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Manifold Learning Manifold Learning

Learning when data ∼ M ⊂ RN

Clustering: M → {1, . . . , k}
connected components, min cut

Classification/Regression: M → {−1,+1} or M → R

P onM× {−1, +1} or P onM× R

Dimensionality Reduction: f : M → Rn n << N

M unknown: what can you learn about M from data?
e.g. dimensionality, connected components
holes, handles, homology
curvature, geodesics
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All you wanna know about 
differential geometry but 

were afraid to ask, in 9 easy 
slides 



Embeded Manifolds Embedded manifolds
Mk ⊂ R

N

Locally (not globally) looks like Euclidean space.

S2 ⊂ R
3
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Tangent Space Tangent space

TpMk ⊂ R
N

k-dimensional affine subspace of RN .
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Tangent Vectors and Curves Tangent vectors and curves

v

! (t)

φ(t) : R → Mk

dφ(t)

d t

∣

∣

∣

∣

0

= V

Tangent vectors <———> curves.
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Riemannian Geometry Riemannian geometry
Norms and angles in tangent space.

w

v

〈v, w〉 ‖v‖, ‖w‖
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Geodesics Length of curves and geodesics

φ(t) : [0, 1] → Mk

l(φ) =

∫ 1

0

∥

∥

∥

∥

dφ

dt

∥

∥

∥

∥

dt

Can measure length using norm in tangent space.

Geodesic — shortest curve between two points.
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Gradients Gradient

v

! (t)

f : Mk → R

〈∇f, v〉 ≡
df

dv

Tangent vectors <———> Directional derivatives.

Gradient points in the direction of maximum change.
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Tangent Vectors vs. 
Derivatives Tangent vectors as derivatives

v

! (t)

f : Mk → R

φ(t) : R → Mk

f(φ(t)) : R → R

df

dv
=

d f(φ(t))

d t

∣

∣

∣

∣

0

Tangent vectors <———> Directional derivatives.
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Exponential Maps Exponential map

(t)

r

!

p

vw

q

expp : TpMk → Mk

expp(v) = r expp(w) = q

Geodesic φ(t)

φ(0) = p, φ(‖v‖) = q
dφ(t)

dt

∣

∣

∣

∣

0

= v

φ(t) : [0, 1] → Mk
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Laplacian-Beltrami Operator Laplace-Beltrami operator

2x

1p x

f : Mk → R

expp : TpMk → Mk

∆Mf(p) ≡
∑

i

∂2f(expp(x))

∂x2
i

Orthonormal coordinate system.
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Generative Models in Manifold Learning 



Spectral Geometric Embedding Dimensionality Reduction
Given x1, . . . , xn ∈ M ⊂ RN ,
Find y1, . . . , yn ∈ Rd where d << N

ISOMAP (Tenenbaum, et al, 00)
LLE (Roweis, Saul, 00)
Laplacian Eigenmaps (Belkin, Niyogi, 01)
Local Tangent Space Alignment (Zhang, Zha, 02)
Hessian Eigenmaps (Donoho, Grimes, 02)
Diffusion Maps (Coifman, Lafon, et al, 04)

Related: Kernel PCA (Schoelkopf, et al, 98)
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Meta-Algorithm 
•  Construct	
  a	
  neighborhood	
  graph	
  
•  Construct	
  a	
  posi2ve	
  semi-­‐definite	
  kernel	
  

•  Find	
  the	
  spectrum	
  decomposi2on	
  

Kernel Spectrum 



Recall: ISOMAP 
Isomap

1. Construct Neighborhood Graph.
2. Find shortest path (geodesic) distances.

Dij is n × n

3. Embed using Multidimensional Scaling.
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Recall: MDS 
•  Idea:	
  Distances	
  -­‐>	
  Inner	
  Products	
  -­‐>	
  Embedding	
  
•  Inner	
  Product:	
  

•  A	
  is	
  posi2ve	
  semi-­‐definite	
  with	
  	
  

€ 

x − y 2
= x,x + y,y − 2 x,y

€ 

Dij =Yii +Yjj − 2Yij

€ 

A = −
1
2
HDHT , H = I − 1

n
11T

€ 

A =UΛUT =YYT , Y =UΛ1/ 2



Recall: LLE (I) 
Locally Linear Embedding
1. Construct Neighborhood Graph.

