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Manifold Learning

Learning when data ~ M c RV

s Clustering: M — {1,... k}
connected components, min cut

s Classification/Regression: M — {—1,+1} or M —R
Pon M x {-1,+1}orPon M xR

s Dimensionality Reduction: f: M — R"® n << N
s M unknown: what can you learn about M from data®?

e.g. dimensionality, connected components
holes, handles, homology
curvature, geodesics



All you wanna know about
differential geometry but
were afraid to ask, in 9 easy
slides



Embeded Manifolds

MFE c RN

Locally (not globally) looks like Euclidean space.

S? c R?




Tangent Space

T,M" Cc RY

k-dimensional affine subspace of RY.



Tangent Vectors and Curves

Tangent vectors <———> curves.



Riemannian Geometry

Norms and angles in tangent space.

(v, w) —lvf], Jlwl]



Geodesics

o(t) : [0,1] — MF

1

16) = |

0

d¢
— || dt
i

Can measure length using norm in tangent space.

Geodesic — shortest curve between two points.



Gradients

Tangent vectors <———>  Directional derivatives.

Gradient points in the direction of maximum change.



Tangent Vectors vs.
Derivatives

foMF SR
o(t) : R — MF

flo(t) R —R

df d (o)
dv dt 0

Tangent vectors <———>  Directional derivatives.




Exponential Maps

exp), Tp/\/lk — MF

exp,(v) =1 exp,(w) =q

Geodesic ¢(t)

#(0) = p, o(lv]) = ¢ %f) =



Laplacian-Beltrami Operator

foMF SR

exp,, : Tp./\/lk — MF

02 f(exp, (x
st = 5 2L

1 (/

Orthonormal coordinate system.



Generative Models in Manifold Learning

INPUT
N\ N SEEK
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High-dimensional space 4
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B — &7

Low-dimensional space Low-dimensional space



Spectral Geometric Embedding

Given z1,...,x, € M C RY,
Find y1,...,y, € R* where d << N
s ISOMAP (Tenenbaum, et al, 00)
s LLE (Roweis, Saul, 00)
» Laplacian Eigenmaps (Belkin, Niyogi, 01)
» Local Tangent Space Alignment (Zhang, Zha, 02)
» Hessian Eigenmaps (Donoho, Grimes, 02)
» Diffusion Maps (Coifman, Lafon, et al, 04)

Related: Kernel PCA (Schoelkopf, et al, 98)



Meta-Algorithm

* Construct a neighborhood graph
e Construct a positive semi-definite kernel
* Find the spectrum decomposition

Q
)
<

& p :> Kernel ::> Spectrum

.

P



Recall: ISOMAP

1. Construct Neighborhood Graph.
2. Find shortest path (geodesic) distances.

Dz'j IS X n

3. Embed using Multidimensional Scaling.



Recall: MDS

* |dea: Distances -> Inner Products -> Embedding
* Inner Product:
=3I = o)+ (3.3) - 2(x.y)
Dij =Yii+ij _2Yij
N A=-1HDHT, H=1-111T
2 n
* Ais positive semi-definite with

A=UAU" =YY", Y =UA"



Recall: LLE (T)

1. Construct Neighborhood Graph.

2. Let z1,...,z, be neighbors of z. Project x to the span of

Tlyenv, Ty

3. Find barycentric coordinates of z.

® X

T = wWir1 + woxry + w3xs
ex,

> e

w1+ wo +ws =1

AY
el
\
\

X, Welghts w1, wa, w3 chosen,
so that z is the center of mass.



Recall: LLE (II)

4. Construct sparse matrix 1. ¢ th row is barycentric
coordinates of z; in the basis of its nearest neighbors.

5. Use lowest eigenvectors of (I — W){(I — W) to embed.



Laplacian and LLE

®- O
Xl \‘~\\\\\ O //,/’ Zwixi:0
Sy
/
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® X, Hessian H. Taylor expansion :

f(wi) = F(0) + @tV f + St + ol i)

(T = W)F(0) = F(0) = Y wif (@) ~ F(0) = 3 wif (0) = Y wial v - % > ol Hai =

1
= —§foHxZ ~—trH = Af
1



Laplacian Eigenmaps (I)
[Belkin-Niyogi]

Step 1 [Constructing the Graph]
€ij = 1 & x; “close to” Xj

1. e-neighborhoods. [parameter e € R] Nodes i and j are connected by an edge if

i —x;* < e

2. n nearest neighbors. [parametern € N] Nodes i and j are connected by an edge if 7 is among
n nearest neighbors of j or j is among n nearest neighbors of 3.



