REMWMEED S THNF
9 Cover Tree

%
e &
2011.3.15

Time Series Analysis in e
Molecular Dynamics

Dataset: Multiple trajectories with a lot of conformations.

Trajectory 1 O O O O O O O
. 2 N2 N 2 2 N 2
Trajectory 2 O NN AN AN AN O Trajectory
Trajectory 3 OO0 00O00
|
Conformation time >

Coarse-grain Markov Models i

Geometric
L
O o .o..g“‘ o, Clustering
o o VYD (Spliting)
* e .-.8-,

.
PO . .Q;’*:.‘.‘
sl ns

%e 0.0.0 "
Conformations
Bayesian
Inference of)
MSM P P
T(r)= p.21 P2

| Psi

Microstates

Dis |

Pss

o060
Spectral oo
Clustering
(Lumping)
Macrostates

Chodera. et. al. J. Chem. Phys. 2007

No¢. et.al. J. Chem. Phys. 2007

Deuflhard and Weber, ZIB-report, 2003
Weber, ZIB-report, 2004

Bowman, Huang, and Pande. Methods 20009.
Barcalado, et al. J. Chem. Phys. 2009

How?

e Build up Microstates:
o k-center
e cover-tree (CHEN, Ying: this lecture)

e Build up Macrostates:
e Lumpability of Markov chains
e Spectral clustering for lumping
e Nystrom method for denoising

e Bayesian Inference for MSM (next lecture)

Geometric Clustering in :
Splitting

e Target: decompose the sampled region in high
dimensional state space (3N) into small cells by
geometric affinity (RMSD distance)

e Why:
e Small RMSD distance implies that two structures are similar
and thus kinetically close

e Butlarge RMSD distance tells us nothing about kinetics

Splitting Algorithms

e Geometric Clustering:

o k-center: fast O(kn), geometric r,-net
e Cover-tree: online, hierarchical (CHEN, Ying)

e Pros:
e Fast (compared to K-means)
e Geometric uniform partition

e Hiearchical, online

e Cons:
e Sensitivity to outliers

e Large amount of low populated microstates

Cover Tree For Nearest
Neighbour Search

ChenYing

5

Reference oe

e Acknowledgement: part of the slides are from
Victoria Choi’s slides with some modification.

e A. Beygelzimer, S. Kakade, and J. Langford.
Cover trees for nearest neighbor, ICML2006

Outline

e 1 Introduction: What's cover tree?

e 2 Tree Construct and Search Nearest
Neighbor

e 3 Search Approximating Nearest Neighbor
e 4 Complexity Analysis
e 5 Application

Introduction

e Goal
Nearest-neighbour search

Preprocess a dataset S of n points in some metric space X
so that given a query point pE€ X | a point g €S which
minimises d(p,q) can be efficiently found

e Solution: Cover Tree

Leveled tree
Each level is a “cover” for the level beneath it

O(n) space bound

Cover Tree Data Structure

e A cover tree T on a dataset S is a leveled tree where
each level is indexed by an integer scale / which
decreases as the tree is descended

e C,denotes the set of nodes at level /
e d(p,q) denotes the distance between poitns p and g
e A valid tree satisfies the following properties
Nesting:C. CC,,
Covering tree: For every node PEC., there exists a

node ¢€C, satisfying d(p,q)<2' and exactly one
such g is a parent of p

Separation: For all nodes P-9€C,; , d(p,q)>?2'

Nesting

° Ci C Ci—l
e Each node in set C;
has a self-child

e All nodes in set C,

are also nodes in CM/ °

sets C; where j<i

e Set C_ contains all
the nodes in
dataset S "

NINN N

Covering Tree

e Forevery node pEC, ,, there exists a node g&C, satisfying

1

d(p,q)<2' and exactly one such q is a parent of p

Separation

e For all nodes p.q€C, ,d(p.q)>2

Tree Construction

e Single Node Insertion (recursive call)

Insert(point p, cover set Q,, leveli)
set Q = {Children(q):q€ 0.}
if d(p,Q) > 2' then return "no parent found"
else
set O, , ={g€Q0:d(p,q)=2'}
if Insert(p,Q,_,,i —1) ="no parent found"and d(p,Q,) < 2’
pick g €Q, satisfyingd(p,q) < 2’
insert g into Children(q)
return "parent found"
else return "no parent found"

Insert(p,root, begin level);
e Batch insertion algorithm also available

Searching the nearest T
neighbor

e lterative method
setQ, =C,,
fori fromoe down to - o
consider the set of children of Q, :
set = {Children(q):q€Q.}
formnext cover set :

O, ={q€Eset:d(p,q) =d(p,set) +2'}
return arg min ., d(p,q

Prove the correctness

e Theorem: Inserd p,C,,*) and Find-
Nearest(p) are correct.

