Lecture 10
 Geometric Data Analysis: Laplacian, Diffusion, and Hessian LLE

姚 远
2011.5.3

Manifold Learning

Learning when data $\sim \mathcal{M} \subset \mathbb{R}^{N}$

- Clustering: $\mathcal{M} \rightarrow\{1, \ldots, k\}$ connected components, min cut
- Classification/Regression: $\mathcal{M} \rightarrow\{-1,+1\}$ or $\mathcal{M} \rightarrow \mathbb{R}$ P on $\mathcal{M} \times\{-1,+1\}$ or P on $\mathcal{M} \times \mathbb{R}$
- Dimensionality Reduction: $f: \mathcal{M} \rightarrow \mathbb{R}^{n} \quad n \ll N$
- \mathcal{M} unknown: what can you learn about \mathcal{M} from data?
e.g. dimensionality, connected components holes, handles, homology
curvature, geodesics

All you wanna know about differential geometry but were afraid to ask, in 9 easy slides

Embeded Manifolds

$$
\mathcal{M}^{k} \subset \mathbb{R}^{N}
$$

Locally (not globally) looks like Euclidean space.

$$
S^{2} \subset \mathbb{R}^{3}
$$

Tangent Space

k-dimensional affine subspace of \mathbb{R}^{N}.

Tangent Vectors and Curves

Tangent vectors <---> curves.

Riemannian Geometry

Norms and angles in tangent space.

Geodesics

$$
\begin{aligned}
& \phi(t):[0,1] \rightarrow \mathcal{M}^{k} \\
& l(\phi)=\int_{0}^{1}\left\|\frac{d \phi}{d t}\right\| d t
\end{aligned}
$$

Can measure length using norm in tangent space.
Geodesic - shortest curve between two points.

Gradients

Tangent vectors $<-\rightarrow->$ Directional derivatives.
Gradient points in the direction of maximum change.

Tangent Vectors vs. Derivatives

Tangent vectors <---> Directional derivatives.

Exponential Maps

$$
\phi(0)=p, \quad \phi(\|v\|)=\left.q \quad \frac{d \phi(t)}{d t}\right|_{0}=v
$$

Laplacian-Beltrami Operator

Orthonormal coordinate system.

Generative Models in Manifold Learning

Spectral Geometric Embedding

Given $x_{1}, \ldots, x_{n} \in \mathcal{M} \subset \mathbb{R}^{N}$,
Find $y_{1}, \ldots, y_{n} \in \mathbb{R}^{d}$ where $d \ll N$

- ISOMAP (Tenenbaum, et al, 00)
- LLE (Roweis, Saul, 00)
- Laplacian Eigenmaps (Belkin, Niyogi, 01)
- Local Tangent Space Alignment (Zhang, Zha, 02)
- Hessian Eigenmaps (Donoho, Grimes, 02)
- Diffusion Maps (Coifman, Lafon, et al, 04)

Related: Kernel PCA (Schoelkopf, et al, 98)

Meta-Algorithm

- Construct a neighborhood graph
- Construct a positive semi-definite kernel
- Find the spectrum decomposition

Kernel
Spectrum

Recall: ISOMAP

1. Construct Neighborhood Graph.
2. Find shortest path (geodesic) distances.

$$
D_{i j} \text { is } n \times n
$$

3. Embed using Multidimensional Scaling.

Recall: MDS

- Idea: Distances -> Inner Products -> Embedding
- Inner Product:

$$
\begin{gathered}
\|x-y\|^{2}=\langle x, x\rangle+\langle y, y\rangle-2\langle x, y\rangle \\
D_{i j}=Y_{i i}+Y_{j j}-2 Y_{i j} \\
A=-\frac{1}{2} H D H^{T}, \quad H=I-\frac{1}{n} 11^{T}
\end{gathered}
$$

- A is positive semi-definite with

$$
A=U \Lambda U^{T}=Y Y^{T}, \quad Y=U \Lambda^{1 / 2}
$$

Recall: LLE (I)

1. Construct Neighborhood Graph.
2. Let x_{1}, \ldots, x_{n} be neighbors of x. Project x to the span of x_{1}, \ldots, x_{n}.
3. Find barycentric coordinates of \bar{x}.

$$
\begin{gathered}
\bar{x}=w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3} \\
w_{1}+w_{2}+w_{3}=1
\end{gathered}
$$

Weights w_{1}, w_{2}, w_{3} chosen, so that \bar{x} is the center of mass.