Laplacian Eigenmaps (IT)

Step 2. [Choosing the weights].

1. Heat kernel. [parametert € R]. If nodes i and j are connected, put

g —x51012

2. Simple-minded. [No parameters]. W;; = 1 if and only if vertices i and j are connected by an
edge.



Laplacian Eigenmaps (IIT)

Step 3. [Eigenmaps] Compute eigenvalues and eigenvectors for the generalized eigenvector problem:

Lf=\Df

D is diagonal matrix where

Let fo, ..., fi_1 be eigenvectors.
Leave out the eigenvector fy and use the next m lowest eigenvectors for embedding in an

m-~dimensional Euclidean space.



Connection to Markov Chain

L =D-W
P=1-D" =D1W is a markov matrix
v is generalized eigenvectorof L: Lv=ADv

v is also a right eigenvector of P with eigenvalue
1-A
P is lumpable iff v is piece-wise constant

So Laplacian eigenmaps have Markov Chain
interpretations (Diffusion Map)



Another choice of eigenmaps

* Normalized positive semi-definite Laplacian
L — D—l/z(D_W)D—l/Z — I_D—l/ZWD—]/Z
* ¢, is an eigenvector of L_with eigenvalue A,

* Laplacian eigenmap/Diffusion map:

Y=(A20 A . A7)



‘Laplacian on Graphs'

Given a weighted graph (G, W, E'), the combinatorial Laplacian is defined by
L=D-—W, where (D)i; = > ; Wij, and the normalized Laplacian is defined by

L=D"3D-W)D"%.

These are self-adjoint positive-semi-definite operators, let A\; and ¢; be the
elgenvalues and eigenvectors. Fourier analysis on graphs. The heat kernel is of
course defined by H; = e~ *£; the natural random walk is D1,

e ' .

. " ¢« 4% L}

"~ ¥ od !
P 1 '

dgeod. (A, B) ~ dg. .4 (C, B), however d(*)(a, B) >> a(*)(c, B).



A simple empirical diffusion matrix A can be constructed as follows

Let &, represent normalized data ,we “soft truncate” the covariance
matrix

as
Ay =X *X ], =exp{-(1-X;*X )/¢}
-1
A=D"12A,D""2 (D=diag(sum(A,,1))) is a renormalized version of this matrix

The eigenvectors of this matrix provide a local non linear principal
component analysis of the data . Whose entries are the diffusion coordinates
These are also the eigenfunctions of the discrete Graph Laplace Operator.

A= X, (X)¢,(X),)
X = (A9 (X)A,",(X,),A $,(X)),..)

This map is a diffusion (at time t) embedding into Euclidean space



Kernel PCA and Diffusion Map

Let k be a positive definite kernel whose restriction to the data

set 1s expanded 1n eigenfunctions

k(x.y) = ), Ao (0@()

Let

Dz(xay) = E )"iz((pi(x) - (pz(y))z
Then

k(x,x)+ k(y,y) -2k(x,y) = D*(x,y)
Clearly D 1s a distance on the data induced by the

Geometric short time Diffusion map

xET— X'x) ={A'p.(x)} E 1"



Heat Diffusion Map

e Find Gaussian kernel K ( Jx - y]
X,y) =exp -

* Normalize kernel
K, (x,y)
P (x)p*(y)

K“(x,y) = where  p(x) = ng (x,y)du(y)

. Renormalized kernel
K (x,y)
\/d(‘” \/d(“)
— a=1, Laplacian- BeItrami operator, separate
geometry from density

where — d*(x fK(a) x y)du(y)

— a=0, classical normalized graph Laplacian
— a=1/2, backward Fokkar-Planck operator



Heat Diffusion Distance

H' =exp(-tL,) where L, =I1-D""WD""?

