded. The "4" effect really estimates the sum of the 
effects of 4 and 1 2 3. 

Study of Table 3 will show that other estimates such as 1 2 and 3 4 are also con- 
founded. It is desirable to have a general method which enables one to determine 
which effects are confounded. This is accomplished for this design by inducing 
the equality 4 = 1 2 3 where the multiplication product 1 2 3 refers to the multi- 
plication of the individual elements in the corresponding columns 1, 2 and 3. 
Now it is obvious that by multiplying the elements in any column by a column 
of identical elements, a column of plus signs will result. Since a column of plus 
signs corresponds to I we have 1 X 1 = 12 = I and similarly that 22 = I, 32 = I 
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and 42 = I. This identity supplies the key to the remaining relationships. On 
multiplying both sides of the equation 4 = 1 2 3 by 4 we get 

42 = 1 2 3 4 that is I = 1 2 3 4. (5) 

This identity is readily confirmed for if the elements in columns 1, 2, 3 and 4 
are multiplied together we obtain a column of plus signs, that is I. 

The interaction 1 2 3 4 associated with I is said to be a generator of the design. 
In this particular instance there is only one generator so this provides the defining 
relation I = 1 2 3 4 which is the key to all the relationships which exist between 
the effects. 

Aliases and Linear Combinations of Effects 

Suppose we wish to know which effect is confounded with the main 
effect 3. Multiplying both sides of the defining relation by 3 gives 3 = 1 2 32 4 = 
1 2 I 4 = 1 2 4 since multiplication by I (a column of plus signs) leaves the 
elements in any column unchanged. Thus, the main effect 3 is confounded with 
the three-factor interaction 1 2 4. Similarly, we find that the two-factor inter- 
action 3 4 is confounded with 1 2 and so on. The quantities so associated are 
called aliases. If we now proceed to estimate the main effect 3 we will in fact 
obtain the sum of the estimates of the main effect 3 and the three-factor inter- 
action 1 2 4. The estimate of 3 is really an estimate of the combination of the 
effects 3 + 1 2 4. Eight linear combinations of effects t , t , t, * * are available. 
Thus t, = E y{ 1 } or equally l = 4 E y{2 3 4}. Similarly t = I E y{1 2} 
or equally 12 = i E y{3 4}. Using the defining relation we find that these 
linear combinations estimate the quantities given in Table 4, the subscript on the 
t's identifying the first effect in the linear combination. 

TABLE 4 

A = average + 12 3 4 4 = 4 + 12 3 

I =1 +234 t12 =12+34 

2= 2+134 ,13 =13+24 

3 = 3 + 1 24 14 =14+23 

The variance of these estimates is (r2/2. The average y has variance o2/8. 
On studying Table 4 we see that the two-factor interactions are mutually 

TABLE 5 

The eight linear combinations of effects from a 24-1 design 
with defining relation I = 1 2 3 4 

A = average +1234 = 15.0 4 = 4 + 1 2 3 = 0.8 
l = 1 + 2 34 = 5.4 12 = 1 2 + 34 = -1.6 
2 = 2 + 1 34 = -0.4 13 = 13 + 24 = 1.4 
3 = 3 + 124 = 7.6 14 = 14 +23 = 1.0 
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confounded in pairs, but assuming that the three and four factor inter- 
actions are either non-existent or negligible the estimates 4 , A1 , t , t3 and t4 

can be taken to be estimates of the average and the main effects 1, 2, 3 and 4. 
If, furthermore, prior knowledge is available that, for example, the 3 4 inter- 
action effect was negligible, then the estimate t12 could be taken to estimate 
the 1 2 interaction effect alone. 

The Alternative Fraction 

In the above example, in forming the 24-1 design, the factor 4 was associated 
with the three-factor interaction 1 2 3. In standard ordering, the elements of 
the three-factor interaction column, and hence of factor 4, are 

- + + - -+. 

The factor 4 can either use these elements as they stand, or it can be associated 
with the negative of the 1 2 3 effect, that is, with the elements 

+- - + - ++-. 

In the first case 4 = 1 2 3 that is I = 1 2 3 4, and in the second case -4 = 1 2 3 
that is I = -1 2 3 4. The designs for these two 24-' fractional factorials are given 
in Table 6. The two parts together constitute a complete 24 factorial design. 

TABLE 6 

The Design Matrices for the two 24-1 Fractional Factorials 
with Defining Relations I = 1 2 3 4 and I = -1 2 3 4. 

Defining Relation Observations Defining Relation Observations 
I = 1234 I = -1234 

1 2 3 4 1 2 3 4 
-1 -1 -1 -1 8.7 -1 -1 -1 1 11.8 

1 -1 -1 1 15.1 1 -1 -1 -1 13.6 
-1 1 -1 1 9.7 -1 1 -1 -1 9.2 

1 1 --1 --1 11.3 1 1 -1 1 14.6 
-1 -1 1 1 14.7 -1 -1 1 -1 15.8 

1 -1 1 -1 22.3 1 - 1 1 24.0 
-1 1 1 -1 16.1 -1 1 1 1 16.4 

1 1 1 1 22.1 1 1 1 -1 24.2 

Table 6 shows a further set of observations associated with the second frac- 
tion. In Table 7 eight linear combinations of effects 4, , t4 , , *.. associated 
with the fraction having defining relation I = -1 2 3 4 are given. If both frac- 
tions are present, then simple addition and subtraction of the t and t' linear 
combinations will provide unconfounded estimates of all the effects. For ex- 
ample, the main effect 1, unconfounded with the 2 3 4 interaction is given by 
?(t + 4O) = 5.6. Similarly, the 2 3 4 interaction unconfounded by the main 
effect 1 is obtained from ?(f - 4t) = -0.20. The average response, when both 
fractions are present, is given by ? (4 + ti) = 15.6. 

The estimates obtained by taking the sums and differences of the linear 
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TABLE 7 

The eight linear combinations of effects from a 24-1 design 
with defining relation I = -1 2 3 4 

ft = average - 1234 = 16.2 t = 4 - 123 = -1.0 
4 =1- 234= 5.8 412 = 12 - 34 = 0.8 
t =2-134= -0.2 t13=13-24= 2.2 

t3 = 3 -124 = 7.8 t4 =14= - 23 - 0.6 

combinations computed from the individual fractional factorials are the same 
as would be obtained from an analysis of a full 24 design. 

The ? Fractions of the 2k Designs 

Any interaction or main effect can be used to split a full 2k factorial into two 
half fractions. However, given the assumptions that the higher the order of 
the interaction the less likely the effect is to occur, there is clearly an advantage 
in using the interaction of highest order to make the split. The generator is then 
1 2 3 * k and the defining relation I = 1 2 3 * * k. 

The 2 fractions of all the 2k factorial designs are best obtained by first writing 
down the design matrix for a full 2k-1 factorial and then adding the kth variable 
by identifying its + and - versions with the + and - signs of the highest 
order interaction 1 2 3 ... (k - 1). Thus the 23-' factorial is constructed by 
writing down the design matrix for the 22 factorial and then equating variable 
3 with the 1 2 interaction. Similarly, the 25-1 factorial is given by writing down 
the sixteen runs of the 24 and then equating the signs of variable 5 with the 
signs of the 1 2 3 4 interaction. The defining relations for these ? replicate designs 
are thus 

Design Defining Relations 

23-1 I1=123 

24-1 1=1234 (6) 

25-1 I= 12345 

The extension to the half-replicate designs for k > 5 is obvious. However, 
for k > 5 these half-replicate designs permit the estimation of a plethora of 
linear combinations of effects, many of which are combinations of higher order 
interactions solely. We are therefore interested in still smaller fractions of the 
2k designs, that is, in the 2k-' fractional factorials for p > 1. For such designs 
there is not one, but p generators which combine to provide the defining rela- 
tion. Before discussing these designs, it is profitable first to discuss their areas 
of application. 

2: AREAS OF APPLICATION 

Fractional designs are of value in a number of different circumstances: 

1) where certain interactions can be assumed non-existent from prior 
knowledge, 
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2) in "screening" situations where it is expected that the effects of all but 
a few of the variables studied will be negligible, 

3) where groups of experiments are run in sequence and ambiguities re- 
maining at a given stage of experimentation can be resolved by later 
groups of experiments, 

4) where certain variables, which may interact, are to be studied simul- 
taneously with other variables whose influence, if any, can be described 
by main effects only. 

Some Interactions Non-Existent, A Priori 

As already noted, when properties of smoothness and similarity exist, inter- 
actions between three or more variables are often negligible. In addition, the 
physical nature of a problem is sometimes such that certain interactions must 
be small or non-existent. In these circumstances we can then use arrangements 
in which the effects expected to be real are confounded only with interactions 
expected to be negligible. For example, in Table 3 the estimate of the 1 2 3 
interaction effect is perfectly confounded with the main effect 4. Under the 
assumption that the three-factor interaction is small, the estimate can be taken 
as the main effect of 4 alone. 

In most practical situations, to say that we assume, a priori, that certain 
effects are negligible would be too strong. Frequently, limitations of time and 
money do not allow the luxury of the certainty obtainable from exploring an 
entirely comprehensive model which allows for every contingency. We tentatively 
entertain the possibility of negligible interactions and try to check assumptions 
as the evidence unfolds. 

Screening Situations 

Situations often occur where not very much is known about the variables 
that influence some response. Any subset of a large number of variables might 
be important, but which variables form this subset is unknown. Although 
usually the number of variables under study will be greater than four, the 
application of fractionals to this situation can be illustrated with the 24-1 design 
given in Table 3. It will be seen that if any one variable out of the four produces 
a large effect, then no matter which variable it is, the design may be regarded 
as a 21 factorial replicated four times in the important variable. If any two 
variables are producing large effects, the design becomes a full 22 factorial 
replicated twice in these variables. If any three variables are producing large 
effects, again the design becomes a full 23 factorial in these variables. Fractionals 
for use in screening situations which are replicated factorials for any number 
up to three variables out of sixteen can be obtained using only thirty-two runs. 
For picking out the two or three important variables from among a large group 
of variables, these designs are very useful. 

