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StructureStructure  ofof  ThisThis  CourseCourse



The ProfessorThe Professor  (me)(me)

Past:

Associate Professor of statistics at CMU

worked with environmental safety data

Research Scientist, Bell Labs

network data, semiconductor data

Now:

Research Scientist at Google in New York

network data, data on advertisements,
advertisers, image search, and more



The Teaching AssistantsThe Teaching Assistants

Xiaoxing Cheng (Daniel) 

Tianxi Li

Jianghan Qu (Jenny)

Bihyuan Zhang (Elise)

Zoey Zhao

The teaching assistants will help you with
the labs.



The Students?The Students?

Please send an email to

pkusms2010@gmail.com

With
your name

your university

statistics courses you’ve taken

what days you have exams this week

have you used R before? a little? a lot?



WhatWhat  This CourseThis Course  IsIs  AboutAbout

Data analysis with regression models
Linear regression

Logistic regression

Multilevel regression

what all these models are

how to work with them in R

how to interpret them



Organization of the CourseOrganization of the Course

Lectures

I will present the models, with examples

You can ask questions during class

Slides and R code used in the lectures will
be available after class



Organization of the Course (continued)Organization of the Course (continued)

Labs

A chance to analyze data in R using the
models from lecture.

Assignments will be done in teams of 2 or 3
students.

The teaching assistants and I will help you.

The TAs will explain how to hand in assignments.

Only English will be used in the course.

This is a good opportunity to practice for
visiting the US or studying in the US.



ScheduleSchedule

Lectures 10:00 - 12:00 (with a break)

Labs 14:00 - 16:00

Tentative Plan

√√logistic regressionJune 22

√√multilevel modelsJune 23, 24

√Google statisticsJune 21

√logistic regressionJune 18

√logistic regressionJune 17

√√linear regressionJune 15, 16

2-410-12



Part 1Part 1

AA  regression model answers aregression model answers a
question about data.question about data.



Basic Parts of A Regression ProblemBasic Parts of A Regression Problem

1. An outcome  Y  that varies

2. Variables  X1, X2, …, Xk that affect Y
These are conditions that may affect Y

Often called predictors or model terms

3. A question about Y

what is the average Y under different conditions

how do different conditions affect Y

how to predict Y under different conditions



More simplyMore simply

A regression problem tries to answer a
question about an outcome Y with data
on Y and X = (X1, …, XK).



An Example QuestionAn Example Question

What affects the sleep a mammal needs?

Y: sleep (mean hours/day for a species)

X1: body (mean body weight in kg)

X2: brain (mean brain weight in g)

X3: life (max lifetime in years)

X4: predation (1 = low, 5 = high)

X5: gestation (days until birth)

fact:  Real data analysts give variables real names.

X1, …, Xk are not real names.



Example DataExample Data

                     sleep body brain predation danger

African_elephant            3.3 6654.0 5712.0         3      3

African_giant_pouched_rat   8.3    1.0    6.6         3      3

Arctic_Fox                 12.5    3.4   44.5         1      1

Asian_elephant              3.9 2547.0 4603.0         3      4

Baboon                      9.8   10.6  179.5         4      4

Big_brown_bat              19.7    0.0    0.3         1      1

Brazilian_tapir             6.2  160.0  169.0         4      4

Cat                        14.5    3.3   25.6         1      1

Chimpanzee                  9.7   52.2  440.0         1      1

Chinchilla                 12.5    0.4    6.4         5      4

Cow                         3.9  465.0  423.0         5      5

Donkey                      3.1  187.1  419.0         5      5

Eastern_American_mole       8.4    0.1    1.2         1      1

Echidna                     8.6    3.0   25.0         2      2

There are 51 species in the data (most not shown here).



A Statistical Regression ModelA Statistical Regression Model

A statistical regression model consists of

1. a model for how the mean outcome Y
changes with X1, …, XK

E(Y | X1, …, XK) = µ(X1, …, XK)

2. a model for how the variability in Y
changes with X1, …, XK

var(Y | X1, …, XK) = σ2(X1, …, XK)

A regression model may or may not assume

3. a distribution for Y | X1, …, XK.



Simplest Regression Model For SleepSimplest Regression Model For Sleep

Mean

E(sleep | X) = µ

Variance

var(sleep | X) = σ2

Distribution

sleep ~ Normal(µ, σ2)

X isn’t used to predict sleep in this model

Is this a good enough model for sleep
across species of mammals?



The Simplest Model For SleepThe Simplest Model For Sleep

E(sleep | X) = µ

var(sleep | X) = σ2

sleep ~ Normal(µ, σ2)

If the model is
reasonable, the sleep
data should look like
a random sample
from a normal
distribution

The histogram doesn’t
look like a normal
curve, so the simplest
model isn’t very good.



To Get Better ModelsTo Get Better Models

We could use a different distribution

we need more mass in the tails

it is hard to find a distribution like
that, and it won’t give us much
insight into why there is mass in the
tails.

Instead, try to model the mean

we can use the other information
(like body weight) about the species



Making The Mean Depend onMaking The Mean Depend on  XX

Linear regression has two assumptions.
1. Mean outcome Y is linear in the terms in X

µ(X) = β0 + β1X1 + … + βkXK

2. Variance of the outcome is constant in X.

var(Y | X) = σ2

Usually, the distribution of Y|X is unimportant,
as long as Y is numeric and has several possible
values.

Y| X  does not have to be normally distributed.



Back to The ExampleBack to The Example

Is the mean sleep of a
mammal species linear
in body weight?

  There is no theory here.

   Look at the data. →
Answer:

A line doesn’t describe
how E(sleep | body)
depends on body weight.