Recall: LLE (II)

4. Construct sparse matrix W. i th row is barycentric coordinates of \bar{x}_{i} in the basis of its nearest neighbors.
5. Use lowest eigenvectors of $(I-W)^{t}(I-W)$ to embed.

Laplacian and LLE

$$
\begin{gathered}
\sum w_{i} x_{i}=0 \\
\sum w_{i}=1
\end{gathered}
$$

Hessian H. Taylor expansion :

$$
\begin{gathered}
f\left(x_{i}\right)=f(0)+x_{i}^{t} \nabla f+\frac{1}{2} x_{i}^{t} H x_{i}+o\left(\left\|x_{i}\right\|^{2}\right) \\
(I-W) f(0)=f(0)-\sum w_{i} f\left(x_{i}\right) \approx f(0)-\sum w_{i} f(0)-\sum_{i} w_{i} x_{i}^{t} \nabla f-\frac{1}{2} \sum_{i} x_{i}^{t} H x_{i}= \\
=-\frac{1}{2} \sum_{i} x_{i}^{t} H x_{i} \approx-\operatorname{tr} H=\Delta f
\end{gathered}
$$

Laplacian Eigenmaps (I) [Belkin-Niyogi]

Step 1 [Constructing the Graph]

$$
e_{i j}=1 \Leftrightarrow \mathbf{x}_{i} \text { "close to" } \mathbf{x}_{j}
$$

1. ϵ-neighborhoods. [parameter $\epsilon \in \mathbb{R}$] Nodes i and j are connected by an edge if

$$
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}<\epsilon
$$

2. n nearest neighbors. [parameter $n \in \mathbb{N}$] Nodes i and j are connected by an edge if i is among n nearest neighbors of j or j is among n nearest neighbors of i.

Laplacian Eigenmaps (II)

Step 2. [Choosing the weights].

1. Heat kernel. [parametert $\in \mathbb{R}$]. If nodes i and j are connected, put

$$
W_{i j}=e^{-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{t}}
$$

2. Simple-minded. [No parameters]. $W_{i j}=1$ if and only if vertices i and j are connected by an edge.

Laplacian Eigenmaps (III)

Step 3. [Eigenmaps] Compute eigenvalues and eigenvectors for the generalized eigenvector problem:

$$
L f=\lambda D f
$$

D is diagonal matrix where

$$
\begin{gathered}
D_{i i}=\sum_{j} W_{i j} \\
L=D-W
\end{gathered}
$$

Let $\mathbf{f}_{0}, \ldots, \mathbf{f}_{k-1}$ be eigenvectors.
Leave out the eigenvector \mathbf{f}_{0} and use the next m lowest eigenvectors for embedding in an m-dimensional Euclidean space.

Connection to Markov Chain

- $L=D-W$
- $P=I-D^{-1} L=D^{-1} W$ is a markov matrix
- v is generalized eigenvector of $L: L v=\lambda D v$
- v is also a right eigenvector of P with eigenvalue $1-\lambda$
- P is lumpable iff v is piece-wise constant
- So Laplacian eigenmaps have Markov Chain interpretations (Diffusion Map)

Another choice of eigenmaps

- Normalized positive semi-definite Laplacian

$$
L_{n}=D^{-1 / 2}(D-W) D^{-1 / 2}=I-D^{-1 / 2} W D^{-1 / 2}
$$

- ϕ_{i} is an eigenvector of L_{n} with eigenvalue λ_{i}
- Laplacian eigenmap/Diffusion map:

$$
Y=\left(\begin{array}{llll}
\lambda_{1}^{1 / 2} \phi_{1} & \lambda_{2}^{1 / 2} \phi_{2} & \ldots & \lambda_{d}^{1 / 2} \phi_{d}
\end{array}\right)
$$