Sequential Groups of Experiments 
Fractional factorials are of considerable value in the common situation where 

experiments are performed in sequence. Having performed one fraction, the 
results can be reviewed and where there is ambiguity due to the confounding 
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of particular estimates, or experimental error, a further group of experiments 
can be selected to resolve the uncertainty. 

Simultaneous Study of "Major" and "Minor" Variables 
It sometimes happens that there exists a group of "major" variables whose 

study is the chief objective of the investigation. In addition there may be a 
number of "minor" variables which are expected to have negligible effects. 
Fractional designs are available in which both kinds of variables are included 
simultaneously, the main effects and interactions of the major variables esti- 
mated without bias, and the main effects of the minor variables checked. The 
assumption made is that interactions between the minor variables will be 
negligible. 

3: SPECIAL TYPES OF 2k FACTORIALS 

Fractional factorial designs can, for convenience, be divided into types. In 
general the higher the degree of fractionation the more comprehensive the 
assumptions needed to make unequivocal interpretation possible. The following 
three types of designs are discussed: 

(i) Designs of Resolution III in which no main effect is confounded with 
any other main effect, but main effects are confounded with two-factor 
interactions and two-factor interactions with one another. The 23- 
design is of Resolution III. 

(ii) Designs of Resolution IV in which no main effect is confounded with 
any other main effect or two-factor interaction, but where two-factor 
interactions are confounded with one another. The 24-1 design is of 
Resolution IV. 

(iii) Designs of Resolution V in which no main effect or two-factor inter- 
action is confounded with any other main effect or two-factor interaction 
but two factor interactions are confounded with three factor interactions. 
The 25-' design is of Resolution V. 

In general, a design of resolution R is one in which no p factor effect is confounded 
with any other effect containing less than R - p factors. 

To identify the resolution of a fractional factorial design, the appropriate 
Roman numeral subscript is used. Thus, rewriting Equation (6) along with the 
defining relations for both one-half functions we have 

Design Defining Relations 

23I1 I = 4-?123 

24;1 I = ?1 234 (7) 

25-1 I = ?12345 

In the above a word refers to a combination of elements such as 1 2 3, 1 2 3 4. 
In general the resolution of a design is equal to the smallest number of characters 
in any word appearing in the defining relation. 

4: RESOLUTION III DESIGNS 

Designs of resolution III are available which require only N runs to study up 
to N - 1 variables, where N is a multiple of four. We first discuss the arrange- 
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ments for which N is a power of two. Particularly important designs are those 
for testing three variables in four runs, seven variables in eight runs and fifteen 
in sixteen runs. Two level designs for studying eleven variables in twelve runs, 
nineteen variables in twenty runs, etc., are derived by a somewhat different 
method due to Plackett & Burman (6), and are described later. 

Designs for studying k = N - 1 variables in N runs may be called saturated 
designs. We introduce these designs by first considering a fractional for testing 
k = 7 variables in N = 8 runs. The complete factorial would require 27 = 128 
runs. We are considering therefore a one-sixteenth (i.e., a 2-4) fractional, that 
is, a 27 i design. Since the design uses 23 8 runs, we start construction of the 
design matrix with the 23 factorial, and then associate four additional variables 
with the plus and minus signs of the four interaction columns. For example, 
we may set 

4=12, 5 = 13, 6=23, 7=123 (8) 

to obtain the following 27j- design 

TABLE 8 
The Design Matrix for a 27-' Design 

1 2 3 4 =12 5 13 6=23 7= 123 

- - + + +- 
+ - - - - + 
- + - + - + 

+ + - + - _ _ 
_ _ + + - 
+ - + - + _ 
- + + - _ + 

+ + + + + + + 

The identifications in Equation (8) provide the generating relations 

I1=124, 1=135, 1=236, 1=1237 (9) 

associated with the generators 1 2 4, 1 3 5, 2 3 6 and 1 2 3 7. Now clearly, if 
I = 1 2 4 and I = 1 3 5 then also I = 1 2 4 X 1 3 5 = 12 2 3 4 5 = 2 3 4 5. 
Whence it follows for example that 2 3 and 4 5 are confounded. Thus, when there 
is more than one generator, the defining relation must contain not only the rela- 
tions provided by the generators themselves, but all those obtained from all their 
possible products. The complete defining relation for this 27II design is obtained, 
for example, by taking the generators first one at a time and then multiplying 
them together in all possible ways. Taking them one at a time gives I = 1 2 4 = 
1 3 5 = 2 3 6 = 1 2 3 7. Multiplying them together two at a time gives 

I = 2 3 4 5 = 1 3 4 6 = 347 = 1 2 5 6 = 2 5 7 = 1 6 7, 

three at a time gives: 

I = 4 5 6 = 1 4 5 7=2 4 6 7 = 3 5 6 7, 
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and finally, four at a time gives: 

I = 1 2 3 4 5 67. 

The complete defining relation for this 27j4 design is therefore 

I = 124 = 135=236 = 1237 = 2345 = 1346=347 

=1256 = 257 =167 =456 = 1457 = 2467= 3567 (10) 

=1234567. 

As before, the defining relation quickly provides the alias structure for any 
effect, that is, indicates which effects are confounded. For example, multiplying 
the defining relation through by 1 we obtain 

1 = 24 = 35 = 1236 =237 =12345 = 346 = 1347 = 256 

= 1257 = 67= 1456 = 457 = 12467= 13567=234567. 

Thus the interactions 2 4, 3 5, 1 2 3 6 etc., are seen to be aliases of, or confounded 
with, the main effect 1. Similarly, multiplying through by 1 2 3 we obtain 

123 = 34 = 25 = 16 = 7 = 145 = 246 = 1247 

=356= 1357 = 2367= 123456 = 23457 

=13467 = 12567 = 4567. 

Thus the three-factor interaction 1 2 3 is an alias of, or confounded with 3 4, 
2 5, 16, etc. Since the resolution is determined by the smallest number of 
symbols forming any word in the defining relation, the design is of resolution 
III, as we have already noted. 

In this example, if we write tA = I y{1}, 42 = 1 y{2}, etc, and if we 
assume that all interactions between three of more variables are negligible, 
then by repeated use of the defining relation we obtain: 

At = average 

t = 1+ 24 + 35 + 67 

2 =2+ 14 + 36 + 57 

= 3 + 15 + 26 + 47 

A =4 + 12 + 56 + 37 

t = 5 + 13 + 46 + 27 

4 = 6 + 23 + 45 + 1 7 

= 7 + 3 4 + 2 5 + 1 6. 

The Alternative Fractions 

In writing down the design matrix for the 27'f fractional, the variables 4, 5, 6 
and 7 were identified positively with the elements of the interactions 1 2, 1 3, 
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2 3 and 1 2 3 respectively. However, each of these identifications could have 
been made with either a plus or minus sign. For example, instead of associating 
the variable 4 positively with the interaction 1 2, that is taking 

+- - --- -t- - - + 

for its elements, the variable 4 could be associated negatively with the elements 
of 1 2, that is: 

The first association gives 4 = 1 2 or equivalently I = 1 2 4. The second associa- 
tion yields 4 = -1 2 or equivalently I = -1 2 4. We could, in fact, have used 
any one of the sixteen identifications corresponding to the sixteen possible 
choices of signs 

I = 1 2 4, I = ?13 5, I = 2 3 6, I = ?1 2 3 7. (12) 

The sixteen possible identifications give the sixteen individual fractions which 
together yield the complete 27 design. In composing the defining relation for 
any one of the sixteen designs the usual rules of algebraic multiplication determine 
the signs in the defining relation and hence in the alias pattern. 

Another one of these sixteen fractions is, for example, that in which variables 
5 and 6 are associated with the elements of the interaction vectors 1 3 and 2 3 
taken negatively, The generators for this design are: 

1 24, -135, -2 3 6, 1 2 3 7, (13) 

and the corresponding defining relation is: 

I 1 2 4 = -1 3 5 = -2 3 6 = 1 2 3 7 =-2 3 45 = -1 3 46 = 3 4 7 

=1 2 5 6 =-2 5 7 = -1 67 = 4 5 6 = -1 45 7 = -2 4 6 7 

=3567=1234567. 

Assuming as before that all interactions between three or more variables are 
negligible, we see that this fraction allows the estimation of eight somewhat 
different combinations of effects 

I = average 

I = 1+24-35 -67 
' = 2+14 -36-57 

f = 3-15-26+47 (14) 

t = 4+12+ 56 +37 

5 = -5 +- 13-4 6 + 2 7 

. = -6 + 2 3 - 45 + 17 

ft = 7+34-2 5-16 
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where the use of the prime notation on the t's indicates only that some alterna- 
tive function is under consideration. We see that Eq. (14) is identical to Eq. (11) 
with the numerals 5 and 6 having minus instead of plus signs. 

Families of Fractionals 

In the above example, there are 24 = 16 different 274 designs, each design 
corresponding to a particular choice of signs from among the generators 
?1 2 4, :1 3 5, ?2 3 6 and ?1 2 3 7. When the generators of a fractional 
factorial design associated with the identity I all have positive signs, they are 
called the principal generators. The defining relation obtained by multiplying 
out the generators is similarly called the principal defining relation, and the 
corresponding fractional factorial the principal fraction. Individual member 
fractions obtained from changes of sign in the generators are said to belong to 
the same family. In general, a 2k-~ fractional factorial design will have p gener- 
ators, and the 29 ways of allocating plus and minus signs to the generators will 
produce the 2" different fractions belonging to the same family. 