Why can you always find the |::
nearest neighbour?

e \When searching for the
nearest node at each level +2
I, the bound for the nodes C, . Qs
to be included in the next
cover set Q, , is set to be d

(p,Q)+2" where d(p,Q) is

the minimum distance from -
nodes in Q, Ciq Q.o
e Q will always center around

the query node and will
contain at least one of its

nearest neighbours ¢
C.f.-2 ® Q;’.S

How?

O 90 O

e All the descendents of a o
node q in C,; is less than or
exactly 2' away (2-1in C_,)

e By setting the bound to be d
(p,Q)+2', we have included
all the nodes with
descendents which might 2PN
do better than node p in Q. °/ / | °
and eliminated everything ’

else \ \\; %

Search Examples
i=7 o

RO
(1) ()
=4 0l00/0/6/0
OQOWE @
(DQOWE - @
=1 WEOWEE) @
06]0l10/00800

0/6)0}0/0/0.00I0
Ay 0600000000
90000000000

o - N w ~ (€] (o] ~ Qo (€e]

x5

*

No

8 10

Search for Node 1

=7 o

RO
(12 @
=4 0]010/0I010.
O@QOWE
(DQOWE @
M 060000010

0/60)0J0/0/0.0.0/0
Y ®/0/0/000.00.0I0
OO@EO@WEEE W

o - N w ~ (€] (o] ~ Qo (€e]

Search for Node 4

i=7 0

) @

(12 @
i=4 0]6010/0I010.
OOOQWE

00000 O

=1 W@QEOOWEE) @
0/610]0]0/08010
0/60)0J010/0.0.0/0

0000000000
90000000000

o - N w ~ (€] (o] ~ Qo (€e]

9800000000

Search for Node 11

i=7 o
) @
(1) (1)
=4 0000010
0l00/0/0N0
OOOWE
=1 W@QOWEE) @)

o - N w ~ (€] (o] ~ Qo (€e]

Implicit v. Explicit

e Theory is based on an implicit implementation, but tree is built
with a condensed explicit implementation to preserve O(n) space
bound

i=7 o
OR®
(1))
=4 0]00/0/00.
OOOQWE)
OD@WE @
=1 WEOOWEE) @
D EEE O

(D) HOEEE W)
Ay 06100000000
90000000000

Search Approximating :
Nearest Neighbor

e Goal:Given a pointpex ,find a point¢&X
o d(p,q)=(+e)d(p,S) .

Expansion Constant

e Expansion constant ¢ of dataset S is defined as the
smallest value ¢ =2 such that | Bs(p.2r)|=c|Bs(p,r)]
for every p€EX and r>0

e The number of children of any node is bounded by
c? (width bound)

e The maximum depth of any point is O(c?log n)
(depth bound)

e A balanced tree would have a smaller expansion
constant ¢ than a tree that is not balanced

e C obtained from our current matrices are inaccurate
since they are too small

000
0000
o000
o060
m = o0
Complexity Analysis :
Cover Tree | Nav. Net [KRO2]
Constr. Space O(n) c?Mn cYnnn
Constr. Time | O(c®nlnn) | ¢“Ynlnn | “Pnlnn
Insert/Remove | O(c”Inn) c’Ynn c“Ynn
Query O(c?Inn) | c“Pinn c?Uinn

Conclusion

e Since ¢ cannot be accurately determined
from the size of our matrices, we estimate the
balance of the tree from the number of levels
and the number of children

e For all three matrices tested, the trees
constructed are well-balanced and speedup
times are excellent

e Strong evidence that the cover-tree algorithm
will be suitable for curve-matching distances

