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It is important to understand what 
you CAN DO before you learn to 
measure how well you seem to 

have DONE it.���᠋᠌᠍
To learn about data analysis, it is 
right that each of us try many 
things that do not work.���᠋᠌᠍
---- John W. Tuckey  



•  In the last lecture, we mentioned two 
theories for spectral clustering 
– Lumpable Markov Chains 
– Cheeger’s inequalities for graph min-cut 

Spectral Clustering Theories 

The two theories are different! 



•  3 equivalent descriptions of Lumpability 
•  Markovian 
•  Spectral properties 

–  Piecewise constant r.ev 
–  Transition matrix 
–  Mean-first-passage 

•  Nonidentifiable  

•  Approximate Graph min-cut 
– Cheeger’s inequalities 

Spectral Clustering Theories 

The two theories are different! 

Tja 

Tia 



•  Consider 2n nodes on a linear chain 
•  Markov Chain: a node will jump to its 

neighbors with equal probability 
– T(i, i-1) = T(i, i+1) = ½, for 2n>i>1 
– T(1,2) = T(2n,2n-1) = 1 

Example I 
1
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•  T is lumpable w.r.t. P*=(Seven,Sodd) 
– Seven: even nodes 
– Sodd: odd nodes 

•  P* corresponds to eigenvector with 
eigenvalue -1 

Example I 
1
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•  One graph min-cut given by second 
largest right eigenvector of T 

•  n=8,  
–   v2=[0.4714    0.4247    0.2939    0.1049   

-0.1049   -0.2939   -0.4247   -0.4714] 
– Eigenvalue is 0.9010 

Example I 
1
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•  Create a 2n-by-2n Transition matrix for 
the linear chain above 
– T=eye(2*n)-eye(2*n); 
–  for i=2:2*n,T(i,i-1)=0.5; T(i-1,i)=0.5;end 
– T(1,2)=1;T(2*n,2*n-1)=1; 
–  [v,d]=eigs(T) 

Homework 
1
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•  [Meila-Shi 2001, E-L-V 2008] 
–  If the top k eigenvectors are piecewise 

constant functions w.r.t. partition P={S1,…,Sk} 
– Or, T is nearly uncoupled Markov chain (nearly 

block diagonal) 

When two theories meet? 



•  Below 3 algorithms will be presented 
– Embedding + K-means 
– Bipartition clustering 
– PCCA (find inner simplex on embedded 

space) 

Three algorithms 



•  T under the assumption above 
– Find top k right eigenvectors such that a 

spectral gap occurs at λk, Tvi=λivi, i=1,…,k 
– Define Y = [v1, …,vk], an n-by-k matrix which 

maps n points into Rk 

– Kmeans on Y to cluster n points into k clusters 

Basic Algorithm I 

Equivalent to use top k eigenvectors of L=I-D^{-1} W. 



•  Construct a nearly 3-block diagonal matrix A,  
•  n1=3; 
•  n2=2; 
•  n3=2; 
•  A = zeros(n1+n2+n3,n1+n2+n3); 
•  A(1:n1,1:n1)=ones(n1); 
•  A(n1+1:n1+n2,n1+1:n1+n2)=ones(n2); 
•  A(n1+n2+1:n1+n2+n3,n1+n2+1:n1+n2+n3)=ones(n3);   
•  A = A + 0.33*rand(n1+n2+n3,n1+n2+n3);   % add 0.33 uniform noise 
•  A = (A + A')/2;    % make A symmetric 
•  D = diag(sum(A,2));  % T=D^{-1} A 

•  Generalized eigenvector decomposition  
•  [v, eeigs(A,D); 

•  Embedding and K] = -means clustering 
•  Y = v(:,1:3); 
•  Kmeans(Y,3)  % one may try kcenter 
•  >> kmeans(Y,3) 
•  ans = 

•       1 
•       1 
•       1 
•       3 
•       3 
•       2 
•       2 

Matlab Example 



•  plot(diag(e),'-x'), title('Top 6 generalized eigenvalues') 
•  plot3(Y(:,1),Y(:,2),Y(:,3),'x'), xlabel('1st eigenvector'); ylabel('2nd 

eigenvector'), zlabel('3rd eigenvector’); title('Embedding with top 3 
eigenvectors') 

Matlab Example 

Note that Y maps data around a 2-simplex! 



•  T under the assumption above 
– Find top k right eigenvectors such that a 

spectral gap occurs at λk, Tvi=λivi, i=1,…,k 
–  fvec = v2;  %Fiedler vector 
–  t=2; 
– While t<=k, S2=S 

•  Split current state space by minimal cut using fvec, 
A={i: fvec(i)<mean(fvec)}; B=St-A; 

•  u = v(:,t+1); St+1=argmax(A,B) (var(u(A)),var(u(B)) 
•  Split St+1 according to min-cut by T(St+1, St+1) 