In general, a 2k-I design will have f independent generators G , G2, * * , Gf. 
An independent generator is such that it cannot be obtained by multiplying 
together the other generators, and is identified by the original association 
adopted in writing down the design. A defining relation for a particular fraction 
will contain 2f words obtained by multiplying out (I ? G,) (I ? G2) .. (I 4 Gf). 
The 2f different fractions have defining relations given by the 2f different ways 
of allocating plus and minus signs in this product. The defining relation for the 
principal fraction is given when all signs are plus. The alias pattern for any of 
the non-principal fractions is simply obtained by making the appropriate changes 
of sign in the alias pattern for the principal fraction. 

Resolution III Designs Containing 16 and 32 runs. 

The principal fraction of the 2j15- design is obtained by first writing down 
the sixteen runs of the complete 24 design and then associating an additional 
eleven variables with the interactions 1 2, 1 3, 1 4, 2 3, 2 4, 3 4, 1 2 3, 1 2 4, 
1 3 4, 2 3 4, and 1 2 3 4. Similarly, the thirty-two runs comprising the 2II26 
factorial are obtained by writing down the complete factorial for five variables 
and then equating the additional twenty-six new variables with their inter- 
actions between the original five variables. 

Effect of Dropping Variables 

For intermediate values of k resolution III designs may be obtained by omitting 
variables from the resolution III design of next higher order. For example, 
to test six factors in eight runs we can use the 27'- design dropping out any 
one column in its design matrix. The alias relationships remain the same except 
that all words containing the characters associated with the dropped variables 
are omitted from the alias structure, and from any estimates of linear combina- 
tions. For example, dropping the columns 3 and 5 from the design matrix for 
the fractional given in Table 8 yields the 2 frail givn in T 8 yie t design shown in Table 9. 
We can select the variables to be dropped out so that the most satisfactory 
alias arrangements exist among those remaining. 
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TABLE 9 

Design Matrix 2~52 

Defining Relation I = 1 2 4 = 1 6 7 = 2 4 6 7. 

1 2 4 6 7 

_ _ + +- 
+ - - ++ 
- +- - + 

_ _ + - + 

- + - + - 
+ + + + + 

Although it is true that a fractional of resolution R in a reduced number 
of k - d variables can always be obtained by omitting d variables from a k 
variable fractional of resolution R, nevertheless a particular design obtained 
in this manner does not necessarily provide the best arrangement possible. 
For instance, if we drop variables 3, 5, 6 and 7 from the principal fraction 27-4 
design with generators 1 2 4, 1 3 5, 2 3 6 and 1 2 3 7 we are left with a design 
in the three variables 1, 2 and 4 along with the unresolved generator 1 2 4 and 
hence the defining relation appropriate to a design having only four runs. On 
inspection we find that our eight factor combinations in the three remaining 
variables consist of two replications of the four run half-replicate design defined 
by I = 1 2 4. This design is of resolution III, of course, but in many cases we 
would prefer to use the eight runs to perform a full factorial in the variables 
1, 2 and 4. A full factorial would have been obtained had we, for example, 
dropped variables 1, 2, 3 and 7. 

The defining relation for the design obtained after dropping d variables will 
contain all those words in the original defining relation which do not contain 
any of the dropped numerals. Suppose among the f generators of the original 
design there are d generators that contain dropped variables, and f - d generators 
that do not. A set of generators for the derived design will contain all the f - d 
generators not containing dropped variables together with the largest set of 
independent products not containing dropped variables which can be found by 
multiplying the remaining generators. 

For example consider again the resolution III design with generators 
G, = 1 2 4, G2 = 1 3 5, G3 = 2 3 6 and G4 = 1 2 3 7. Suppose variable 1 is 

dropped. Since G3 = 2 3 6 does not contain 1 this generator will be included in 
the generators for the derived design. From the remaining generators we can 
obtain the products G,G2 , G1G4 and G2G4 none of which contain the dropped 
variable 1. Only two of the three products may be used since, having taken two 
of them, the third may be obtained by multiplication. For example, 
G1G2. GG4 = GG4 . In general, a group of p words (such as the products we 
are considering here) are said to be independent if no one of them can be obtained 
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by multiplying together some subset of the remaining p - 1. In this example 
then, a set of generators for the design derived after dropping 1 are 2 3 6, 2 3 4 5 
and 3 4 7 (that is, G3, G,G2 and G1G4). 

At best, the'effect of dropping d variables is to produce a design having d 
fewer generators. However, this represents the maximum reduction in generators 
possible, and particular choices of dropped variables may produce a smaller 
reduction in the number of generators. Of course, the greater the number of 

generators, the more words there will be in the defining relation and corre- 

spondingly, the more aliases for the remaining effects. 

Effect of Combining Fractions from the Same Family 
If we take the original fraction of the 27-~ together with the second fraction 

in which the signs of 5 and 6 are switched, and take one-half the sums and differ- 
ences of the respective linear combinations of effects we can estimate the follow- 

ing quantities (assuming all interactions with more than two factors to be nil). 

Fro the From the Sums From the Differences 

(r + ft) = Grand average (f1 - tf) = Block effect 

+ t) = 1 +24 (,- ) =3 5+67 

(t + ) = 2 + 1 4 (t2 - t) = 3 6 + 5 7 

(f3 + ) = 3 + 4 7 (f3 - f) = 15 + 2 6 (15) 

(4 + 4g) = 4 + 1 2 + 5 6 + 3 7 (t4 - 4) = higher order interactions 

(46 + 4) 3 + 2 7 2(4 - ) 5 + 4 6 

(t. + t) = 2 3 + 1 7 ? - f )- = 6 + 4 5 

(7 + 7) = 7 + 3 4 (7 - 
7) = 2 5 + 1 6 

In general when two fractions from the same family are combined, the sums 
and differences of the corresponding linear combinations of the effects determine 
the effects which can be estimated from the combined design. The "block effect" 
referred to in Eq. (15) is the difference in average level between the first and 
second groups of eight runs. 

Combining Fractional Factorials to Separate Effects 

The procedure of adding fractions in sequence with suitably switched signs 
provides a useful method for the systematic isolation and confirmation of 
important effects in multi-variable systems. The method is very flexible and 
can be used in different ways as different situations unfold. 

Mention will be made of two particular uses of this device: (1) the addition 
of a second fraction in which the signs in a single column are switched and, (2) 
the addition of a second fraction in which the signs in all the columns are switched. 

Switching Signs for a Single Variable 

Suppose a fractional factorial is generated by switching the signs associated 
with only the variable 1 in the 27`4 factorial given in Table 8. Then the linear 
combinations that can be estimated from this fraction (given that the three- 
factor and higher order interactions are negligible) are the following 
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I = Average 

4t = -1 + 2 4 + 3 5 + 67 
t = 2-14+36+57 
3 = 3-15+26+47 
4= 4-12+56+37 (16) 

4= 5-13+46+27 
64= 6+23+45-17 

7 = 7+34+25-16 

Combining this fraction with the principal fraction, the following linear com- 
bination of effects are obtained from the combined design 

From W( + t) From (t - t) 

Average Block effect 

24+35+67 1 

2+36+57 14 

3+26+47 15 

4+56+37 12 (17) 
5+46+27 13 
6+23+45 17 

7+34+25 16 

We see that by adding to a fraction a further fraction with the signs for a single 
variable reversed, we isolate the main effect of that variable together with all 
of its two-factor interactions. Given any fractional of resolution III or higher 
and a second fractional identical to the first except that the signs of a single 
variable are switched, then the combined design will provide estimates of the 
main effect of the switched variable and all its associated two-factor interactions 
unbiased by any other main effect or two-factor interaction. 

Switching Signs for All Variables 

By switching signs for all seven variables given in the principal fraction we 
can estimate the following linear combinations 

t = Average 

- = -1 + 2 4 + 3 5 + 6 7 
4 = -2 + 14+ 3 6 + 5 7 

' = -3 +15 + 2 6 + 47 (18) 
4 = -4 + 12 + 56 + 37 
4 = -5 + 13+ 46 + 2 7 
t = -6 + 2 3 + 4 5 + 17 

= -7 + 3 4+ 2 5 + 16 

By combining this fraction with the principal fraction all the main effects can 
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be estimated clear of all the two-factor interactions. The two-factor interactions 
in turn will associate themselves in groups of three in accordance with the 
following scheme 

From (4 + f') From ( - V') 

Average Block effect 

24+35+67 1 

14+36+57 2 

15+26+47 3 

12+56+37 4 (19) 

13+46+27 5 

23+45+17 6 

34+25+16 7 

This is a special example of a general principle, [14], which states that if any 
fractional is replicated with reversed signs, then all alias links between main 
effects and two-factor interactions are broken. 

It should be noticed that although there are 27 = 128 ways of switching 
signs, there are only 24 = 16 of these switches that result in different designs. 
This must be so since there are only 24 different 27-4 fractions belonging to the 
same family. It is easily confirmed by actual trial that the same design can be 
produced by a number of alternative sign switching arrangements, although 
the order in which the experimental runs appear may be different. The situa- 
tion is made clear by considering only the generating relations for the principal 
fraction of the 247 that is: 

I1=124, I1=135, I1=236, 1=1237. 

It will be obvious for example that switching the signs of variables 4, 5, 7, or of 
variable 1, produces exactly the same effect. In each case the generating relations 
are: 

I = -124, I = -135, I1=236, I = -1237 

Generators for Aggregate Designs 

Suppose the principal fraction of the 2 7- given in Table 8 is run. The 
generating relations for this design are 

Is = 12 4, I = 13 5, Is = 23 6, Is = 1 2 3 7 

where the notation Is refers to a column of eight plus signs. Now suppose we 
perform a further series using a second 27~I from the same family as, for example, 
the fraction in which the variable 1 is run with reversed signs. The combined 
design formed from the two pieces is now a 27-3 factorial. Since it is a one- 
eight replicate, it will have three generators, not four. How can these generators 
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be identified? We note now that the generators for the second fraction are 

I s = -12 4, Is = -13 5, Is = 23 6, Is = -123 7. 

It is clear that the generator 2 3 6 must be one of the generators for the combined 

design for in both pieces of the design I8 = 2 3 6. Consequently if I1l represents 
the column of sixteen plus signs associated with the complete design, then 
also I16 = 2 3 6. 