2. Let x1, . . . , xn be neighbors of x. Project x to the span of
x1, . . . , xn.

3. Find barycentric coordinates of x̄.

x3

x

x

x

1

2

x

x̄ = w1x1 + w2x2 + w3x3

w1 + w2 + w3 = 1

Weights w1, w2, w3 chosen,
so that x̄ is the center of mass.
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Recall: LLE (II) 

Locally Linear Embedding

4. Construct sparse matrix W . i th row is barycentric
coordinates of x̄i in the basis of its nearest neighbors.

5. Use lowest eigenvectors of (I − W )t(I − W ) to embed.
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Laplacian and LLE Laplacian and LLE

Ox

x

1

2

3x
∑

wixi = 0

∑

wi = 1

Hessian H. Taylor expansion :

f(xi) = f(0) + xt
i∇f +

1

2
xt

iHxi + o(‖xi‖
2)

(I − W )f(0) = f(0) −
∑

wif(xi) ≈ f(0) −
∑

wif(0) −
∑

i

wix
t
i∇f −

1

2

∑

i

xt
iHxi =

= −
1

2

∑

i

xt
iHxi ≈ −trH = ∆f
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Laplacian Eigenmaps (I) 
[Belkin-Niyogi] Laplacian Eigenmaps

Step 1 [Constructing the Graph]
eij = 1 ⇔ xi “close to” xj

1. ε-neighborhoods. [parameter ε ∈ R] Nodes i and j are connected by an edge if

||xi − xj ||
2 < ε

2. n nearest neighbors. [parameter n ∈ N] Nodes i and j are connected by an edge if i is among
n nearest neighbors of j or j is among n nearest neighbors of i.
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Laplacian Eigenmaps (II) 
Laplacian Eigenmaps

Step 2. [Choosing the weights].

1. Heat kernel. [parameter t ∈ R]. If nodes i and j are connected, put

Wij = e−
||xi−xj ||2

t

2. Simple-minded. [No parameters]. Wij = 1 if and only if vertices i and j are connected by an
edge.

Geometric Methods and Manifold Learning – p. 36



Laplacian Eigenmaps (III) Laplacian Eigenmaps

Step 3. [Eigenmaps] Compute eigenvalues and eigenvectors for the generalized eigenvector problem:

Lf = λDf

D is diagonal matrix where

Dii =
∑

j

Wij

L = D − W

Let f0, . . . , fk−1 be eigenvectors.

Leave out the eigenvector f0 and use the next m lowest eigenvectors for embedding in an

m-dimensional Euclidean space.
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Connection to Markov Chain 
•  L	
  =	
  D-­‐W	
  
•  P	
  =	
  I	
  -­‐	
  D-­‐1L	
  =	
  D-­‐1W	
  is	
  a	
  markov	
  matrix	
  

•  v	
  is	
  generalized	
  eigenvector	
  of	
  L:	
  L	
  v	
  =	
  λ	
  D	
  v	
  
•  v	
  is	
  also	
  a	
  right	
  eigenvector	
  of	
  P	
  with	
  eigenvalue	
  
1-­‐λ	
  

•  P	
  is	
  lumpable	
  iff	
  v	
  is	
  piece-­‐wise	
  constant	
  

•  So	
  Laplacian	
  eigenmaps	
  have	
  Markov	
  Chain	
  
interpreta2ons	
  (Diffusion	
  Map)	
  



Another choice of eigenmaps 
•  Normalized	
  posi2ve	
  semi-­‐definite	
  Laplacian	
  

•  ϕi	
  is	
  an	
  eigenvector	
  of	
  Ln	
  with	
  eigenvalue	
  λi	
  

•  Laplacian	
  eigenmap/Diffusion	
  map:	
  
€ 

Ln = D−1/ 2(D −W )D−1/ 2 = I −D−1/ 2WD−1/ 2

  

€ 

Y = λ1
1/ 2 φ1 λ2

1/ 2φ2 … λd
1/ 2φd( )





A simple empirical diffusion matrix A  can be constructed as follows 

Let       represent normalized data ,we “soft truncate” the covariance 
matrix 

as  

€ 

A0 = [Xi ∗X j ]ε = exp{−(1− Xi ∗X j ) /ε}

Xi =1

The eigenvectors of this matrix  provide a local non linear principal 
component analysis of the data . Whose entries are the diffusion coordinates 
These are also the eigenfunctions of the discrete Graph Laplace Operator. 