Laplacian on Graphs

Given a weighted graph (G, W, E), the combinatorial Laplacian is defined by $L=D-W$, where $(D)_{i i}=\sum_{j} W_{i j}$, and the normalized Laplacian is defined by

$$
\mathcal{L}=D^{-\frac{1}{2}}(D-W) D^{-\frac{1}{2}} .
$$

These are self-adjoint positive-semi-definite operators, let λ_{i} and ϕ_{i} be the eigenvalues and eigenvectors. Fourier analysis on graphs. The heat kernel is of course defined by $H_{t}=e^{-t \mathcal{L}}$; the natural random walk is $D^{-1} W$.

$d_{\text {geod. }}(A, B) \sim d_{\text {geod. }}(C, B)$, however $d^{(t)}(A, B) \gg d^{(t)}(C, B)$.

A simple empirical diffusion matrix A can be constructed as follows Let X_{i} represent normalized data, we "soft truncate" the covariance matrix
as

$$
\begin{aligned}
& A_{0}=\left[X_{i} * X_{j}\right]_{\varepsilon}=\exp \left\{-\left(1-X_{i} * X_{j}\right) / \varepsilon\right\} \\
& \left\|X_{i}\right\|=1
\end{aligned}
$$

$\mathrm{A}=\mathrm{D}^{-1 / 2} \mathrm{~A}_{0} \mathrm{D}^{-1 / 2}\left(\mathrm{D}=\operatorname{diag}\left(\operatorname{sum}\left(\mathrm{A}_{0}, 1\right)\right)\right)$ is a renormalized version of this matrix
The eigenvectors of this matrix provide a local non linear principal component analysis of the data. Whose entries are the diffusion coordinates These are also the eigenfunctions of the discrete Graph Laplace Operator.

$$
A=\sum \lambda_{l}^{2} \phi_{l}\left(X_{i}\right) \phi_{l}\left(X_{j}\right)
$$

$$
X_{i}^{(t)} \rightarrow\left(\lambda_{1}^{t} \phi_{1}\left(X_{i}\right), \lambda_{2}^{t} \phi_{2}\left(X_{i}\right), \lambda_{3}^{t} \phi_{3}\left(X_{i}\right), . .\right)
$$

This map is a diffusion (at time t) embedding into Euclidean space

Kernel PCA and Diffusion Map

Let k be a positive definite kernel whose restriction to the data set is expanded in eigenfunctions
$k(x, y)=\sum \lambda_{i}^{2} \varphi_{i}(x) \varphi_{i}(y)$
Let
$D^{2}(x, y)=\sum \lambda_{i}^{2}\left(\varphi_{i}(x)-\varphi_{i}(y)\right)^{2}$
Then

$$
k(x, x)+k(y, y)-2 k(x, y)=D^{2}(x, y)
$$

Clearly D is a distance on the data induced by the
Geometric short time Diffusion map

$$
\mathrm{x} \in \Gamma \rightarrow \hat{\mathrm{X}}^{\mathrm{t}}(\mathrm{x})=\left\{\lambda_{i}^{t} \varphi_{i}(x)\right\} \in 1^{2}
$$

Heat Diffusion Map

- Find Gaussian kernel
- Normalize kernel

$$
K_{\varepsilon}(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{\varepsilon^{2}}\right)
$$

$$
K^{(\alpha)}(x, y)=\frac{K_{\varepsilon}(x, y)}{p^{\alpha}(x) p^{\alpha}(y)} \quad \text { where } \quad p(x)=\int K_{\varepsilon}(x, y) d \mu(y)
$$

- Renormalized kernel

$$
A_{\varepsilon}(x, y)=\frac{K^{(\alpha)}(x, y)}{\sqrt{d^{(\alpha)}(x)} \sqrt{d^{(\alpha)}(y)}} \quad \text { where } \quad d^{(\alpha)}(x)=\int K^{(\alpha)}(x, y) d \mu(y)
$$