In asking what are the generating relations for the complete design we must 
first ask the question, "For which combinations are the products of the ele- 
ments everywhere equal to I,e ?" Now we observe that 1 2 3 7 has the value 
Is in the first set of eight runs, and -Is in the second set. Thus, 1 2 3 7 is not 

equal to I1e and is therefore not a generator of the combined design. Similarly, 
1 2 4 and 1 3 5 also are not generators for the complete design. 

Now clearly for the first part of the design 

Is = (1 2 4)(1 3 5) = 2 3 4 5, 

and also for the second part 

I8 = (-1 24)(-1 3 5) = 2345. 

Thus it is true for the complete design that 

I1e = 2 3 4 5. 

Similarly, multiplying 1 2 4 by 1 2 3 7 it is true for the complete design that 

I16 = 3 4 7. 

A third product is possible, obtained by multiplying 1 3 5 by 1 2 3 7 to give 

I1 = 2 5 7. 

Now (2 3 4 5)(3 4 7) = 2 5 7 and since it is a property of generators that no 
individual generator can be obtained from the others, we include in the new 
set of generators any two of the three derived above. Thus, the generating 
relations for this 273 design are 

11 = 2 3 6, Il = 2 3 4 5, Il = 3 4 7 

and the corresponding defining relation is 

Il6 = 2 3 6 = 2 3 4 5 = 3 4 7 = 4 5 6 = 2 4 6 7 2 5 7 = 3 5 6 7 

From the above it will be seen that a general rule for finding generators for 
a design derived from two fractions from the same family each defined by 
generating relations of the kind 

Fraction 1: I = = A = B = =C = * 

Fraction 2: I = -A = -B = C * * 

is as follows: 

Suppose there are U words of unlike sign and L words of like sign in 
the two identities. Then U + L - 1 words which are generators of the 
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new design will contain the L words of like sign together with U - 1 
words obtained as independent even products of the U words of unlike 
sign. 

In the above an even product is a product between an even number of words 
(usually two). This rule can be applied quite generally not only for combining 
designs of resolution III, but for combining any pair of fractionals belonging to 
the same family. As a further example, suppose two 27-4 fractions were combined 
with generating relations: 

I= -124, I= -135, I1=236, I= --1237 

and 

I= -124, I= 135, I = -2 3 6, I= 1237 

(The first fraction can be obtained from the principal fraction of the 2i7-4 by 
reversing the sign of variable 1, the second fraction by reversing the signs of 
variables 1 and 3.) Then the generators for the complete design are -1 2 4 
and any two of the three words obtained from the even products of -1 3 5, 
2 3 6 and -1 2 3 7 to give the generating relations: 

I = -124, I= -12 5 6, 1=257. 

The reader will notice that switching to an alternative set of permissable gener- 
ators leaves the design unchanged for it produces the same defining relation. 
Thus, in the above, if we had used the generators -1 2 4, -1 2 5 6 and -1 6 7 
the defining relation obtained by multiplying out these generators would have 
been identical to that obtained before. 

Alternative Choice of Generators 

A particular fractional has an unique defining relation for a given design. 
There are however a number of different but equivalent choices of generators 
all of which lead to the same defining relation and the same design. Therefore, 
although we may speak of the defining relation for a design, we should properly 
refer to a choice of generators. In general, suppose G , G2, ... , Gf are a set of 
generators, necessarily independent, for a particular design. Then any other set 
of f independent generators derived by multiplication will be equivalent and will 
produce the same defining relation and be associated with the same design. The 
generators satisfy the same rules of multiplication as before, that is, 
G = = G2= * = Gf = I. To see that this is so suppose that G, = 1 2 3, then 
G = 12223 = I. If we have four generators G , G2, G3 and G4 for a particular 
design, then G,G2, G1G , GIG4 and G1G2G3 will be an alternative set of genera- 
tors, but G1G2 , G,G3 , GIG4, and G1G2G3G4 will not since G1G2.G3IG.,GG4 = 

G,G2G3G4 . In particular, suppose we are interested in the fully saturated 
2`i3 design with generators G1 = 1 2 4, G2 = 1 3 5, G3 = 2 3 6 and G4 = 1 2 3 7, 
then the first legimate alternative set of generators will give 2 3 4 5, 1 3 4 6, 
3 4 7 and 4 5 6 whereas the second "illigimate" choice gives 2 3 4 5, 1 3 4 6, 
3 4 7 and 1 2 3 4 5 6 7, for it is readily confirmed that the last generator is the 
product of the first three. 
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Combining Fractionals Not of the Same Family 

We have seen how by switching signs, fractional factorials may be com- 
bined together to isolate particular effects of interest, and that when fractional 
designs have the same generators except for their signs they are classified as 
being from the same family. Another method for isolating effects that is often 
of value is to combine fractions which are not of the same family. In one interest- 
ing species the numbers are switched in the generators as well as the signs. Possi- 
bilities arising from designs of this sort are presently being investigated. 

Blocking Designs of Resolution III 

Frequently an experimenter may fear that his results may be upset by shifts 
in average performance that occur from day to day, or with different batches 
of raw material. Such systematic sources of variation can often be successfully 
eliminated without biasing the estimates of the effects, or inflating the error 
variance by grouping the runs into "blocks". 

The resolution III designs can be broken into two blocks of equal size by 
identifying the two blocks with the + and - versions of a single variable. 
For example, using the principal fraction of the 27- design with generators 1 2 4, 
1 3 5, 2 3 6 and 1 2 3 7 and using variable 7 for blocking we have the design 
given in Table 10. This design is a 26I in blocks of four runs each. The generators 

TABLE 10 

1 2 3 4 5 6 7=B 

+ .. + + 
- + - + - + 
--+-- + + Block 1 
+A+++++ + 

+- + +- I 
++- + - IBok 
+ -+- + - - Block 2 
- ++- +J 

for the design can now be written 

124, 135, 236 and 123B (20) 

where the letter B replaces the numeral 7 in the last generator to indicate the 
blocking variable. Assuming that three factor and higher order interactions are 
negligible, the defining relation for this design shows that the six main effects 
1, 2, 3, *.. , 6 are each confounded with three two-factor interactions, one of 
which is a two-factor interaction with the blocks. The block effect itself is con- 
founded with three two-factor interactions among the variables. In general, 
any resolution III design can be broken into two blocks of equal size by selecting 
the + and - signs of any one of the variables in the design matrix to identify 
the two blocks. 

Resolution III designs can be broken into four blocks of equal size by identify- 
ing two block variables B1 and B2 with the + and - versions of two of the 

330 



THE 2k-P FRACTIONAL FACTORIAL DESIGNS 

TABLE 11 

Run Variables Blocking Variables Block Variables 
Number 1 = B1 B2 2 3 4 5 6 = B 7 = B B2 B B B1B2 

1 + + - - - 

Block 1 - - + 
2 + + - - + - 

3 - - + +- 
Block 2 + - 

4 - + +-- + 

5 - + - - + - + 
Block3 - + - 

6 - + + - - + 

7 + - + + 
Block4 + + + 

8 + + + + + + + 

variables. For example, starting with the principal fraction of the 2 7-4 design 
and using variables 6 and 7 for blocking we obtain the four blocks of two runs 
each as illustrated in Table 11. Among these four blocks there are three degrees 
of freedom associated with the main effects and the two-factor interaction 
of pseudo-block variables B , B2 identified with the two-way table 

B1 
- + 

- 1,2 3,4 
B2 

+ 5,6 7,8 

The pairs of numbers in the cells of the table denote the runs comprising the 
four individual blocks. The "interaction variable" B1 B2 has precisely the same 
importance as the main effects B1 and B2 . We see that on associating B1 
with variable 6 and B2 with variable 7 we automatically associate a comparison 
between blocks, that is, the interaction B1 B2 with the interaction 6 7. In this 
particular example 1 = 6 7 and hence the plus and minus signs of column 1 
are now no longer available to accommodate an experimental variable. The 
variable 1, therefore, is dropped from the experimental design. Thus, using 
variables 6, 7 and 6 7 to identify the four blocks we obtain the design in the 
variables 2, 3, 4 and 5 in four blocks of two, as shown in Table 12. 

It should be noted here that the two runs comprising each block are "mirror 
images" of one another, that is, within a block the versions of one run are exactly 
reversed in the second run. We will later see that this attribute of blocks of 
size two has important consequences. 

It is usually assumed that block variables corresponding to such characteristics 
as the time of day, batches of raw material, operators, etc., do not interact with 
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TABLE 12 

2 3 4 5 

+ - + - 
- + - + 

The 24v1 in four 
_ - + + 

+ + - - blocks of two runs 

+ - - + each 
- + + - 

+ + + + 

the experimental variables. As always it is wise to regard this as a supposition 
to be tentatively entertained. (Unchecked assumptions are never safe in an 
applied subject.) We can be reminded of our supposition by setting out the 
analysis as if the supposition were not true, that is, by taking B , B2 and B1B2 
as if they were capable of interacting with the variables. If we treat B , B2 
and B1B2 on the same basis as the experimental variables, we have for the 
generators of the design given in Table 12: 

B1B 2 4, BB2 3 5, B1 23 (21) 

As mentioned above, the "interaction" BiB2 between the psuedo block factors 
B1 and B2 represents a contrast between the blocks which is on exactly the same 
footing as B, or B2 . (A mere relabeling of the blocks could change the "inter- 
action" contrast to a main effect contrast B1 .) Consequently, the combination 
B1B2 must be treated as a group having the same status as a single variable. In 
particular, a word such as B1B2 1 must count as a two-factor interaction (between 
variable 1 and one of the block contrasts) and not as a three-factor interaction. 

The generators given in Equation 21 can be used to construct the defining 
relation for the design. Assuming all three-factor and higher order interactions 
negligible we obtain the linear combinations of effects given in Table 13. 