€ 

Xi

€ 

A = λl
2∑ φl (Xi)φl (X j )

Xi
(t ) →(λ1

tφ1(Xi),λ2
tφ2(Xi),λ3

tφ3(Xi),..)
This map is a diffusion (at time t) embedding into Euclidean space 	



A＝D-1/2A0D-1/2 (D=diag(sum(A0,1))) is  a renormalized version of this matrix 



  

€ 

Let k be a positive definite kernel whose restriction to the data
 set is expanded in eigenfunctions 

k(x,y) =∑ λi
2ϕi(x)ϕi(y)

Let

D2(x,y) =∑ λi
2(ϕi(x) −ϕi(y))2

Then
k(x,x) + k(y,y) − 2k(x,y) = D2(x,y)
Clearly D is a distance on the data induced by the 
Geometric short time Diffusion map 
x∈Γ→  

 
X t (x) = {λi

tϕi(x)} ∈  l2 .
.

Kernel PCA and Diffusion Map 



Heat Diffusion Map 
•  Find	
  Gaussian	
  kernel	
  
•  Normalize	
  kernel	
  

•  Renormalized	
  kernel	
  

– α=1,	
  Laplacian-­‐Beltrami	
  operator,	
  separate	
  
geometry	
  from	
  density	
  

– α=0,	
  classical	
  normalized	
  graph	
  Laplacian	
  
– α=1/2,	
  backward	
  Fokkar-­‐Planck	
  operator	
  

€ 

Kε (x,y) = exp −
x − y 2

ε 2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

€ 

K (α )(x,y) =
Kε (x,y)
pα (x)pα (y)

where p(x) = Kε (x,y)dµ(y)∫

€ 

Aε x,y( ) =
K (α )(x,y)

d(α ) x( ) d(α ) y( )
where d(α ) x( ) = K (α ) x,y( )dµ(y)∫



Heat Diffusion Distance Diffusion Distance

Heat diffusion operator Ht.

δx and δy initial heat distributions.

Diffusion distance between x and y:

‖Htδx − Htδy‖L2

Difference between heat distributions after time t.
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€ 

Ht = exp(−tLn ) where Ln = I −D−1/ 2WD−1/ 2



Heat Diffusion Maps Diffusion Maps

Embed using weighted eigenfunctions of the Laplacian:

x → (e−λ1tf1(x), e−λ2tf2(x), . . .)

Diffusion distance is (approximated by) the distance
between the embedded points.

Closely related to random walks on graphs.
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Justification 
Justification

Find y1, . . . , yn ∈ R

min
∑

i,j

(yi − yj)
2Wij

Tries to preserve locality
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A Fundamental Identity A Fundamental Identity

But

1

2

∑

i,j

(yi − yj)
2Wij = yT Ly

∑

i,j

(yi − yj)
2Wij =

∑

i,j

(y2
i + y2

j − 2yiyj)Wij

=
∑

i

y2
i Dii +

∑

j

y2
j Djj − 2

∑

i,j

yiyjWij

= 2yT Ly
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Embedding Embedding

λ = 0 → y = 1

min
yT 1=0

yT Ly

Let Y = [y1y2 . . .ym]

∑

i,j

||Yi − Yj ||
2Wij = trace(Y T LY )

subject to Y T Y = I.

Use eigenvectors of L to embed.
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On the Manifold On the Manifold

smooth map f : M → R

∫

M
‖∇Mf‖2 ≈

∑

i∼j

Wij(fi − fj)
2

Recall standard gradient in Rk of f(z1, . . . , zk)

∇f =





















∂f
∂z1

∂f
∂z2

·

·
∂f
∂zk




















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Stokes Theorem Stokes Theorem

A Basic Fact
∫

M
‖∇Mf‖2 =

∫

f · ∆Mf

This is like
∑

i,j

Wij(fi − fj)
2 = fTLf

where
∆Mf is the manifold Laplacian
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Manifold Laplacian Manifold Laplacian

Recall ordinary Laplacian in Rk

This maps

f(x1, . . . , xk) →

(

−
k

∑

i=1

∂2f

∂x2
i

)

Manifold Laplacian is the same on the tangent space.
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Manifold Laplacian Eigenvectors Properties of Laplacian

Eigensystem
∆Mf = λiφi

λi ≥ 0 and λi → ∞

{φi} form an orthonormal basis for L2(M)

∫

‖∇Mφi‖2 = λi

Geometric Methods and Manifold Learning – p. 48Manifold Laplacian is non-compact! 



