A Preliminary Markov Model Analysis for
 Myosin Stepsize

data: ./data/motor_stepsize.txt matlab:./matlab/motor.m

Motor Stepsize

Note: we ignore the real lagtime for each step!

Gaussian Mixture Model on Motor_stepsize

Matlab Gaussian Mixture model fitting gives the following:

Gaussian mixture distribution with 2 components in 1 dimensions Component 1:
Mixing proportion: 0.049663
Mean: . 1905

Component 2:
Mixing proportion: 0.950337
Mean: . 3195

This is different to the paper with two modes centered at 25 nm and 43 nm

We get a sequence $\{121112212$... $\}$ by mapping to the two components.

Motor Stepsize Discretization

Implied Time Scale

This says when the sequence jumps at lagtime in [14,22], the dynamics is like a Markov model

Bavesian Factor when lagtime=1

When lagtime is 1 , the sequence is best described by a 4-th order general Markov Chain, better than reversible Markov chain (order 1) and multinomial model.

Bavesian Factor with lagtime=15

Bayesian Factor at lagtime 15

However when lagtime=15, the sequence is best described by a reversible Markov Chain (order 1), then a general Markov Chain (order 1). Higher orders are worse.