The bracketed values in Table 13 indicate the two-factor interactions which 
could, if they existed, bias the various effects. Usually of course, all interactions 
with blocks can be safely supposed to be negligible. On this assumption the 

TABLE 13 

A = Average 
A = BIB2 + (2 4 + 3 5) 
4 = 2 + (B1B24 + B13 + B25) Linear Combinations of 
43 = 3 + (B1B25 + B12 + B24) Effects Provided by 
A4 = 4 + (B1B22 + B15 + B23) 24v1 in Four Blocks 
45 = 5 + (B1B23 + B14 + B22) of Two Runs Each. 
4 = B1 + (2 3 + 4 5) 
47 = Ba +(34 +25) 
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main effects of the variables 2, 3, 4 and 5 in this design are clear of two-factor 
interactions and the design given in Table 12 is in fact of resolution IV, that 
is, a 24v1 fractional in four blocks of two runs each. 

The Plackett and Burman Designs 
The methods given here allow us to construct resolution III designs suitable 

for exploring k = 3 variables in N = 4 runs, k = 7 in N = 8, k = 15 in N = 16 
and k = 31 in N = 32 runs. It was pointed out by Plackett and Burman in 
1946 [6] that two version designs which gave uncorrelated estimates of first 
order effects were available for exploring k = N - 1 variables in N runs where 
N was any multiple of four, and they presented the design matrices for these 
designs for 4 up to 100 (except for the isolated case of N = 92). When N is a 
power of two, the designs provided by Plackett and Burman are identical with 
one or the other of the families of resolution III designs derived by the methods 
given above. For the cases N = 12, 20, 24, 28 and 36 however, the Plackett and 
Burman designs allow useful gaps to be filled and are presented below. 

The rows of plus and minus signs given in Table 14A are used to 
construct the design matrices for N = 12, 20, 24 and 36 while the design 
matrix for N = 28 is constructed from the nine rows shows in Table 14B. 

TABLE 14A 

k=11 N=12 ++-+++---+- 
k=19 N=20 ++--+ -+-+----++- 
k=23 N=24 +++++-+-++--++--+-+---- 
k =35 N =36 -+-+++----+++++-+4-+--+----+-+-+---- 

TABLE 14B 

k = 27 N = 28 

A B C 

+-++++--- -+---+--+ + -+- - ++-+ 
++-+++--- --++--+-- - ++ -++-++- 
-+++++--- +---+--- +- ++-+-++ 
---+--+++ -+++-+---+ +-+ +-+-+ 
---++-+++ + +- --- ++--++++- 
----+++++ - +-+---+- -+ - ++- - - -+- ++ 
+ ++---+-+ - - + - - - - +- - ++- ++ - - 
+++----++- - +------- - - - +-++- -- -++ 
+++-----?+ -+--+--?---- --4-+++_---- 

To construct the designs for N = 12, 20, 24 and 36 the plus and minus signs 
appearing in the appropriate row of Table 14A are first written down as a 
column. A second column is obtained from the first by moving down the elements 
of the first column once, and placing the last element in first position. This 
procedure is then repeated, moving down the second column one element to 
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produce the third, and so on until all k columns are obtained. Finally a row of 
minus signs is added to complete the design. Thus, for the case of k = 11 variables 

TABLE 14C 

1 2 3 4 5 6 7 8 9 10 11 

+- + - - - ++- ++ 
+ +- _ - - - +- + +- 

+- +- _ + - - - -++ 
- + + - - -- + 

+ + - + + - +- - _ - 
+ + + - + + - + - _ _ 

+ + +- + + - +- - - _ 

c to te wtr u at t t +- 
_ _ _ +- + - + + - + 
+ - - _ _- + + + + _ 

+ - _ +++ + + - 

in N = 12 runs, the design of Table 14C is obtained. To construct the design for 
k = 27, N = 28 the three blocks, A, B and C illustrated in Table 14B are written 
down cyclically 

AB C 

B C A 

and these twenty-seven rows followed by a row of minus signs. 

An Example 

In the start up of a new manufacturing unit considerable difficulty was ex- 
perienced at the filtration stage. Other similar units operated satisfactorily at 
other sites but this particular new unit, although apparently similar in most 
major respects to the other units, gave a crude product which required very 
much longer filtration times. A meeting was called to discuss possible explana- 
tions and to consider ways of curing the trouble. The following variables were 
proposed as being possibly responsible. 

(1) The water supply: The new plant used piped water from the local mu- 
nicipal reservoir. An alternative but somewhat limited supply of water was 
available from a local well. It was proposed that the effect of changing to the 
well water should be tried since it was argued that the well water corresponded 
more closely to the water used at other sites. 

(2) Raw Material: The raw material used was manufactured on the site 
and it was suggested that this might be in some way deficient. It was proposed 
that raw material which had been satisfactorily used in the manufacturing of 
the product at another site should be shipped in and tested locally. 

(3) Temperature of Filtration: This was not thought to be a critical factor 
over the range involved and no special attempt to control this temperature 
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had been made. However, the physical arrangement of the new process was 
such that filtration was accomplished at a somewhat lower temperature than 
had been experienced at other plants. By temporarily covering pipes and equip- 
ment, provision could be made to raise the temperature to the level experienced 
elsewhere. 

(4) Hold up Time: Prior to filtration the product was held in a stirred tank. 
The average period of hold-up in the new plant was somewhat less than that 
used in the other plants but it could be easily increased. 

(5) Recycle: The only major difference between production facilities at the 
other plants and the present one lay in the introduction of a recycle stage which 
slightly increased conversion of the reagents prior to precipitation and filtration. 
Arguments were advanced which accounted for the longer filtration time in 
terms of this recycle stage. Arrangements could be made to temporarily elimi- 
nate the recycle stage. 

(6) Rate of Addition of Caustic Soda: Immediately prior to filtration a 
quantity of caustic soda liquor was added resulting in precipitation of the 
product. The addition rate was somewhat faster with the new plant but it was 
possible to produce slower rates of addition. 

(7) Type of Filter Cloth: The filter cloths employed in this plant were very 
similar to those used at the other sites. However, they did come from more 
recently supplied batch and it was suggested that their performance should be 
compared with cloths from previously supplied batches which were still available. 

In the following design the minus version corresponds to the usual operation 
for the new plant and the plus version to the change. Thus we have 

+ 
(1) water town well 
(2) raw material on site other 
(3) temperature of filtration low high 
(4) hold up time low high 
(5) recycle included omitted 
(6) rate of addition NaOH fast slow 
(7) filter cloth new old 

The 27 -4 design with generators 

I = 125, I = 136, I =237, I-=1234 
was chosen. This design is equivalent to the 27M design considered earlier, 
but is obtained by a different association of variables, that is, 5 = 12, 6 = 13, 
7 = 23 and 4 = 123. Eight experiments run in random order gave the filtration 
times listed below. 

1 2 3 4 5 6 7 Filtration Time 

1 -+ - +++ 68.4 
2 + - -+ - - + 77.7 
3 -+ + - + - 66.4 
4 + + - + - - 81.0 
5 - - + + + - - 78.6 
6 + - + - + - 41.2 
7 - + - - + 68.7 
8 + + + + +++ 38.7 
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The usual analysis gives the estimates 

water t, = 1 +25 +36 +47 = -10.9 
raw material t2 = 2 + 15 + 3 7 + 4 6 = - 2.8 
temperature f = 3 + 16 +27 +4 5 = -16.6 
hold up 4 = 4 +35 +26 + 17 = 0.5 
recycle 4 = 5 +12 +34 +67 = 3.2 
rate of addition NaOH = 6 + 1 3 + 2 4 + 5 7 = -22.8 
filter cloth t7 = 7 +23 + 14 +56 = - 3.4. 

The estimates - 10.9, - 16.6, and -22.8 are suspiciously large when compared 
to the others. The simplest interpretation of the results would be that the main 
effect of the factors 1, 3 and 6 were important. However, many other interpreta- 
tions are possible. Among these would be that the main effects of factor 3 and 6 
and the interaction 3 6 (which is associated with 1) were responsible for the 
observed results. Equivalently the main effects of 1 and 6 with 1 6, or 1 and 
3 with 1 3, could be responsible. It was decided therefore to repeat the design 
with reverse signs, yielding the following results: 

1 2 3 4 5 6 7 Filtration 

+ + + + -- - 66.7 
- + + - + + - 65.0 
+ - + - + - + 86.4 
- - + + - + + 61.9 
+ + -- - + + 47.8 
-+ - + +-+ 59.0 
+ --- + + + - 42.6 

- - - - - - 67.6. .......- - - ~ 67 .6. 

The estimates from this second design alone are 

if = -1 +25+36+47 = 2.5 
2 = -2 +15+37 +46= 5.0 

t = -3 + 16 + 27 +45 = -15.8 
t = -4 + 35 + 2 6 + 17 = 9.2 

5t = -5 + 12 + 34 +67 = - 2.3 
t = -6+13+24+57 = 15.6 

47 = -7 +23 +14 +56 = - 3.3 

Whence by taking sums and differences of the linear combinations provided 
by the two component designs we obtain for the aggregate design 

1= - 6.7 25+36+47=-4.2 
2 = - 3.9 15+ 3 7 + 4 6 = 1.1 
3 = -0.4 16+ 2 7 + 4 5 = -16.2 
4 = - 4.4 35+26+17= 4.9 
5 = 2.8 12+34+67 = 0.5 
6= -19.2 13+24+57= -3.6 
7 = 0.1 23 + 14 + 56 = - 3.4 

on review it seemed likely that the effect -19.2 associated with factor 6, and 
the effect -16.2 associated with the linear combination (1 6 + 2 7 + 4 5) were 
probably real. It was also to be noted that the largest of the remaining effects, 
-6.7, was associated with factor 1. The most likely explanation of the data 
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Slow 65.4 42.6 
Rate of 

Addition of NaOH 
Fast 68.5 78.0 

Reservoir Well 

Water Supply 

FIGURE 1 
Two way table of average responses 

therefore was that variables 1 and 6 both have effects and that they interacted. 
A two-way table of average values exemplifying these effects is shown below 
in Figure 1. It should be noted that the other explanations of the data are quite 
possible. For example the large effect attributed to the interaction between the 
factors 1 and 6 could be attributed equally well to the interaction 2 7 or 4 5. 
The fact that none of the factors 2, 4, 5 and 7 have main effects does not, of 
course, preclude the possibility that their interactions exist. In fact in terms of 
the response surface if the center conditions of the experiment are located on 
the crest of a diagonally running ridge we should expect exactly this situation 
to occur. Of the possible explanations, however, that involving 1 and 6 and 
their two-factor interaction seemed by far the most likely. The crucial test 
was whether the trouble would be cured by using well water and the slowaddition 
rate of caustic soda while leaving the other variables at their usual levels. 