Example: Circle The Circle: An Example

!

−
d2u

dt2
= λu where u(0) = u(2π)

Eigenvalues are
λn = n2

Eigenfunctions are

sin(nt), cos(nt)
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Spectral Growth Estimating Dimension from Laplacian

λ1 ≤ λ2 . . . ≤ λj ≤ . . .

Then

A +
2

d
log(j) ≤ log(λj) ≤ B +

2

d
log(j + 1)

Example: on S1

λj = j2 =⇒ log(λj) =
2

1
log(j)

(Li and Yau; Weyl’s asymptotics)
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From Graph to Manifolds From graphs to manifolds

f : M → R x ∈ M x1, . . . , xn ∈ M

Graph Laplacian:

Lt
n(f)(x) = f(x)

∑

j

e−
‖x−xj‖

2

t −
∑

j

f(xj)e
−

‖x−xj‖
2

t

Theorem [pointwise convergence] tn = n− 1

k+2+α

lim
n→∞

(4πtn)−
k+2

2

n
Ltn

n f(x) = ∆Mf(x)

Belkin 03, Lafon Coifman 04, Belkin Niyogi 05, Hein et al 05
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From Graph to Manifolds From graphs to manifolds

Theorem [convergence of eigenfunctions]

lim
t→0,n→∞

Eig[Ltn
n ] → Eig[∆M]

Belkin Niyogi 06
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Recall Recall

Heat equation in Rn:

u(x, t) – heat distribution at time t.
u(x, 0) = f(x) – initial distribution. x ∈ Rn, t ∈ R.

∆Rnu(x, t) =
du

dt
(x, t)

Solution – convolution with the heat kernel:

u(x, t) = (4πt)−
n
2

∫

Rn

f(y)e−
‖x−y‖2

4t dy
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Proof Idea  
(pointwise convergence) Proof idea (pointwise convergence)

Functional approximation:
Taking limit as t → 0 and writing the derivative:

∆Rnf(x) =
d

dt

[

(4πt)−
n
2

∫

Rn

f(y)e−
‖x−y‖2

4t dy

]

0

∆Rnf(x) ≈ −
1

t
(4πt)−

n
2

(

f(x) −
∫

Rn

f(y)e−
‖x−y‖2

4t dy

)

Empirical approximation:
Integral can be estimated from empirical data.

∆Rnf(x) ≈ −
1

t
(4πt)−

n
2

(

f(x) −
∑

xi

f(xi)e
− ‖x−xi‖

2

4t

)

Geometric Methods and Manifold Learning – p. 57



Some Difficulties 
Some difficulties
Some difficulties arise for manifolds:

Do not know distances.
Do not know the heat kernel.

||x!y||

x

y

M
dist  (x,y)M

Careful analysis needed.
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The Heat Kernel Approximation The Heat Kernel

Ht(x, y) =
∑

i e
−λitφi(x)φi(y)

in Rd, closed form expression

Ht(x, y) =
1

(4πt)d/2
e−

‖x−y‖2

4t

Goodness of approximation depends on the gap
∣

∣

∣

∣

Ht(x, y) −
1

(4πt)d/2
e−

‖x−y‖2

4t

∣

∣

∣

∣

Ht is a Mercer kernel intrinsically defined on manifold.
Leads to SVMs on manifolds.
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Three remarks on noises Three Remarks on Noise

1. Arbitrary probability distribution on the manifold:
convergence to weighted Laplacian.

2. Noise off the manifold:
µ = µMd + µRN

Then
lim
t→0

Ltf(x) = ∆f(x)

3. Noise off the manifold:

z = x + η (∼ N(0,σ2I))

We have
lim
t→0

lim
σ→0

Lt,σf(x) = ∆f(x)
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General Diffusion Map 
•  P.S.D.	
  Radial	
  basis	
  kernel	
  
•  Normalize	
  kernel	
  

•  Markov	
  kernel	
  

•  Diffusion	
  Operator:	
  

€ 

Kε (x,y) = h
x − y 2

ε 2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

€ 

K (α )(x,y) =
Kε (x,y)
pα (x)pα (y)

where p(x) = Kε (x,y)dµ(y)∫

€ 

aε
α( ) x,y( ) =

K (α )(x,y)
d(α ) x( )

where d(α ) x( ) = K (α ) x,y( )dµ(y)∫

€ 

Aε
(α ) f (x) = aε

(α )(x,y) f (y)p(y)dy∫ , p(x) =
exp(−U(x))