Linear regression of sleep on body weight is not a good
model for mammals even though b1 is statistically
significant here. Looking at the regression coefficients
won’t tell you if the model fits.



Changing PredictorsChanging Predictors

In linear regression, the
mean is linear in the
predictors.

An X can be transformed,
or several can be
combined like X1X2 and
it’s still linear regression.

Body weight covers several
orders of magnitude. In such
cases, try log(X).

Linear regression of sleep on log(body weight) is
sensible.



Part 2Part 2

Linear Regression CoefficientsLinear Regression Coefficients



Least Squares Coefficient EstimatesLeast Squares Coefficient Estimates

The least squares coefficients b0, …, bK
minimize the sum of squared errors
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FACT: The bk’s are also maximum likelihood estimates
when Y|(X0, …, XK) has a normal distribution. In
practice, estimates are often chosen to minimize a loss
function like mean squared error without assigning a
distribution to Y.

! 

e
i

= Y
i
" b

0
" b

1
X
1
" ..." b

k
X
K

With estimated coefficients b0, …, bK, the
residuals or prediction errors are



Linear Regression Without PredictorsLinear Regression Without Predictors

The estimated intercept

b0= sample mean

The residuals

ei =Yi - b0

The estimated var(Y | X) [X is null]

For the sleep data,

b0 = 10.3,   s2 = 21.9! 
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Computing RegressionComputing Regression  CoefficientsCoefficients

Any reasonable statistical software will compute the
least squares coefficients (b’s) and residuals (e’s).

We’ll use R -- it’s commonly used in research

Many corporations use SAS -- I don’t know SAS.

Fact (don’t worry if you haven’t seen it before):

b = (Xt X)-1 Xt Y

where

b is the vector of K estimated coefficients

Y is the vector of n outcomes (one for each observation)

X is an n x K matrix, each row is a different observation
and each column is a different predictor



Estimates For The Sleep DataEstimates For The Sleep Data

The estimated line

µ(X1) = b0 + b1X1

has coefficients

(b0, b1) = (11.5, -0.9)

a species with mean weight 1
kg is estimated to sleep 11.5
hours on average

a species with a mean weight
of 100 kg is estimated to
sleep 7.4 hours on average.



Residuals for the Sleep DataResiduals for the Sleep Data

Gray segments show
the residuals

ei = Yi - b0 - b1 log(bodyi)

If a segment is below the
line, the outcome Y for
that species is smaller
than its estimated mean.

The closer the residuals
are to zero, the better the
regression fits the data.

Most measures of how well
a model fits the data are
based on residuals.



What AboutWhat About  varvar(Y | (Y | XX)?)?

In linear regression, the variance of sleep
should not depend on X

var(Y | X1, …, Xk) = s2

Example:

The variance of sleep for species with average
weight 100 kg should be the same as the variance
of sleep for species with average weight 1 kg.

Is this assumption plausible for the sleep data?



Variance of Y | XVariance of Y | X

If the residuals have a
pattern in X, then
var(Y| X) depends on X,
so the model is bad.

Here, the residuals don’t
vary consistently with
log(body weight).

The assumption that variance of sleep is the same for all

body weights passes the eyeball test.

Fact: var(Y|X) is estimated by
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Multiple PredictorsMultiple Predictors

Including more predictors
can improve a model

A quick look at the
predictor danger →

Fit a regression model with
log(body) and danger as
predictors in R.

-1.68

danger

-.6715.7new model

-.8911.5old model

log(body)intercept

Including a new predictor can change our
understanding of an old predictor.



Evaluating the Fit of LinearEvaluating the Fit of Linear
Regression ModelsRegression Models



FirstFirst  Look At TheLook At The  ResidualsResiduals

Residuals vs Estimated
Means (the fitted values)

a pattern suggests that
the model doesn’t fit

sleep example with
log(body) and danger as
predictors

symmetric about zero
over the range of the
fitted, but a few points
suggest taking a closer
look at model fit.



Residuals Should Be Close to NormalResiduals Should Be Close to Normal

Histogram of residuals looks
reasonably similar to that of
a random sample from a
normal distribution with
mean zero.

The ordered residuals look
reasonably like the expected
order statistics from a
normal distribution with
mean zero.



Classical Regression StatisticsClassical Regression Statistics

The linear regression coefficients depend on the
data (X1, …, Xk, Y) so have standard errors.

R and SAS compute standard errors.

bk/se(bk) is approximately tn-k when β0=0

Warning: The t-statistics assume that the
other terms are in the model.

               bk        se(bk) t-value Pr(>|t|)

(Intercept)  15.6902     0.8771  17.889  < 2e-16

log(body)    -0.6993     0.1368  -5.112 5.50e-06

danger       -1.6830     0.3041  -5.534 1.28e-06



More Classical Regression StatisticsMore Classical Regression Statistics

We can get confidence intervals for the mean Y
and the prediction for a different species under
conditions X1,…,XK.

   body danger estimate meanLow meanHigh predLow predHigh
   0.1      1     15.6    14.1     17.1     9.5     21.8
   1.0      1     14.0    12.7     15.3     7.9     20.1
  10.0      1     12.4    11.0     13.8     6.3     18.5
 100.0      1     10.8     9.1     12.5     4.6     17.0
   0.1      5      8.9     6.8     11.0     2.6     15.2
   1.0      5      7.3     5.5      9.1     1.0     13.5
  10.0      5      5.7     4.0      7.3    -0.5     11.8
 100.0      5      4.1     2.3      5.8    -2.2     10.3

The predicted value is the mean, but predicting
is riskier than estimating a mean.