A number of additional trials were run on the plant in which the only modifi- 
cations made were the use of well water with a slow rate of addition of caustic. 
These runs did give satisfactorily short filtration times in the neighborhood of 
forty minutes and the modification was adopted. 

5: RESOLUTION IV DESIGNS 

We have seen that a valuable design can be generated by switching the 
signs of all the variables in a 2`7 fractional factorial and adding the resultant 
design to the original fraction. This aggregate design, which uses sixteen runs, 
makes it possible to estimate all seven main effects clear of the two-factor inter- 
actions. The design is thus of resolution IV. In fact, it is a 27v3 design. It is 
possible to do even slightly better than this. The signs of the elements correspond- 
ing to the identity column I can also be switched, and the resulting set of eight 
positive and eight negative signs can be associated with an eighth factor. The 
final design is shown in Table 15 on page 338. 

We call such a design a "fold over" design. 
We must now consider what the generators and hence the defining relations 

are for this design. Each component group of eight runs can be regarded as a 
28-5 design with generating relations 

I= 8= 124= 135= 236=1237 

and 

I= -8 = -1 24 = -1 35 = -2 3 6 = 1 23 7 
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TABLE 15 
A 28V4 fold over design 

8 4 5 6 7 

I 1 2 3 12 13 23 123 

+ - - + +Pri l 
A-A- - - A- +- 
+ + - + - + 
A- + + - - - - - Principal fraction 
+ - _ + + - _ + 2 II4 + A 

- - +- _ _ ++ - - - -+ 

+- - -+ + + _ - 

_ - - + - - - _ 
_+ + + +_ -A _ - A- _ - _ 
- - - -+ - + + - Principal fraction with 

- + - - + - all signs reversed 
_ - +_ - - + 
-+ - _ - - _ 

respectively. Applying the rule for combining fractions we notice at once that 
1 2 3 7 is a generator for the aggregate design, and the remaining three generators 
are independent even products of 8, 1 2 4, 1 3 5, and 2 3 6. In particular, we 
can use 12 4 8, 1 3 5 8 and 2 3 6 8 so that finally the generating relations for 
the aggregate design is: 

I=1248=1358=2368=1237 (22) 

The defining relation is therefore 

I = 1248 = 1358 = 2368 = 1237 = 2345 = 1346 = 3478 

=1256 = 2578 = 1678 = 4568 = 2467 = 1457 = 3567 

=12345678 

The generating relations for all sixteen of the 2 -4 factionals are: 

I = 12 4 8, I = 13 5 8, I= ?2368 and I = 41237. 

Ignoring interactions between three or more factors, and using the principal 
defining relation, the sixteen quantities which can now be estimated from the 
principal one-sixteenth fraction are given in Table 16. 

As before further fractions can be performed in combination with the original 
fraction to isolate particular two-factor interactions or combinations of two- 
factor interactions. It will be seen now that when a design is formed containing 
2k+1 runs from a design containing 2k runs by replicating the 2k design with 
reversed signs and associating some further factor X with the 2k plus ones and 
2k minus ones, then a general rule for obtaining the generators and defining 
relation of the new design from the generators and defining relation of the 
old design is as follows: 1) All generators which contain an even number of 
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TABLE 16 

Effects estimable using the 28v4 design 

Average 
1 
2 
3 

8 main effects 4 
5 
6 
7 
8 

12+37 +48+56 
13+27+58+46 

7 sets of two-factor 14 + 2 8 + 3 6 + 5 7 
interactions confounded 15 + 3 8 + 2 6 + 4 7 
in groups of four 16 +78 +34 +25 

17+23+68+45 
18+24+35+67 

characters in the original design are retained as generators in the new design, 
2) All generators which contain an odd number of characters in the original 
designs will be reproduced containing the extra character X as generators in 
the new design. For example, the generator 1 3 4 will become 1 3 4 X. 

An Alternative Method for Generating Designs of Resolution IV 

An inspection of the generators for the 2'v4 design just described will show 
that an alternative method for constructing this design would be to write down 
in standard order the sixteen combinations of variables for a complete 24 factorial, 
and then to associate further factors with the four three-factor interactions. 
To demonstrate, let the 24 factorial be written down in terms of the variables 
1, 2, 3 and 8. The four three-factor interactions are then 1 2 8, 1 3 8, 2 3 8 and 
1 2 3. These can now be associated with the four new variables 4, 5, 6 and 7 to 
give the set of four generators 

1 2 8 4 

1 3 8 5 (24) 

2 3 8 6 

1 2 3 7 

The design thus constructed is identical to that given in Table 15. The only 
reason, of course, for starting off with variables 1, 2, 3 and 8 instead of 1, 2, 3 
and 4 is to show the identity between this method of construction and the 
previous one. 

As a further example of this second method for constructing resolution IV 
designs let us construct the 26711 design. Since the design contains 32 runs we 
begin by writing down the full 25 factorial in the variables 1, 2, 3, 4 and 5. 
Eleven additional variables are now introduced by associating them with the 
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ten three-factor interactions and the single five-factor interaction. We thus 
have for the set of eleven generators 

1 2 3 6 

1 2 4 7 

1 2 5 8 

1 3 4 9 

1 3 5 10 

1 4 5 11 (25) 

2 

2 

2 

3 

3 

3 

1 2 3 

4 

4 

4 

4 

5 

5 

5 

5 

12 

13 

14 

15 

16 

If three-factor and higher order interaction terms are negligible, thirty-two 
independent estimates can be obtained. They include the grand average, the 
sixteen main effects 1, 2, 3, .. , 16; and the fifteen combinations of two-factor 
interactions displayed below 

15 16 + 36 + 

26 + 14 16 + 

27 + 39 + 

28 + 3 10 + 

23 + 14 15 + 

24 + 3 12+ 

25 + 3 13 + 

212+ 34 + 

2 13+ 35 + 

2 14 + 3 15 + 

29 +3 7 + 

210+ 38 + 

2 11 + 3 16 + 

2 16 + 3 11 + 

2 15 + 3 14 + 

47 + 58 + 

49 + 5 10 + 

13 16 + 5 11 + 

411 + 12 16 + 

412 + 5 13 + 

13 15 + 5 14 + 

414 + 12 15 + 

10 11 + 5 15 + 

415 + 12 14 + 

45 + 9 10 + 

46 + 5 16 + 

416+ 56 + 

48 + 57 + 

410+ 59 + 

413 + 5 12 + 

912 + 

11 15 + 

612 + 

6 13 + 

11 16 + 

69 + 

610 + 

67 + 

68 + 

6 16 + 

1014 + 

11 12 + 

6 15 + 

614 + 

611 + 

10 13 + 11 14 

712 + 813 

10 15 + 814 

714 + 9 15 

79 + 810 

10 16 + 8 11 

711 + 916 

13 14 + 816 

716 + 9 11 

78 + 12 13 

8 15 + 11 13 

715 + 9 14 

9 13 + 10 12 

713 + 8 12 

710+ 89 

12 

13 

1 4 

1 5 

16 

17 

18 

19 

1 10 

111 

112 

113 

114 

115 

116 

+- 

+- 

+- 

?- 

+- 

+- 

?- 

+t 

+- 

?- 
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In general, a resolution IV design may always be constructed by first writing 
down the design matrix for a two-level factorial and then associating new vari- 
ables with all those interaction columns having an odd number of numerals. 

Of course, this 29-~ll design could have been obtained by fold-over by first 
writing down the 2"i'~ design, the saturated resolution III design for fifteen 
variables in sixteen runs. The eleven generators for this design is given in Table 
17a. In Table 17a the variables are numbered from 2 to 16 to make the equiva- 
lence between the two methods of construction evident. The generators for 
the 2i6-~1 obtained by fold-over is shown in Table 17b. These generators are 
obtained by attaching the variable 1 to every word in the generating relation 
of the 25-11 having an odd number of symbols. The generators, and hence the 
design obtained by fold-over, are thus identical to those displayed earlier in 
Eq(25). The same principle of fold-over may be used with the Plackett and 
Burman designs. For example, using the Plackett and Burman design for k = 11 

TABLE 17a TABLE 17b 

Generating Relation 25- 11 Generation Relation for 2 -11 
Obtained by Fold-over 

23 6 1 2 3 6 
2 4 7 12 4 7 
2 5 8 12 5 8 

3 4 9 1 34 9 
3 5 10 1 3 5 10 

4 5 11 1 4 5 11 
2 3 4 12 2 3 4 12 
2 3 5 13 2 3 5 13 
2 4 5 14 2 4 5 14 

3 4 5 15 3 4 5 15 
23 4 5 16 1 2 3 4 5 16 

variables in twelve runs we may derive a design usable for studying twelve 
variables in twenty-four runs in which no two-factor interaction is aliased with 
any main effect. 

Complete Factorials within Fractionals Applied to Screening 
When little is known about the variables which effect a particular response 

we are in what may be called a screening situation. That is to say, that although 
it is necessary to test a rather large number of variables which might conceivably 
have important effects, it can be realistically postulated that only a few, perhaps 
one, two or three of the variables, will be of major importance. Whichever 
variables do turn out to be of major influence may of course interact with one 
another. To put this argument in another way, we may have a fairly large 
number, say eight variables, which are of possible importance, but we believe 
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>X2 

I ; ---1X--- , >x, 
, I - 

X 

x,i 

X3 ! 