Z

Δε
α( ) =

I − Aε
(α )

ε



Convergence of Diffusion Map 
[Coifman et al. 2005] 

•  Uniform	
  sampling:	
  Laplacian	
  eigenmap	
  
converges	
  to	
  Laplacian-­‐Beltrami	
  operators	
  	
  
[Belkin-­‐Niyogi]	
  

•  Nonuniform	
  sampling	
  with	
  p(x)	
  
– α=1: 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  Δ0	
  is	
  Laplacian-­‐
Beltrami	
  operator	
  on	
  Riemannian	
  manifolds	
  

– α=1/2:	
  backward	
  Fokkar-­‐Planck	
  operator	
  
– α=0:	
  classical	
  normalized	
  graph	
  laplacian	
  
€ 

Δε
1( ) =

I − Aε
(1)

ε
= Δ 0 +O(ε1/ 2)



Two Assumptions on ISOMAP 
3 Isomap

In an insightful article, Tenenbaum, de Silva, and Langford [1] proposed a method that, under

certain assumptions, could indeed recover the underlying parametrization of a data manifold.

The assumptions were:

(ISO1) Isometry. The mapping ψ preserves geodesic distances. That is, define a distance between

two points m and m�
on the manifold according to the distance travelled by a bug walking

along the manifold M according to the shortest path between m and m�
. Then the

isometry assumption says that

G(m, m�
) = |θ − θ�|, ∀m ↔ θ,m� ↔ θ�,

where | · | denotes Euclidean distance in Rd
.

(ISO2) Convexity. The parameter space Θ is a convex subset of Rd
. That is, if θ, θ�

is a pair of

points in Θ, then the entire line segment {(1− t)θ + tθ�
: t ∈ (0, 1)} lies in Θ.

Tenenbaum et al. [1] introduced a procedure, Isomap, which, under these assumptions,

recovered Θ up to rigid motion. That is, up to a choice of origin and a rotation and possible

mirror imaging about that origin, Isomap recovered Θ. In their paper, they gave an example

showing successful recovery of articulation parameters from an image database that showed

many views of a wrist rotating and a hand opening at various combinations of rotation/opening.

The stated assumptions lead to two associated questions:

(Q1) Whether interesting articulation manifolds have isometric structure; and

(Q2) Whether interesting parameter spaces are truly convex.

Donoho and Grimes [4, 5] studied these questions in the case of image libraries. Namely,

they modeled images m as continuous functions m(x, y) defined on the plane (x, y) ∈ R2
, and

focused attention on images in special articulation families defined by certain mathematical

models. As one example, they considered images of a ball on a white background, where the

underlying articulation parameter is the position of the ball’s center. In this model, let Bθ

denotes the ball of radius 1 centered at θ ∈ R2
, and define

mθ(x, y) = 1Bθ
(x, y).

This establishes a correspondence between θ ∈ R2
and mθ in L2

(R2
). After dealing with

technicalities associated with having L2
(R2

) as the ambient space in which M is embedded,

they derived expressions for the metric structure induced from L2
(R2

) and showed that indeed,

if Θ is a convex subset of R2
, then isometry holds:

G(θ, θ�
) = |θ − θ�|, ∀θ, θ� ∈ Θ

They found that isometry held for a dozen examples of interesting image articulation families,

including cartoon faces with articulated eyes, lips, and brows. Hence (Q1) admits of positive

answers in a number of interesting cases.

4

Convexity is hard to meet: consider two balls in an image which never  
intersect, whose center coordinate space (x1,y1,x2,y2) must have a hole. 



Relaxations 
(Donoho-Grimes’2003) 

On the other hand, in their studies of image articulation families, Donoho and Grimes [4, 5]
noted that (Q2) can easily have a negative answer. A simple example occurs with images
showing two balls which articulate by translation, as in the single-ball case mentioned above,
but where the ball centers obey exclusion: the two balls never overlap. In this case, the
parameter space Θ ⊂ R4 becomes nonconvex; writing θ = (θ1

, θ2) as a concatenation of the
parameters of the two ball centers, we see that it is missing a tube where |θ1 − θ2| ≤ 1.