$-\alpha=1$, Laplacian-Beltrami operator, separate geometry from density
$-\alpha=0$, classical normalized graph Laplacian
$-\alpha=1 / 2$, backward Fokkar-Planck operator

Heat Diffusion Distance

$$
H^{t}=\exp \left(-t L_{n}\right) \quad \text { where } \quad L_{n}=I-D^{-1 / 2} W D^{-1 / 2}
$$

Heat diffusion operator H^{t}.
δ_{x} and δ_{y} initial heat distributions.
Diffusion distance between x and y :

$$
\left\|H^{t} \delta_{x}-H^{t} \delta_{y}\right\|_{L^{2}}
$$

Difference between heat distributions after time t.

Heat Diffusion Maps

Embed using weighted eigenfunctions of the Laplacian:

$$
x \rightarrow\left(e^{-\lambda_{1} t} \mathbf{f}_{1}(x), e^{-\lambda_{2} t} \mathbf{f}_{2}(x), \ldots\right)
$$

Diffusion distance is (approximated by) the distance between the embedded points.

Closely related to random walks on graphs.

Justification

Find $y_{1}, \ldots, y_{n} \in R$

$$
\min \sum_{i, j}\left(y_{i}-y_{j}\right)^{2} W_{i j}
$$

Tries to preserve locality

A Fundamental Identity

But

$$
\begin{gathered}
\frac{1}{2} \sum_{i, j}\left(y_{i}-y_{j}\right)^{2} W_{i j}=\mathbf{y}^{T} L \mathbf{y} \\
\sum_{i, j}\left(y_{i}-y_{j}\right)^{2} W_{i j}=\sum_{i, j}\left(y_{i}^{2}+y_{j}^{2}-2 y_{i} y_{j}\right) W_{i j} \\
=\sum_{i} y_{i}^{2} D_{i i}+\sum_{j} y_{j}^{2} D_{j j}-2 \sum_{i, j} y_{i} y_{j} W_{i j} \\
=2 \mathbf{y}^{T} L \mathbf{y}
\end{gathered}
$$

Embedding

$$
\lambda=0 \rightarrow \mathbf{y}=\mathbf{1}
$$

$$
\min _{\mathbf{y}^{T} \mathbf{1}=0} \mathbf{y}^{T} L \mathbf{y}
$$

Let $Y=\left[\mathbf{y}_{1} \mathbf{y}_{2} \ldots \mathbf{y}_{m}\right]$

$$
\sum_{i, j}\left\|Y_{i}-Y_{j}\right\|^{2} W_{i j}=\operatorname{trace}\left(Y^{T} L Y\right)
$$

$$
\text { subject to } Y^{T} Y=I .
$$

Use eigenvectors of L to embed.

On the Manifold

smooth map $f: \mathcal{M} \rightarrow R$

$$
\int_{\mathcal{M}}\left\|\nabla_{\mathcal{M}} f\right\|^{2} \approx \sum_{i \sim j} W_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

Recall standard gradient in \mathbb{R}^{k} of $f\left(z_{1}, \ldots, z_{k}\right)$

$$
\nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial z_{1}} \\
\frac{\partial f}{\partial z_{2}} \\
\cdot \\
\frac{\partial f}{\partial z_{k}}
\end{array}\right]
$$

Stokes Theorem

A Basic Fact

$$
\int_{\mathcal{M}}\left\|\nabla_{\mathcal{M}} f\right\|^{2}=\int f \cdot \Delta_{\mathcal{M}} f
$$

This is like

$$
\sum_{i, j} W_{i j}\left(f_{i}-f_{j}\right)^{2}=\mathbf{f}^{T} \mathbf{L f}
$$

where
$\Delta_{\mathcal{M} f}$ is the manifold Laplacian

Manifold Laplacian

Recall ordinary Laplacian in \mathbb{R}^{k}
This maps

$$
f\left(x_{1}, \ldots, x_{k}\right) \rightarrow\left(-\sum_{i=1}^{k} \frac{\partial^{2} f}{\partial x_{i}^{2}}\right)
$$

Manifold Laplacian is the same on the tangent space.