FIGURE 2-Projection of 23-1j into three 22 factorials. 

the effects of all but, say, three of these are likely to be negligible. Thus, we 
tentatively entertain the idea that at least five of the variables can be regarded 
essentially as dummies, but we don't know which five. In these circumstances we 
need a design in the complete set of eight variables which will produce a com- 
plete factorial in any three of the component variables. Thus, although we 
don't know which subset of the variables will turn out to be important, which- 
ever subset does, provides a full factorial, or even a replicated factorial, in 
those variables. 

The basic idea is illustrated in the very simpliest case for the one-half repli- 
cate of the 23 factorial shown in Figure 2. Suppose the total number of variables 
considered is three, but it can be reasonably postulated that not more than two 
have any real effects. Then we see from Figure 2 that the design supplies a 
complete factorial in any of the three pairs of variables since each projection 
of the 231 design into a two dimensional plane produces a complete factorial 
design. This is also apparent from inspection of the design matrix since, if we 
drop any one column of the design matrix, the remaining two columns provide 
a full 22 factorial. This can be seen even more simply, for the generating relation 
for this design is I = 1 2 3 and if any one of the variables is dropped the generator 
will vanish showing that the resulting design is not a fractional factorial. 

In general, it is clear that a design of resolution R will provide a complete 
factorial in any sub-set of the (R - 1) variables. This must be so since every 
word in the defining relation contains R or more characters. It follows that is 
all but (R - 1) characters are treated as dummies, then every word in the 
defining relation will disappear. 

23 Factorials within Resolution IV Designs 

If a design of resolution IV contains r X 23 runs then it can be regarded as 
providing r replicates of a full factorial in any three variables. As an example, con- 
sider the sixteen-run resolution IV design for eight variables i.e. the 2`74 design. 
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This design can be regarded as providing a twice replicated 23 factorial for 
every one of the fifty-six choices of three variables out of eight. Geometrically, 
this means that the sixteen points in eight dimensional space can be projected 
into any one of the fifty-six three dimensional coordinate sub-spaces to produce 
a replicated cube. The reader can readily confirm for himself that the omission 
of any five columns from Table 15 provides a twice replicated factorial in the 
remaining variables. 

As always, evidence from experiments of this kind should only be regarded as 
suggestive and subject to confirmation rather than as supplying definite proof. 
Alternative explanations of the results obtained from such experiments involving 
higher order interactions could be easily produced. However, in selecting alter- 
native explanations as worthy of further study we rest heavily upon our prior 
beliefs about the plausibility of these alternatives. 

It is interesting to note an early use of designs of this kind by Tippett [15]. 
An adequate statement of the proper attitude towards the results is to be found 
in a discussion by R. A. Fisher [12] of Tippett's example. 

General Rules for Designs Obtained by Projection 

We have seen that a design of resolution R provides a complete factorial in 
any sub-set of (R - 1) variables. In particular, designs of resolution III may 
be used for screening up to two variables out of N - 1 variables, designs of 
resolution IV may be used for screening up to three variables out of N/2 vari- 
ables, and designs of resolution V, which we shall discuss later, may be used 
for screening up to four variables out of a larger number. If a design of resolu- 
tion R is used to screen subsets of R variables, then full factorials will result 
for certain subsets, and fractional factorial for others. Those subsets of 
variables providing fractional factorials are simply subsets which appear as 
words in the final defining relation. For example, consider the 27v4 design 
discussed earlier. Its defining relation is 

I =1248 = 1358=2368=1237 = 2345 = 1346 = 3478 

=1256=2578= 1678=4568=2467= 1457=3567 

=12345678. 

Regarded as a design to screen sub-sets of four variables, this design will provide 
replicated half-fractions for the fourteen combinations of variables 1, 2, 4 and 8; 
1, 3, 5 and 8; 2, 3, 6 and 8; etc., which appear as forming words in the defining 
relation, and complete 24 factorials designs for any one of the remaining fifty-six 
combinations of four variables. In the case of resolution V designs we can, in 
accordance to our general rule, obtain full factorials in any set of four variables. 
These designs would, for most purposes, also be adequate for screening five 
variables because even for those combinations of variables which appear as 
words in the defining relation, one-half replicates would be available, and these 
would permit all main effects and two factor interactions to be distinguished, 
on the assumption of course that higher order interaction effects are negligible. 
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Example 

The problem of analyzing these designs can be thought of either as picking 
out the one, two or three variables whose main effects and interactions can 
account for all the effects found, or equivalently for looking for sets of repli- 
cates within the runs. As an example, consider the data given in Table 18 ob- 

TABLE 18 

Variables 
Run# 1 2 3 8 4 5 6 7 

1 -????? ? -60.4 
2 + - - - + + - + 66.0 
3 - + - - + - + + 62.1 
4 + + - - - + + - 63.3 
5 - - + - - + + + 82.9 
6 + - + - + - + - 75.4 
7 - + + - + +- - 82.4 
8 + + + - - - - + 73.0 
9 - - + - + + + - 68.1 

10 + - - + -- + + 61.2 
11 - - - + - + - + 71.3 
12 + + - + +- - - 59.6 
13 - - + + + - - + 67.3 
14 + - + + - + -- 7-5.3 
15 - + + + - - + - 66.7 
16 + + + + ++ -+ + 77.1 

tained from a screening experiment containing eight variables, using the gener- 
ators 1 2 4 8 18, 3 5 8, 2 3 6 8 and 1 2 3 7 

The estimated effects are given in Table 19a. 

TABLE 19a TABLE 19b 

Average 69.5 3 8 5 Responses 

1 -1.3 - - - 60.4 62.1 
2 -0.1 + - - 75.4 73.0 
3 11.0 - + - 61.2 59.6 

4 0.5 + + - 67.3 66.7 
5 7.6 - - + 66.0 63.3 

6 0.2 + - + 82.9 82.4 
7 1.2 - + + 68.1 71.3 
8 -2.4 + + - 75.3 77.1 

12 +37+48+56 -1.1 
13+ 27+- 58 + 46 1.7 

14+ 2 8 +36 + 57 0.8 
15+38+26+47 -4.5 

16+78 +34+25 0.6 
17+23+68+45 -0.3 
18 + 2 4 35 + 6 7 1.2 
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It was not expected that more than a few of the eight variables would in 
fact have important effects upon the response, and it will be seen that the data 
is readily explained by supposing that the important variables are 3, 5 and 8. 
The main effects and two-factor interactions associated with these variables 
are underlined in Table 19a. On this explanation runs 1 and 3, 2 and 4, 5 and 7, 
6 and 8, 9 and 11, and 10 and 12, 13 and 15 and finally 14 and 16 are essentially 
duplicates one of the other differing mainly because of experimental error and 
partly because of effects of the other variables of lesser importance. The 
data are rearranged as a duplicated 23 factorial in variables 3, 8 and 5 
in Table 19b. 

In an experiment of this kind it would have been advantageous to have 
available some independent estimate of pure error obtained, for example, from 
duplication of certain of the runs selected in accordance with principles de- 
scribed elsewhere [10]. In such a case we could then compare the size of the 
error obtained from the "constructed" duplicates with that from known 
duplicates. 

Blocking for Designs of Resolution IV 

Assuming that interactions between three or more variables are negligible, 
the 2`v4 design with generators 1 2 3 7, 1 2 4 8, 1 3 5 8 and 2 3 6 8 provides in- 
dependent estimates of the eight main effects and of seven groups of two-factor 
interactions. By using the + and - signs associated with the interaction columns, 
this design can be broken into either two, four or eight equal sized blocks which 
are unconfounded with main effects. 

For example, we may use the + and - signs associated with the two-factor 
interaction set 1 2 + 3 7 + 4 8 + 5 6, to define two blocks, if we call the block 
contrast B1 , and put B, = 1 2 + 3 7 + 4 8 + 5 6. To break the design into 
four equal blocks, two columns associated with the interaction sets may be 
used. For example, we might choose B, = 1 2 + 3 7 + 4 8 + 5 6 and B2 = 

1 3 + 2 7 + 5 8 + 4 6. Each of the four blocks will contain the four runs identi- 
fied by the pairs of versions (?, =), that is, the four sets of versions (-, -), 
(+, -), (-, +), (+, +) provided by the two interaction columns. The block 
interaction effect BIB, will then be found to be associated with another two- 
factor interaction set, that is, B,B, = 1 7 + 2 3 + 6 8 + 4 5. This can be con- 
firmed by actually multiplying out the elements of the columns associated with 
B, and Ba , or simply by noting, for example, that products of the interaction 
elements in B, and B, are 1 2 X 1 3 = 2 3, 1 2 X 2 7 = 1 7; 5 6 X 4 8 = 4 5 
etc. 

To break the design into eight equal blocks, three of the interaction sets 
must be used. However, in choosing the third set we may not use the column 
associated with the interaction BIB, , although any of the remaining interaction 
columns may be used. Let us choose B, = 1 8 + 2 4 + 3 5 + 6 7. Each of the 
blocks will now contain the two runs identified by the eight sets of versions 
(?, ?, 4) provided by B , B2 and B, . It can be readily confirmed by multi- 
plying out the elements of the block columns that the complete set of seven 
two-factor interaction comparisons are now used up, that is, 
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TABLE 20a 

Construction of 2'v4 in Blocks of Two 

7 4 5 6 B1 B2 B3 
1 2 3 8 123 128 138 238 12 13 18 

3- + - 

+- $- + 

+- -+ 

-+ 3- 

$- - + 

- - + + + 

- + + 

- - ? - +- - + 
- ~ +- +- ? - 

+- +- - ? +- +. 
- + - + 

-$ - ? - + 

- + - + + - 

+- - + + + + + - 

+ +- -- - - - 

+- +t - - ? - ? 
+ - + - + 

?- ?- +- - - + 
+ - + -- - + 

?- - - ? 
+- + + + + + A- +- 

Os TABLE 20b 

Construction of 2IV4 in Blocks of Two 

1 2 3 8 7 4 5 6 B1 B2 B3 

- + 
- + - - Block 1 

-+ + - _} + - - Block2c +t + ?+^ + } + -- Block3 

0 

++ +. + . 