The case of two balls moving independently and subject to exclusion is merely one in a series
of examples where the articulation manifold fails to obey (ISO1) and (ISO2), but instead obeys
something weaker:

(LocISO1) Local Isometry. In a small enough neighborhood of each point m, geodesic distances to
nearby points m

� in M are identical to Euclidean distances between the corresponding
parameter points θ and θ�.

(LocISO2) Connectedness. The parameter space Θ is a open connected subset of Rd.

In such settings, the original assumptions of Isomap are violated, and, as shown in [4, 6], the
method itself fails to recover the parameter space up to a linear mapping. Donoho and Grimes
[6] pointed out the possibility of recovering non-convex Θ by applying Isomap to a suitable
decomposition of M into overlapping geodesically convex pieces. However, a fully automatic
procedure based on a general principle would be preferable in solving this problem. In this
paper we propose such a procedure.

4 The H-Functional

We now set up notation to define the quadratic form H(f) referred to in the abstract and
introduction.

We suppose that M ⊂ Rn is a smooth manifold, and so the tangent space Tm(M) is well-
defined at each point m ∈ M . Thinking of the tangent space as a subspace of Rn, we can
associate to each such tangent space Tm(M) ⊂ Rn an orthonormal coordinate system using the
inner product inherited from Rn. (It will not matter in the least how this choice of coordinate
system varies from point to point in M).

Think momentarily of Tm(M) as an affine subspace of Rn which is tangent to M at m, with
the origin 0 ∈ Tm(M) identified with m ∈M . There is a neighborhood Nm of m such that each
point m

� ∈ Nm has a unique closest point V
� ∈ Tm(M), and such that the implied mapping

m
� �→ V

� is smooth. The point in Tm(M) has coordinates given by our choice of orthonormal
coordinates for Tm(M). In this way, we obtain local coordinates for a neighborhood Nm of

m ∈ M . call them x
(tan,m)
1 , ... , x

(tan,m)
d , where we retain tan, m in the notation to remind us

that they depend on the way in which coordinates were defined on Tm(M).
We now use the local coordinates to define the Hessian of a function f : M �→ R which is C

2

near m. Suppose that m
� ∈ Nm has local coordinates x = x

(tan,m). Then the rule g(x) = f(m�)
defines a function g : U �→ R, where U is a neighborhood of 0 in Rd. Since the mapping m

� �→ x

is smooth, the function g is C
2 We define the Hessian of f at m in tangent coordinates as the

ordinary Hessian of g:

(H tan
f (m))i,j =

∂

∂xi

∂

∂xj
g(x)

���
x=0

.
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Summary of Laplacian LLE 

α 

Laplacian Eigenmap (Belkin & Nyogi)

! Summary

! Build graph from K Nearest Neighbors.

! Construct weighted adjacency matrix with 
Gaussian kernel.

! Compute embedding from normalized 
Laplacian.

"

! Predictions

! Assumes each point lies in the convex hull of 
its neighbors.  So it might have trouble at the 
boundary.

! Will have difficulty with non-uniform sampling.

1  subject to    minimize
2

=∇! fdxf



Hessian LLE 

α 

Hessian LLE (Donoho & Grimes)

! Summary

! Build graph from K Nearest Neighbors.

! Estimate tangent Hessians.

! Compute embedding based on Hessians.

! Predictions

! Specifically set up to handle non-convexity.

! Slower than LLE & Laplacian.

! Will perform poorly in sparse regions.

! Only method with convergence guarantees.

( )( ) ( )XBasisdxxHnullBasisXf f =ℜ→ ! )(     :

Note that:  

€ 

Δ( f ) = trace H( f )( )



Convergence of Hessian LLE 
(Donoho-Grimes) 

In short, at each point m, we use the tangent coordinates and differentiate f in that coordinate

system. We call this construction the tangent Hessian for short.

We remark that, unfortunately, there is some ambiguity in this definition of the Hessian,

because the entries in the Hessian matrix H
tan
f depend on the choice of coordinate system on the

underlying tangent space Tm(M). More properly, if we consider another choice of orthonormal

coordinates in Tm(M), we get another system of local coordinates in Nm, and for that set of

local coordinates, we get another Hessian matrix, which can be quite different.