Heat diffusion operator .
6 and ¢, initial heat distributions.

Diffusion distance between z and y:

| H'6 — H 6yl 12

Difference between heat distributions after time <.



Heat Diffusion Maps

Embed using weighted eigenfunctions of the Laplacian:

r — (e MU (2), e MMy (x), .. )

Diffusion distance is (approximated by) the distance
between the embedded points.

Closely related to random walks on graphs.



Justification

Find yq,...,y, € R

min Z(yz — yj)ZW-j
2,]

Tries to preserve locality



A Fundamental Identity

But

- Z yj 2Wzg TLy

> (Wi —y)*Wig => (U7 + Y5 — 2uiy;) Wiy
i i

= Z y; Dii + Z y;Djj — 2 Z Yiyj Wi
( J 1,J

=2y’ Ly



Embedding

A=0—-y=1

min yTLy
yT1=0

LetY = [y1y2...ym]

> Y — Y| |PWi; = trace(Y T LY)
(%]

subjectto YTY = I.
Use eigenvectors of L to embed.



On the Manifold

smoothmap f : M — R

/M IV A2~ S Wi (F; — )2

1~]

Recall standard gradient in R* of f(zy,..., Z;;)

.

~~

CDQJQD
S‘\B‘

Vf=

Q
>



Stokes Theorem

A Basic Fact
[ IV = /f Apf
M
This is like
Z Wi (f = fTLf
where

A r f 1S the manifold Laplacian



Manifold Laplacian

Recall ordinary Laplacian in R*
This maps

k 02
firam = (-3 5]
1=1 t

Manifold Laplacian is the same on the tangent space.




Manifold Laplacian Eigenvectors

Eigensystem
A = Aigi

)\izoandAiHOO

{¢;} form an orthonormal basis for L?(M)

/ IV eil® = A

Manifold Laplacian is non-compact!



Example: Circle

G
d*u

——5 = Au where u(0) = u(2n)

Eigenvalues are

Eigenfunctions are

sin(nt), cos(nt)

Spherical Harmonics in high-D sphere!



Spectral Growth

Alg)\g...g)\jg...
Then

2 2
A+ ~ log(j) <log(A\j) < B+ -~ log(7 +1)

Example: on S*

. 2 .
\j=3j° = log(\j) = T log(j)

(Li and Yau; Weyl’s asymptotics)



From Graph to Manifolds

f-M—=R zeM z...,20pEM

Graph Laplacian:

L) = J@) e = e

J J

[ ] J— 1 I
Theorem [pointwise convergence] t, =n" *+e

k+2
At )~ 2
lim (47tn)

n— 00 n

Ly f(x) = Apf(x)

Belkin 03, Lafon Coifman 04, Belkin Niyogi 05, Hein et al 05



From Graph to Manifolds

Theorem [convergence of eigenfunctions]

lim  Eig[L!"] — Eig[An]

t—0,n—00

Belkin Niyogi 06



Recall

Heat equation in R":

u(x,t) — heat distribution at time ¢.
u(z,0) = f(x) — initial distribution. z € R" ¢t € R.

Solution — convolution with the heat kernel:

2
_ lz—yll

u(z,t) = (dnt) "2 [ fly)e™ T dy



Proof Idea
(pointwise convergence)

Functional approximation:
Taking limit as ¢t — 0 and writing the derivative:

d n z—y| 2
Arn f(r) = T [(47“5)5 - f(y)eley]O

B flo) =3 am0) ()= [ e T ay)

Empirical approximation:
Integral can be estimated from empirical data.

o-Bo

M|3

Arn f(x) =~ ! (47Tt



Some Difficulties

Some difficulties arise for manifolds:

» Do not know distances.
» Do not know the heat kernel.

x M
dist,,(x ,y)V
lIx—yll
y

Careful analysis needed.