Manifold Laplacian Eigenvectors

Eigensystem

$$
\Delta_{\mathcal{M}} f=\lambda_{i} \phi_{i}
$$

$\lambda_{i} \geq 0$ and $\lambda_{i} \rightarrow \infty$
$\left\{\phi_{i}\right\}$ form an orthonormal basis for $L^{2}(\mathcal{M})$

$$
\int\left\|\nabla_{\mathcal{M}} \phi_{i}\right\|^{2}=\lambda_{i}
$$

Manifold Laplacian is non-compact!

Example: Circle

$$
-\frac{d^{2} u}{d t^{2}}=\lambda u \text { where } u(0)=u(2 \pi)
$$

Eigenvalues are

$$
\lambda_{n}=n^{2}
$$

Eigenfunctions are

$$
\sin (n t), \cos (n t)
$$

Spherical Harmonics in high-D sphere!

Spectral Growth

$$
\lambda_{1} \leq \lambda_{2} \ldots \leq \lambda_{j} \leq \ldots
$$

Then

$$
A+\frac{2}{d} \log (j) \leq \log \left(\lambda_{j}\right) \leq B+\frac{2}{d} \log (j+1)
$$

Example: on S^{1}

$$
\lambda_{j}=j^{2} \Longrightarrow \log \left(\lambda_{j}\right)=\frac{2}{1} \log (j)
$$

(Li and Yau; Weyl's asymptotics)

From Graph to Manifolds

$$
f: \mathcal{M} \rightarrow \mathbb{R} \quad x \in \mathcal{M} \quad x_{1}, \ldots, x_{n} \in \mathcal{M}
$$

Graph Laplacian:

$$
L_{n}^{t}(f)(x)=f(x) \sum_{j} e^{-\frac{\left\|x-x_{j}\right\|^{2}}{t}}-\sum_{j} f\left(x_{j}\right) e^{-\frac{\left\|x-x_{j}\right\|^{2}}{t}}
$$

Theorem [pointwise convergence] $t_{n}=n^{-\frac{1}{k+2+\alpha}}$

$$
\lim _{n \rightarrow \infty} \frac{\left(4 \pi t_{n}\right)^{-\frac{k+2}{2}}}{n} L_{n}^{t_{n}} f(x)=\Delta_{\mathcal{M}} f(x)
$$

From Graph to Manifolds

Theorem [convergence of eigenfunctions]

$$
\lim _{t \rightarrow 0, n \rightarrow \infty} \operatorname{Eig}\left[L_{n}^{t_{n}}\right] \rightarrow \operatorname{Eig}\left[\Delta_{\mathcal{M}}\right]
$$

Belkin Niyogi 06

Recall

Heat equation in \mathbb{R}^{n} :
$u(x, t)$ - heat distribution at time t.
$u(x, 0)=f(x)$ - initial distribution. $x \in \mathbb{R}^{n}, t \in \mathbb{R}$.

$$
\Delta_{\mathbb{R}^{n}} u(x, t)=\frac{d u}{d t}(x, t)
$$

Solution - convolution with the heat kernel:

$$
u(x, t)=(4 \pi t)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} f(y) e^{-\frac{\|x-y\|^{2}}{4 t}} d y
$$

Proof Idea

(pointwise convergence)

Functional approximation:
Taking limit as $t \rightarrow 0$ and writing the derivative:

$$
\begin{gathered}
\Delta_{\mathbb{R}^{n}} f(x)=\frac{d}{d t}\left[(4 \pi t)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} f(y) e^{-\frac{\|x-y\|^{2}}{4 t}} d y\right]_{0} \\
\Delta_{\mathbb{R}^{n}} f(x) \approx-\frac{1}{t}(4 \pi t)^{-\frac{n}{2}}\left(f(x)-\int_{\mathbb{R}^{n}} f(y) e^{-\frac{\|x-y\|^{2}}{4 t}} d y\right)
\end{gathered}
$$

