
聚类分析与生物分子动力学���᠋᠌᠍
四 Cover Tree	�

陈 赢	�

姚 远	�

2011.3.15

Time Series Analysis in
Molecular Dynamics
Dataset: Multiple trajectories with a lot of conformations.

time
Conformation

Trajectory

Trajectory 1
Trajectory 2

Trajectory 3

Coarse-grain Markov Models

Conformations Microstates Macrostates

Geometric
Clustering
(Splitting)

Spectral
Clustering
(Lumping)

Chodera. et. al. J. Chem. Phys. 2007
Noé. et.al. J. Chem. Phys. 2007
Deuflhard and Weber, ZIB-report, 2003
Weber, ZIB-report, 2004
Bowman, Huang, and Pande. Methods 2009.
Barcalado, et al. J. Chem. Phys. 2009

11 12 15

21 22

51 55

()

p p p
p p

T

p p

τ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Bayesian
Inference of

MSM

How?
  Build up Microstates:

  k-center
  cover-tree (CHEN, Ying: this lecture)

  Build up Macrostates:
  Lumpability of Markov chains
  Spectral clustering for lumping
  Nystrom method for denoising

  Bayesian Inference for MSM (next lecture)

Geometric Clustering in
Splitting

  Target: decompose the sampled region in high
dimensional state space (3N) into small cells by
geometric affinity (RMSD distance)

  Why:
  Small RMSD distance implies that two structures are similar

and thus kinetically close
  But large RMSD distance tells us nothing about kinetics

Splitting Algorithms

  Geometric Clustering:
  k-center: fast O(kn), geometric rk-net
  Cover-tree: online, hierarchical (CHEN, Ying)

  Pros:
  Fast (compared to K-means)
  Geometric uniform partition

  Hiearchical, online
  Cons:

  Sensitivity to outliers
  Large amount of low populated microstates

Cover Tree For Nearest
Neighbour Search

ChenYing
陈赢

Reference

  Acknowledgement: part of the slides are from
Victoria Choi’s slides with some modification.

  A. Beygelzimer, S. Kakade, and J. Langford.
Cover trees for nearest neighbor, ICML2006 �

Outline �

  1 Introduction: What’s cover tree?
  2 Tree Construct and Search Nearest

Neighbor
  3 Search Approximating Nearest Neighbor
  4 Complexity Analysis
  5 Application

Introduction
  Goal

  Nearest-neighbour search
  Preprocess a dataset S of n points in some metric space X

so that given a query point , a point which
minimises can be efficiently found

  Solution: Cover Tree
  Leveled tree
  Each level is a “cover” for the level beneath it
  O(n) space bound

Cover Tree Data Structure
  A cover tree T on a dataset S is a leveled tree where

each level is indexed by an integer scale i which
decreases as the tree is descended

  Ci denotes the set of nodes at level I
  d(p,q) denotes the distance between poitns p and q
  A valid tree satisfies the following properties

  Nesting:
  Covering tree: For every node , there exists a

node satisfying and exactly one
such q is a parent of p

  Separation: For all nodes ,

Nesting
 

  Each node in set Ci
has a self-child

  All nodes in set Ci
are also nodes in
sets Cj where j<i

  Set C-∞ contains all
the nodes in
dataset S

Covering Tree
  For every node , there exists a node satisfying

 and exactly one such q is a parent of p

Separation

  For all nodes ,

Tree Construction
  Single Node Insertion (recursive call)

  Batch insertion algorithm also available

Searching the nearest
neighbor
  Iterative method

Prove the correctness�

  Theorem: and Find-
Nearest(p) are correct.�

Why can you always find the
nearest neighbour?
  When searching for the

nearest node at each level
i, the bound for the nodes
to be included in the next
cover set Qi-1 is set to be d
(p,Q)+2i where d(p,Q) is
the minimum distance from
nodes in Qi

  Q will always center around
the query node and will
contain at least one of its
nearest neighbours

How?
  All the descendents of a

node q in Ci is less than or
exactly 2i away (2i-1 in Ci-1)

  By setting the bound to be d
(p,Q)+2i, we have included
all the nodes with
descendents which might
do better than node p in Qi-1
and eliminated everything
else

Search Examples

Search for Node 1

Search for Node 4

Search for Node 11

Implicit v. Explicit
  Theory is based on an implicit implementation, but tree is built

with a condensed explicit implementation to preserve O(n) space
bound

Search Approximating
Nearest Neighbor �

  Goal:Given a point ,find a point
  .