The Heat Kernel Approximation

o Hy(x,y) =Y ;e ¢i(x)di(y)
» in R?, closed form expression

2
1 _ lz—yll
4t

Ht('x? y) — (47Tt)d/26

» Goodness of approximation depends on the gap

1 _ ”x;‘?”2
(4mt)d/2 ‘

Ht(x7 y) B

s H; is a Mercer kernel intrinsically defined on manifold.
Leads to SVMs on manifolds.



Three remarks on noises

1. Arbitrary probability distribution on the manifold:
convergence to weighted Laplacian.
2. Noise off the manifold:

= Hpd T RN
Then

lim L' f(z) = Af(z)

t—0

3. Noise off the manifold:
z=x+n (~ N(0,0%1))
We have

lim lim L™ f(x) = Af(z)

t—0o0—0



General Diffusion Map

* P.S.D. Radial basis kernel Kg(x,y)=h(_||tg||z]

* Normalize kernel
K, (x,y)

K(a) , —
o) = o )

where  p(x) = ng (x,y)du(y)

e Markov kernel

(@)
a(x,y) = Kd(ang’i) where  d“(x) = fK(a)(xvy)dM(Y)
X

* Diffusion Operator:

exp(-U(x))
Z

A“f(x) = [d® @ fpD)dy,  p(x) =

- A"
B £

A(a )

£



Convergence of Diffusion Map
[Coifman et al. 2005]

* Uniform sampling: Laplacian eigenmap
converges to Laplacian-Beltrami operators
[Belkin-Niyogi]

* Nonuniform sampling with p(x)
1-A"

—a=1: &'=———=A,+0") where A, is Laplacian-

Beltrami operator on Riemannian manifolds

— a=1/2: backward Fokkar-Planck operator

— a=0: classical normalized graph laplacian



Two Assumptions on ISOMAP

(ISO1)

(ISO2)

Isometry. The mapping v preserves geodesic distances. That is, define a distance between
two points m and m’ on the manifold according to the distance travelled by a bug walking
along the manifold M according to the shortest path between m and m’. Then the
isometry assumption says that

G(m,m") =16 — 0|, Vm < 0, m' — ¢,
where | - | denotes Euclidean distance in R

Convezity. The parameter space O is a convex subset of R?. That is, if 6,0’ is a pair of
points in ©, then the entire line segment {(1 —¢)0 + 0" : t € (0,1)} lies in ©.

Convexity is hard to meet: consider two balls in an image which never
intersect, whose center coordinate space (x4,Y4,X,,Y,) must have a hole.



Relaxations
(Donoho-Grimes'2003)

(LocISO1) Local Isometry. In a small enough neighborhood of each point m, geodesic distances to
nearby points m’ in M are identical to Euclidean distances between the corresponding

parameter points 6 and 6.

(LocISO2) Connectedness. The parameter space O is a open connected subset of R



Summary of Laplacian LLE

Summary
Build graph from K Nearest Neighbors.

Construct weighted adjacency matrix with
Gaussian kernel.

Compute embedding from normalized

Laplacian.
minimize [[|Vf|dx subject to | f]=1

Predictions

Assumes each point lies in the convex hull of
its neighbors. So it might have trouble at the
boundary.

Will have difficulty with non-uniform sampling.



Hessian LLE

Summary
Build graph from K Nearest Neighbors.
Estimate tangent Hessians.
Compute embedding based on Hessians.
f:X—>R Basis(null(jHHf (x)H)dx)z Basis(X)
Predictions
Specifically set up to handle non-convexity.
Slower than LLE & Laplacian.
Will perform poorly in sparse regions.
Only method with convergence guarantees.

Note that: A(f) = trace(H (f ))



Convergence of Hessian LLE
(Donoho-Grimes)

Theorem 1 Suppose M = 1)(0) where © is an open connected subset of R?, and 1) is a locally
isometric embedding of © into R™. Then H(f) has a d+ 1 dimensional nullspace, consisting of

the constant function and a d-dimensional space of functions spanned by the original isometric
coordinates.

We give the proof in Appendix A.

Corollary 2 Under the same assumptions as Theorem 1, the original isometric coordinates 6
can be recovered, up to a rigid motion, by identifying a suitable basis for the null space of H(f).



omparisons on Swiss Roll
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