_ _ - + - + - +r+ + - Block4 > 

-+ +4 + - - - + Block 5 + +- + - + - 

- - + - + - + - + Block 6 z 

-- +- - - } + + ?V ?)+ q + Block 7 

+ + + + + ? ? 

q-q-_ q - +--++ + Block8 
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B = 12 +37 +48 + 5 6 

B2= 13 + 2 7 + 58 + 46 

B3 =18+24+35+67 

B1B2 = 17+23 + 68+45 (26) 

BiB3 = 14 + 2 8 + 3 6 + 5 7 

B2B3 =1 5 + 3 8 + 2 6 + 4 7 

B1B2B =1 6 + 78 + 3 4 + 2 5 

As the reader can confirm for himself, subject only to the condition that the 
B3 must not be chosen so as to coincide with B,B2 , the association between 
blocks and two-factor interactions can be made in any other way whatever. 

Tables 20a and 20b show how we can write out a 2Sv4 design arranged 
in eight blocks of two runs each. Since the complete design contains sixteen runs, 
we begin by writing down a 24 factorial in four of the eight variables. (In order 
that the final design may be compared with designs obtained previously, we 
chose these variables to be 1, 2, 3 and 8 although they could just as easily been 
chosen to be 1, 2, 3 and 4.) The variables 4, 5, 6 and 7 are then associated with 
the three-factor interactions. The generators are 1 2 3 7, 1 2 4 8, 1 3 5 8 and 
2 3 6 8. As illustrated in Table 20a we now write down the three columns corre- 
sponding to the interactions 1 2, 1 3, and 1 8 and associate these with the block 
factors B, , B2 and B3 . The eight blocks are then obtained by putting those 
pairs of runs for which B1, B, and B3 are (- - -) into the first block, the pair 
of runs for which B , B2 and B3 are (+ - -) in the second block and so on. 

In Table 20b it will be noted that the second run in each block is the fold- 
over, or mirror image, of the first run, that is, the versions of one run are exactly 
reversed in the second. Suppose now that a single run is taken from each block 
such that one of the variables always appears with the same sign. Choosing, 
for example, those runs with the + version of variable 1 we obtain the array 
given in Table 21. 

The reader will note that the result, omitting variable 1, is the 27-i design in 
the variables 2, 3, 4, * * *, 8 with generating relation I = 2 3 7 = 2 8 4 = 3 8 5 
2 3 8 6. This design is identical, except for the number identification given the 
seven variables, to the 27-4 design described earlier. 

TABLE 21 

1 2 3 8 7 4 5 6 

+ - - - + + + - 
+ + - - + + 
+ - + - - + - + 
+ + + - _ _- 
+ - - + + - - + 
+ + - + - + - _ 
+ - + + - _ + - 
+ + + + + + + + 
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We see now that the principle of fold-over can be modified slightly to provide 
resolution IV designs automatically broken into blocks of two runs such that 
the block effects are unconfounded with the main effects. We begin by writing 
down the design matrix for the appropriate resolution III design in k variables 
plus an additional column I consisting solely of plus signs. Each row of the 
design matrix is then folded-over, that is, repeated with all signs reversed. 
The pairs of rows form blocks of two of a resolution IV design in k + 1 variables. 
For example, the 2-v2 in blocks of two is constructed by first writing down 
the 23I1 along with the column I, and then folding over each row to provide 
four blocks of two runs each as illustrated in Table 22. This 21v' design is identical 

TABLE 22 

Original 23-1, I = 1 2 3 2`1 in Blocks of two, I = 1 2 3 4 
1 2 3 I 1 2 3 4 

+ + + + Block 1 

_ 
+ 

_ 
+ + 

+ +} 

++ 
++ + + Block 2 

+ _ + Block 3 

+ _ d+} Block 4 

to that obtained earlier, and illustrated in Table 12, in the discussion of blocking 
designs of resolution III. Similarly, the 2-v4 design in blocks of two obtained 
in Table 20b could also have been formed by using the principle of fold-over 
starting out with the 27-II along with a column vector of plus signs and pairing 
each run with its fold-over. The same is true of the 2,-~11 obtained by fold-over 
described in Table 17b. The designs obtained by folding over the Plackett 
and Burman designs can also be broken into blocks of two runs each using 
precisely the same device. 

In general, any resolution IV design provides an opportunity to obtain blocks 
of size two whose effects do not confound any of the main effects. In doing this, 
of course, we confound the two-factor interactions with blocks. Nevertheless, 
the resulting designs are of considerable interest. Often, the comparisons be- 
tween blocks merely represent influences upon the response having a somewhat 
higher variation than that responsible for differences within blocks. In these 
circumstances it is reasonable to think of the strings of two-factor interactions 
simply as being estimated with a variance somewhat higher than that appropriate 
for the main effects. For instance, these designs may be used where it is suspected 
that a time trend may occur during the course of the trials. Provided proper 
randomization is applied both to the order of runs within the blocks and to the 
order of running the blocks themselves, the design is such that whereas 
main effects were determined with a variance appropriate to successive observa- 
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tions, the strings of two-factor interactions would be estimated with a variance 
appropriate to pairs of runs made in random order in the presence of a time trend. 

"Major and "Minor" Variables in Resolution IV Designs 

We have already seen that a 2p-q design of resolution IV can be regarded from 
two points of view: (1) it is a design suitable for providing estimates of the p 
main effects even though two-factor interactions may occur, and (2) it is a 
design suitable for providing unbiased estimates of all main effects and inter- 
actions between any three of the factors if the others are of no importance. 
The designs can be considered from still another point of view. Considering the 
2~-11 design as an example, we have seen how this design may be run in sixteen 
blocks of two runs each, the blocks being obtained from four block generators 
associated with two-factor interactions. Alternatively we can choose the four 
block generators to represent actual variables. Suppose for example, we have 
four "major" variables for which we wish to estimate all the main effects and 
all the interactions and we have sixteen further variables which we believe 
exert at most main effects, and may be conveniently viewed as "minor" variables. 
Then this design may be employed associating the four major variables with 
the block generators and the remaining minor variables with the sixteen "main 
effect" factors. Of course, all the effects among the major variables will now be 
confounded with the sets of two-factor interactions of the minor variables. 
However, since minor variables are believed to exert at most main effects, the 
two-factor interactions between these variables are tentatively assumed to be nil. 

In this connection, there is an opportunity to make use of any prior feeling 
which the experimenter may have concerning the possibility of interaction 
in the minor variables. Should he feel particularly anxious about a possible 
interaction between two minor variables, then he can usually arrange, by inspect- 
ing tables such as that given in Equation (26), that this interaction is associated 
with an unimportant interaction between the major variables. For instance, 
in this present example, the interactions 1 6, 7 8, 3 4 and 2 5 between the minor 
variables are all confounded with the three-factor interaction B1B2B3 between 
major variables. This three factor interaction might be expected to be unim- 
portant a priori. It should be noticed that so long as B , B, and B3 are pseudo 
variables representing comparisons among blocks, then interactions such as 
B,B2B3 will represent comparisons of precisely the same potential as are repre- 
sented by the main effects B1 , B2, etc. When, however, B , B2, etc., are used 
to represent real variables, main effects and interactions revert to their former 
relative status. 

When thirty-two runs are to be made and where there are four major vari- 
ables along with sixteen minor variables, the 2~-71 design may be employed. 
With sixteen runs three variables and all their interactions may be investigated 
by associating the block generators with these major variables and the eight 
minor variables then introduced. For eight runs, two major variables and their 
interaction plus four main effect variables are possible. Of course, when the 
designs are used in this way no blocking is permissible. However, even here a 
certain degree of flexibility is possible. For instance, for the thirty-two run 
design we might wish to have only two principal factors in which case we could 
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associate these with two of the block generators using the other two block 
generators to form blocks of eight. It will be clear to the reader that these arrange- 
ments provide a very versatile set of designs which may be used in a variety 
of circumstances. 

From Resolution IV Designs to Resolution III Designs 
When the 2-711 designs is used to study simultaneously four major variables 

along with sixteen minor variables, a convenient notation for the design is 
4 16-11 

24 C 2Iv 

where the symbol C is read "contained in" or "embedded in". Thus 23 C 2`v4 
and 22 C 2`v1 identify the sixteen and eight run designs described above. 

The construction of a resolution III design from one of resolution IV now 
becomes obvious. The 24 C 2~-11 is clearly a design for studying twenty vari- 
ables in thirty-two runs. Suppose now that one of the interactions between the 
major variables is used to bring in still another variable. In fact, we might be 
willing to assume that all the interactions between the four major variables 
are negligible and in this instance eleven new variables (one for each of the 
interactions) could be introduced. The result, of course, is the 2Ij"26 design, 
that is, the fully saturated resolution III design for studying thirty-one variables 
in thirty-two runs. 

Other Embedded Designs 
The principle of embedded fold-over pairs producing blocks of two runs 

has wide application. As an example less orthodox than those mentioned above, 
we note that the thirty-two run 2-~ll design in sixteen blocks is one in which 
a central composite design in three variables can be embedded. The composite 
design [14] would employ factor combinations of three major variables consisting 
of a 23 factorial along with six axial points and two center points for a total of 
sixteen points. Each of these factor combinations would then be duplicated, 
one duplicate containing one combination of versions of sixteen minor variables 
with the second duplicate the mirror image of these same sixteen variables. 
The additional sixteen variables would have to be such that they were not 
expected to have any effect other than a linear one. 

Part II of this paper will contain a discussion of Resolution V designs along 
with an appendix. 
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