Luckily, it is possible to extract invariant information about f . Comparing two different

Hessians, H and H
�
, say, which could be obtained as a result of two different choices in the

local coordinate system, we have the relation

H
�
= UHU

T
, (1)

where U is the orthonormal matrix translating one set of coordinates into the other. Although

this says that H and H
�
can differ a great deal in their entries, it turns out that their sizes must

be similar. For a d by d matrix A, let �A�F = (
�

ij A
2
ij)

1/2
denote the usual Frobenius norm of

matrices; then for two matrices H and H
�
obeying (1), we have �H ��F = �H�F . Consequently,

provided we always restrict attention just to the Frobenius norm of H
(tan)
f , our recipe gives a

well-defined quantity.

We now consider a quadratic form defined on C
2

functions by

H(f) =

�

M

||H
(tan)
f (m)||

2
F dm,

where dm stands for a probability measure on M which has strictly positive density everywhere

on the interior of M . H(f) measures the average ‘curviness’ of f over the manifold M .

Theorem 1 Suppose M = ψ(Θ) where Θ is an open connected subset of Rd
, and ψ is a locally

isometric embedding of Θ into Rn
. Then H(f) has a d + 1 dimensional nullspace, consisting of

the constant function and a d-dimensional space of functions spanned by the original isometric

coordinates.

We give the proof in Appendix A.

Corollary 2 Under the same assumptions as Theorem 1, the original isometric coordinates θ
can be recovered, up to a rigid motion, by identifying a suitable basis for the null space of H(f).

We sketch the argument for the corollary. Fix a point m0 in M . Recall the orthogonal

coordinate system chosen for Tm0(M) gives us a local coordinate system – a set of d functions

x
(tan,m0)
1 , ..., x

(tan,m0)
d – defined on a neighborhood Nm0 ⊂ M . The nullspace of H is d + 1

dimensional; consider the subspace V ⊂ nullspace(H) consisting of those functions f orthogonal

to 1 in the L
2
(M, dm) inner product. Within V , we can find a linearly independent set of

functions ψ1,..., ψd making a basis for V , and such that, if x refers to local coordinates x
(tan,m0)

in the vicinity of m0, then ψj(m) = xj(m) + o(dist(m, m0)
2
). The functions ψj provide the

required basis of V . The vector function ψ(m) = (ψj(m))
d
j=1 gives an inverse to φ, up to a rigid

motion, i.e. we have ψ(φ(θ)) = Uθ + τ, where the orthonormal matrix U effects orthogonal

rotation, and adding τ effects a location shift. Hence, this recovers the original coordinates up

to rigid motion under an exact isometric embedding ψ. ✷
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Comparisons on Swiss Roll  
with holes 

α 
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Figure 1: Top left: original data; Top right: LLE embedding (Roweis and Saul code, k=12);

Bottom Left: Hessian Eigenmaps (Donoho and Grimes code, k=12); Bottom right: Isomap

(Tenenbaum, et al. code, k=7). The underlying correct parameter space that generated the

data is a square with a central square removed, similar to what is obtained by the Hessian

approach, bottom left.

large N problems, since initial computations are performed only on smaller neighborhoods,

while Isomap has to compute a full matrix of graph distances for the initial distance processing

step. However, both LLE and HLLE are more sensitive to the dimensionality of the data space,

n, because they must estimate a local tangent space at each point. While we introduce an

orthogonalization step in HLLE that makes the local fits more robust to pathological neighbor-

hoods than LLE, HLLE still requires effectively a numerical second differencing at each point

that can be very noisy at low sampling density.

8 Discussion

We have derived a new Local Linear Embedding algorithm from a conceptual framework that

provably solves the problem of recovering a locally isometric parametrization of a manifold

M when such a parametrization is possible. The existing Isomap method can solve the same

problem in the special case where M admits a globally isometric parametrization. This special

case requires that M be geodesically convex, or equivalently that Θ be convex.

Note that in dealing with data points (mi) sampled from a naturally-occurring manifold

M , we can see no reason that the probability measure underlying the sampling must have

geodesically convex support. Hence our local isometry assumption seems much more likely to

hold in practice than the more restrictive global isometry assumption in Isomap.

Hessian LLE requires the solution of N separate k-by-k eigenproblems and, similar to Roweis

and Saul’s original LLE algorithm, a single N by N sparse eigenproblem. The sparsity of this

eigenproblem can confer a substantial advantage over the general nonsparse eigenproblem. This

is an important factor distinguishing LLE techniques from the Isomap technique, which poses

a completely dense N by N matrix for eigenanalysis. In our experience, if we budget an

10
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