Example on the Biological e
Data

e Data description:
load ../data/alanine_dipeptide phi-psi.mat
[X,y,z]=embedTorus(3,1,phi,psi);
X=[xy;z]’;
save confs 3D.txt X -ascii

e Data format

confs_3D.txt is a 3x195000 matrix M, every
column is a conformation. M[0,i], M[1,i],M[2,1] are
the three-dimensional coordinates

This file is saved under subdirectory ./data/

How to run covertree

e BaseDirectory: Math.pku.edu.cn/yaoy/teachers/Spring2011/

CoverTree (use Euclid distance) for Linux: [BaseDirectory]/
covertree/newVersion/linux/Euclid/

CoverTree (use RMSD distance) for Linux: [BaseDirectory]/
covertree/newVersion/linux/Rmsd/

CoverTree for Windows (XP and 7.0): [BaseDirectory]/covertree/
newVersion/linux/windows/

e There are several parameter that need to be set in advance.
e Main.cpp is the main file with those parameters
e Readme.txt gives a short introduction

How to run covertree

e Parameters (in Main.cpp):
level begin: the level of root in covertree [Default: 5, i.e. cover
radius =2795]
natom: the number of atoms in a conformation [Default: 1]
nconformation: the number of conformations [Default: 195000]

IsCheck: whether to check the covertree is correct (It will cost
much time) [Default: false]

char *filename = “.../data/confs_3D.txt";

e Compile the codes, you will get insert[.exe] as executable

In Linux, compile and run:
make
Jinsert

OutPut

e 1 ./result/levelNumber.txt: Record the number of nodes in every
level

e 2 ./result/level$i.txt: Record the node id in the level i

e 3 ./result/covertree.dot: Record the covertree structure in Graphviz
dot format

e 4 Checking: whether the properties ‘separation’ and ‘covering’ are
satisfied.

e ./result/covertreefail.txt
o ./result/separationfail.txt

e Liscence: you may use the codes freely for the course. Please
acknowledge Ying Chen when you use it outside the course.

Number of Nodes per Levels | :::

10°
10‘5_
107}
107}

10"k

10

Nurmber of Nodes per Level

| 1
10 15

l a3
20

25

From levelNumber.txt

Recall: Torus Embedding :
>> [X,y,z]=embedTorus(3,1,phi,psi);
>> freeEnergyTorus;
>> jdx=randperm(length(phi));
>> scatter3(x(idx(1:1000)),y(idx(1:1000)),z(idx(1:1000)),".")

eNO Figure 1
File Edit View Insert Tools Desktop Window Help

» Ndde h ALO09EH- 2 0E a O

0o Figure 1
File Edit View Insert Tools Desktop Window Help

» DEEde b ALODEE- 2 08 a O

Random vs. Kcenter e
>> jdx=randperm(length(phi)); % BB %4
>> gcatter3(x(idx(1:1000)),y(idx(1:1000)),z(idx(1:1000),".")
>> L=kcenter([x,y,z],1000); % £id A& FEE]149...
>> scatter3(x(L),y(L),z(L),".")

0o Figure 1

Figure 1
File Edit View Insert Tools Desktop Window Help File Edit View Insert Tools Desktop Window Help
oL .j ~_; d ;} k *\ = § 4”.’“ @ E‘!-_ [-’_{J v "3 D EI g & .j _; d 4‘} k +\ % *‘r:‘l @ k'l!__ .’{ v ’j/ D E] @

k centers (k=1000)

Kcenter vs.

Figure 1
File Edit View Insert Tools Desktop Window Help

» NEES M RLOPDEHK- 2 0B a O

k centers (k=1000)

Kcenter k=1000

Cover-ree at level-2, 655 nodes, cover radius=0.33

1 Lo ’.“
. ‘»I‘f:
'.4'0;0::‘
. ..
05 :'jz.: pess
KRN
':,... .
0 ; 5
N]
-0.5

Cover Tree Level=-2, 655 nodes

Covertree

Cover-tree at level-3, 2163 nodes, cover radius=0.17

Cover Tree Level=-3, 2163 nodes

CoverTree is thus hierarchical online kcenter!