Empirical approximation:
Integral can be estimated from empirical data.

$$
\Delta_{\mathbb{R}^{n}} f(x) \approx-\frac{1}{t}(4 \pi t)^{-\frac{n}{2}}\left(f(x)-\sum_{x_{i}} f\left(x_{i}\right) e^{-\frac{\left\|x-x_{i}\right\|^{2}}{4 t}}\right)
$$

Some Difficulties

Some difficulties arise for manifolds:

- Do not know distances.
- Do not know the heat kernel.

Careful analysis needed.

The Heat Kernel Approximation

- $H_{t}(x, y)=\sum_{i} e^{-\lambda_{i} t} \phi_{i}(x) \phi_{i}(y)$
- in \mathbb{R}^{d}, closed form expression

$$
H_{t}(x, y)=\frac{1}{(4 \pi t)^{d / 2}} e^{-\frac{\|x-y\|^{2}}{4 t}}
$$

- Goodness of approximation depends on the gap

$$
\left|H_{t}(x, y)-\frac{1}{(4 \pi t)^{d / 2}} e^{-\frac{\|x-y\|^{2}}{4 t}}\right|
$$

- H_{t} is a Mercer kernel intrinsically defined on manifold. Leads to SVMs on manifolds.

Three remarks on noises

1. Arbitrary probability distribution on the manifold: convergence to weighted Laplacian.
2. Noise off the manifold:
$\mu=\mu_{\mathcal{M}^{d}}+\mu_{\mathbb{R}^{N}}$
Then

$$
\lim _{t \rightarrow 0} L^{t} f(x)=\Delta f(x)
$$

3. Noise off the manifold:

$$
z=x+\eta\left(\sim N\left(0, \sigma^{2} I\right)\right)
$$

We have

$$
\lim _{t \rightarrow 0} \lim _{\sigma \rightarrow 0} L^{t, \sigma} f(x)=\Delta f(x)
$$

General Diffusion Map

- P.S.D. Radial basis kernel $\quad K_{\epsilon}(x, y)=h\left(\frac{\| x-\left.y\right|^{2}}{\varepsilon^{2}}\right)$
- Normalize kernel

$$
K^{(\alpha)}(x, y)=\frac{K_{\varepsilon}(x, y)}{p^{\alpha}(x) p^{\alpha}(y)} \quad \text { where } \quad p(x)=\int K_{\varepsilon}(x, y) d \mu(y)
$$

- Markov kernel

$$
a_{\varepsilon}^{(\alpha)}(x, y)=\frac{K^{(\alpha)}(x, y)}{d^{(\alpha)}(x)} \quad \text { where } \quad d^{(\alpha)}(x)=\int K^{(\alpha)}(x, y) d \mu(y)
$$

- Diffusion Operator:

$$
\begin{aligned}
& A_{\varepsilon}^{(\alpha)} f(x)=\int a_{\varepsilon}^{(\alpha)}(x, y) f(y) p(y) d y, \quad p(x)=\frac{\exp (-U(x))}{Z} \\
& \Delta_{\varepsilon}^{(\alpha)}=\frac{I-A_{\varepsilon}^{(\alpha)}}{\varepsilon}
\end{aligned}
$$

Convergence of Diffusion Map [Coifman et al. 2005]

- Uniform sampling: Laplacian eigenmap converges to Laplacian-Beltrami operators [Belkin-Niyogi]
- Nonuniform sampling with $p(x)$
$-\alpha=1: \Delta_{\varepsilon}^{(1)}=\frac{I-A_{\varepsilon}^{(1)}}{\varepsilon}=\Delta_{0}+O\left(\varepsilon^{1 / 2}\right)$ where Δ_{0} is LaplacianBeltrami operator on Riemannian manifolds
$-\alpha=1 / 2$: backward Fokkar-Planck operator
$-\alpha=0$: classical normalized graph laplacian