Expansion Constant
  Expansion constant c of dataset S is defined as the

smallest value such that
for every and

  The number of children of any node is bounded by
c4 (width bound)

  The maximum depth of any point is O(c2log n)
(depth bound)

  A balanced tree would have a smaller expansion
constant c than a tree that is not balanced

  c obtained from our current matrices are inaccurate
since they are too small

Complexity Analysis �

Conclusion

  Since c cannot be accurately determined
from the size of our matrices, we estimate the
balance of the tree from the number of levels
and the number of children

  For all three matrices tested, the trees
constructed are well-balanced and speedup
times are excellent

  Strong evidence that the cover-tree algorithm
will be suitable for curve-matching distances

Example on the Biological
Data �

  Data description:
  load ../data/alanine_dipeptide_phi-psi.mat
  [x,y,z]=embedTorus(3,1,phi,psi);
  X=[x;y;z]’;
  save confs_3D.txt X -ascii

  Data format
  confs_3D.txt is a 3x195000 matrix M, every

column is a conformation. M[0,i], M[1,i],M[2,i] are
the three-dimensional coordinates

  This file is saved under subdirectory ./data/

How to run covertree�
  BaseDirectory: Math.pku.edu.cn/yaoy/teachers/Spring2011/

  CoverTree (use Euclid distance) for Linux: [BaseDirectory]/
covertree/newVersion/linux/Euclid/

  CoverTree (use RMSD distance) for Linux: [BaseDirectory]/
covertree/newVersion/linux/Rmsd/

  CoverTree for Windows (XP and 7.0): [BaseDirectory]/covertree/
newVersion/linux/windows/

  There are several parameter that need to be set in advance.
  Main.cpp is the main file with those parameters
  Readme.txt gives a short introduction�

How to run covertree �
  Parameters (in Main.cpp):

  level_begin: the level of root in covertree [Default: 5, i.e. cover
radius =2^5]

  natom: the number of atoms in a conformation [Default: 1]
  nconformation: the number of conformations [Default: 195000]
  IsCheck: whether to check the covertree is correct (It will cost

much time) [Default: false]
  char *filename = “…/data/confs_3D.txt”;�

  Compile the codes, you will get insert[.exe] as executable
  In Linux, compile and run:

  make
  ./insert

OutPut �
  1 ./result/levelNumber.txt: Record the number of nodes in every

level
  2 ./result/level$i.txt: Record the node id in the level i
  3 ./result/covertree.dot: Record the covertree structure in Graphviz

dot format
  4 Checking: whether the properties ‘separation’ and ‘covering’ are

satisfied.
  ./result/covertreefail.txt
  ./result/separationfail.txt

  Liscence: you may use the codes freely for the course. Please
acknowledge Ying Chen when you use it outside the course.

Number of Nodes per Levels

From levelNumber.txt

Recall: Torus Embedding
>> [x,y,z]=embedTorus(3,1,phi,psi);
>> freeEnergyTorus;
>> idx=randperm(length(phi));
>> scatter3(x(idx(1:1000)),y(idx(1:1000)),z(idx(1:1000)),'.')

Random vs. Kcenter
>> idx=randperm(length(phi)); % 随机采样
>> scatter3(x(idx(1:1000)),y(idx(1:1000)),z(idx(1:1000),'.')
>> L=kcenter([x,y,z],1000); % 笔记本上需要几分钟…
>> scatter3(x(L),y(L),z(L),'.')

Kcenter vs. Covertree

Cover Tree Level-1, 1k nodes

Cover Tree Level=-3, 2163 nodes

Cover Tree Level=-2, 655 nodes

Kcenter k=1000

CoverTree is thus hierarchical online kcenter!

