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Schedule

Lectures 10:00 - 11:30 (with a break)
Labs 14:00 - 15:30

Tentative Plan

10-11:30|14:00 - 15:30
June 15, 16 |linear regression vV vV
June 17 ogistic regression | V
June 18 ogistic regression vV
June 21 Google statistics vV
June 22 logistic regression | V vV
June 23, 24 |multilevel models v vV




Last Lecture

A linear regression model is defined by
ECY | X) = By + B(X; + ... B X
var(Y | X) = o2

We estimated coefficients, found

residuals, made plots, looked at classical
tests, interpreted R summaries for linear
models, especially tests of significance for
the estimated regression coefficients.




This Lecture

More modern ways to evaluate model fit
simulation from the fitted model

bootstrapping



Understanding Regression Variability

(bg, ..., by) are weighted means of the Y.’s
b= (XtX)1XtY
By the CLT, they are approximately normal with
mean (b, ..., by)
standard deviation (se(by), ..., se(by))
But the coefficients are usually not independent
b;, b, are independent when they are orthogonal

The CLT implies that b is approximately
multivariate normal

R gives the correlation matrix for (b, ..., by)



Computing the Covariance of b in R

Zz <- lm(sleep ~ log(body) + danger,
data = sleep)

summary(z) #Prints statistics.
zSummary <- summary(z) #saves statistics.
covB <- zSummary$sigma”2 *

zSummaryScov.unscaled

covB is the cov matrix for (by,...,by)



The Distribution of b

b is approximately normal with mean b and
covariance matrix covB.

This is also the posterior distribution for b when the
prior distribution of b is uniform.

Like any other distribution, this multivariate
normal distribution describes which vectors of
linear regression coefficients are likely, and
which are not.

Each of these vectors of linear regression coefficients
describes a different regression function, so the
multivariate normal distribution of b describes the
uncertainty around the regression mean.



Simulating Uncertainty

Strategy

20 ®9 ° r

Simulate n multivariate
normal vectors b with the
mvrnorm function (in MASS).

If there is only one
predictor, add the lines with

coefficients equal to each of e e

the simulated values to a

plot of Y against the 30 Simulated Regression Lines
predictor (panel.abline) for sleep against log(body).
The spread in the lines The red line is the regression

shows the uncertainty about  line computed from the data.

the regression function.



Simulating with More Than 1 Predictor

The simulation is the same.
Regress sleep on log(body) and danger.
Compute covB (same commands as in the 1 predictor case)

Generate random Normal(b, covB) regression coefficients

Want to show the uncertainty in the regression mean,
even though it is no longer a line.

That is much easier to do with xyplot in lattice.



Back To The Example

SLEEP

Consider regressing sleep on log(body) and danger
First, plot sleep vs log(body) for each value of danger

If there are too many values of both predictors, aggregate
one of them

xyplot(sleep ~ log(body) | factor(danger))
Like conditional probability.

For each level of danger, plot sleep vs log(body)

SLEEP VS Log(BODY) As A Function Of DANGER
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Diagnosing the Regression Model

SLEEP
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Regression of Sleep on Log Body and Danger
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mean(sleep) = b, + b, log(body) + b, danger

increasing danger by one adds b, to the intercept
in @ panel but the slope of sleep against log(body)

in each panel is the same.




R code

Regression of Sleep on Log Body and Danger
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xyplot(sleep ~ log(body) | factor(danger), data = sleep,
layout = c¢(5, 1),
panel = function(x, y, subscripts, ...) {
panel.xyplot(x, vy, ...)
panel.abline(z2Scoef[1l] +
z2Scoef[3] * sleep$danger[subscripts][1l],
z2Scoef[2])

panel.lmline(x, y, col = 'magenta')

})



Uncertainty In the Regression Model

SLEEP

Regression of Sleep on Log Body and Danger

LOG(BODY)

Plot shows a random sample of 30 regression models
from the posterior distribution of b
from the sampling distribution of b

the uncertainty in the estimated mean E(Y | X)
Do you like this plot?



Simulated Regression Plots

We can do these for any kind of
regression model, as long as we know the
approximate distribution of the estimated

model parameters -- no matter how fancy
the model.

e.g., models with splines, glmnet.



Models With Interactions



Models With Interactions

SLEEP

SLEEP VS Log(BODY) As A Function Of DANGER
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Standard linear model:

log(body) has the same effect for every level of danger.

Interaction model:
allows different slopes in different panels
coefficient of log(body) can vary linearly with danger, or

it can be different for every level of danger.
Warning: there is a danger of overfitting!




First, Factors

A factor X, is a variable
that has /evels (say L levels)
color, city, state, type of car
Allow us to add nonparametric terms to a model
Additive model
E(Y | X) = by + by ; + b,X, ibu i

mean shifted differently for each level :

Interaction model ,
EQY [ X) =Dbo + by + 2 by%; Db =0
1

mean shift and slope of X, changes with the level of X,



WARNING

Additive model has L-1 parameters for the factor
EC(Y | X) = bg + by ; +byX;, by;=0
Not using the textbook convention: ibl,j =0
only sensible for balanced models, wlhen each

level is observed the same number of times

Interaction model has 2(L-1) more parameters for a
factor compared to a numeric variable

ECY | X) = by + by + 2 by%,;

Adding more parameters is not always good.
overfitting to one random sample

called generalization error in machine learning



Additive Model For Danger

sleep$dangerFactor <- factor(sleep$danger)
z2Nonp <- lm(sleep ~ log(body) + dangerFactor,
data = sleep)

Estimate Std. Error t value Pr(>|t])

(Intercept) 14.4847 0.7897 18.343 < 2e-16
log(body) -0.7539 0.1461 -5.160 5.39e-06
dangerFactor2 -2.6232 1.1650 -2.252 0.029269
dangerFactor3 -5.0218 1.3053 -3.847 0.000374
dangerFactor4 -4.1531 1.2438 -3.339 0.001697
dangerFactor5 -7.3353 1.4007 =5.237 4.17e-06

linear model with log body and danger had slope of log body of -.699



Additive Model For Danger

Linear Model in log(body) and danger

Regression of Sleep on Log Body and Danger
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Linear Model in log(body) and level shift for danger
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Interaction Model For Danger

z2NonpInt <- lm(sleep ~ log(body) * dangerFactor,
data = sleep)

Estimate Std. Error t value Pr(>|t])

(Intercept) 14.69 0.86 17.04 0.00
log(body) -0.90 0.26 -3.45 0.00
dangerFactor?2 -2.88 1.23 -2.35 0.02
dangerFactor3 -5.22 1.37 -3.82 0.00
dangerFactor4 -5.05 1.43 -3.53 0.00
dangerFactor5 -7.85 2.93 -2.68 0.01
log(body) :dangerFactor?2 -0.14 0.72 -0.20 0.84
log(body) :dangerFactor3 -0.03 0.39 -0.07 0.95
log(body) :dangerFactor4 0.48 0.38 1.28 0.21
log(body) :dangerFactor5 0.22 0.68 0.32 0.75



Interaction Model For Danger

Additive Model in log(body) and level shift for danger
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Interaction Model in log(body) and level of danger
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Choosing A Model



Which Model Is Best

There are many ways to choose a model
Always look at the data!
You’ll at least know how to scale the X.'s

Choosing a model may not scale the predictors.

When there is not too much data, the R function leaps
will choose the best subset.

Must penalize models with more coefficients,
e.g. they choose the model with minimum

C,=2¢?/((n-1)s?) + 2K - N or
BIC = log(Z e?/(n-K)) + (K/n) log(n) or ...

where s is the usual sample standard deviation.