Two Assumptions on ISOMAP

(ISO1) Isometry. The mapping ψ preserves geodesic distances. That is, define a distance between two points m and m^{\prime} on the manifold according to the distance travelled by a bug walking along the manifold M according to the shortest path between m and m^{\prime}. Then the isometry assumption says that

$$
G\left(m, m^{\prime}\right)=\left|\theta-\theta^{\prime}\right|, \quad \forall m \leftrightarrow \theta, m^{\prime} \leftrightarrow \theta^{\prime}
$$

where $|\cdot|$ denotes Euclidean distance in \mathbb{R}^{d}.
(ISO2) Convexity. The parameter space Θ is a convex subset of \mathbb{R}^{d}. That is, if θ, θ^{\prime} is a pair of points in Θ, then the entire line segment $\left\{(1-t) \theta+t \theta^{\prime}: t \in(0,1)\right\}$ lies in Θ.

Convexity is hard to meet: consider two balls in an image which never intersect, whose center coordinate space ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}$) must have a hole.

Relaxations
 (Donoho-Grimes'2003)

(LocISO1) Local Isometry. In a small enough neighborhood of each point m, geodesic distances to nearby points m^{\prime} in M are identical to Euclidean distances between the corresponding parameter points θ and θ^{\prime}.
(LocISO2) Connectedness. The parameter space Θ is a open connected subset of \mathbb{R}^{d}.

Summary of Laplacian LLE

- Summary
- Build graph from K Nearest Neighbors.
- Construct weighted adjacency matrix with Gaussian kernel.
- Compute embedding from normalized Laplacian.
- minimize $\int\|\nabla f\|^{2} d x$ subject to $\|f\|=1$
- Predictions
- Assumes each point lies in the convex hull of its neighbors. So it might have trouble at the boundary.
- Will have difficulty with non-uniform sampling.

Hessian LLE

- Summary
- Build graph from K Nearest Neighbors.
- Estimate tangent Hessians.
- Compute embedding based on Hessians.

$$
f: X \rightarrow \Re \quad \text { Basis }\left(\operatorname{null}\left(\int\left\|H_{f}(x)\right\| d x\right)=\operatorname{Basis}(X)\right.
$$

- Predictions
- Specifically set up to handle non-convexity.
- Slower than LLE \& Laplacian.
- Will perform poorly in sparse regions.
- Only method with convergence guarantees.

Note that: $\Delta(f)=\operatorname{trace}(H(f))$

Convergence of Hessian LLE (Donoho-Grimes)

Theorem 1 Suppose $M=\psi(\Theta)$ where Θ is an open connected subset of \mathbb{R}^{d}, and ψ is a locally isometric embedding of Θ into \mathbb{R}^{n}. Then $\mathcal{H}(f)$ has a $d+1$ dimensional nullspace, consisting of the constant function and a d-dimensional space of functions spanned by the original isometric coordinates.

We give the proof in Appendix A.
Corollary 2 Under the same assumptions as Theorem 1, the original isometric coordinates θ can be recovered, up to a rigid motion, by identifying a suitable basis for the null space of $\mathcal{H}(f)$.

Comparisons on Swiss Roll with holes

Reference

- Tenenbaum, de Silva, and Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290:2319-2323, 22 Dec. 2000.
- Roweis and Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290:2323-2326, 22 Dec. 2000.
- M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15:1373-1396, 2003.
- D. L. Donoho and C. Grimes. Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data. PNAS 100 (10): 5591-5596 2003.
- R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. PNAS 102 (21):7426-7431, 2005.
- M. Hein, J.-Y. Audibert, and U. von Luxburg. From graphs to manifolds - weak and strong pointwise consistency of graph Laplacians. In P. Auer and R. Meir, editors, Proc. of the 18th Conf. on Learning Theory (COLT), pages 486-500, Berlin, 2005. Springer.
- Ulrike von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral clustering. Ann. Statist. Volume 36, Number 2 (2008), 555-586.

Acknowledgement

- Slides stolen from M. Belkin, R. Coifman, G. Lerman, et al.