II Spectral Bi-partition as 
approximate Graph Min-cut 



•  >> help bipartClust 
•    Spectral Clustering via Bi-partition  
•      [ci,csize,spectrum,conduct,cluster_tree]=bipartClust(X,k,opt) 
•    
•    Inputs 
•    X: transition count matrix, X(i,j) is the number of transitons between i and j; 
•      k: number of clusters,  
•     [0]|integer 
•    opt.disp: [0]|1|2, display the process of sparse eigenvalue solver, eigs() 
•    opt.clusterSizeThreshold: [0,1], threshold of cluster size as percentage of level size 
•    Outputs 
•      ci: n-by-1 cluster index vector, 0 for noise  
•    csize: max(ci)-by-1 cluster size 
•      spectrum: eigenvalue and eigenvectors of spectral clustering 
•    conduct: conductance along the spectral cuts 
•    cluster_tree: the cluster tree 

•  Try this -- 
•   bipartClust(A,3) 

Matlab Example 



•  Perron-Cluster Clustering Analysis [Weber’03,04]: exploit 
the simplex structure 
–  Find k extreme points of the (k-1)-simplex 

•  Find two points a,b of Y in largest distance in Rk, 
S1={a,b}; 

•  While t<k,  
– Find the next point,c, in largest distance of dist(v

(:,t), span(v(:,St)) 
– St = St-1 + {c}; 

–  Find approximate membership map, chi=Y*Z, where Z 
=inv(v(Sk,1:k)) 

–  Decide the member by maximal association 

III PCCA 



•  >> help indsearch 
•      INDEX search for inner simplex representation 
•          [ind]=indsearch(Evs, NoOfClus) 
•       
•    
•      Reference: 
•          M. Weber, Clustering by using a simplex structure, 2004 

•  >> help almostinvar 
•      Find the almost invariant sets 
•          [Chi, Lambda]=almostinvar(matrix,NoOfClus) 
•      INPUTS: 
•          matrix - n-by-n matrix 
•          NoOfClus - number of clusters 
•      OUTPUTS: 
•          Chi - membership function  
•          Lambda - top NoOfClus eigenvalues     
•    
•      Reference: 
•          M. Weber, Clustering by using a simplex structure, 2004 

Matlab Example 
Try this – 
>> indsearch(Y,3) 

ans = 

     7 
     4 
     2 

>> chi=almostinvar(A,3) 

chi = 

    0.0136    0.1431    0.9216 
    0.0000    0.0000    1.0000 
   -0.0739    0.1062    0.9833 
    0.0171    0.9316   -0.0383 
         0    1.0000   -0.0000 
    0.9239   -0.0512    0.0753 
    1.0000   -0.0000   -0.0000 



Optimal Lumpable Approximation 

•  Problem: Given a reversible Markov chain T 
on n-microstates, find an optimal 
approximation Ť lumpable on a k-partition.  
– πi Tij = πj Tji, π is stationary distribution 
– microstates {1,…,n} 
– Ť is lumpable on Pk = {S1,…,Sk} 
– What’s the optimality condition? 



Metastability Maximization 

•  Find a k-partition of S, P = {S1,…,Sk}, such 
that the trace of lamped chain is maximized 

– where Ťab = sumi in a, j in b Tij  
–  It works when T is nearly uncoupled Markov 

chains 
– But the linear chain example, it gives a bi-

partition {1,…,n} {n+1,…,2n}! 

maxP suma in PŤaa  



A General Criterion 

•  [E-L-V’08] Find a k-partition of S, P = {S1,
…,Sk}, such that the following is maximized 

– where Ťab = sumi in a, j in b Tij,   πa=sumi in a πi 

–  It works when T is lumpable 
– When T is nearly uncoupled, the two criteria 

meet 

maxP suma,b in P(Ťab)2 πa / πb  



Issues in application 

•  But all above have issues in application: 
– microstates are given by kcenter algorithm 
– so microstates are metric R-net of samples 
– spurious lumpable states: many microstates on 

energy barrier are so rarely visited that regarded 
as approximate lumpable states  



Spectral Clustering on Biomolecules 

Huang, Bowman, Bacallado, and Pande.  2009 

Difficult to determine 
number of macrostates! 

RNA hairpin 

ln ( )k
k

τ
τ

µ τ
= −

First separate the most disconnected 
blocks from the transition probability 
matrix. 

T1 
>0.001 

T2 
>0.001 

T3 (>0.001) 

0.001 

0.001 

1e-10 

1e-10 

Noe and Weber: Left out rarely 
visited or trapped states 
Bowman: Subsample the data 



Block Structure is of Multiscale  



MSMs are Multi-resolution in Nature 
 Number of states in an Markov State Model depends on the 
desired lag time.   

•  A short lag time results in a high 
resolution MSM having many 
metastable states, capturing 
numerous free energy minima 
separated by small barriers.   

•  A longer lag time results in a low 
resolution MSM with only a few 
states, each of which contains 
multiple local free energy minima MSM #1:  A,  B+C, D (3 states) 

MSM #2:   A, B, C, D (4 states) 
MSM #1 is a lower resolution model 

A 
B C 

D 



Nystrom method for the 1st issue 

•  Let K be n-by-n transition count matrix: 
– Kij, nonnegative integer counting number of 

transitions from i and j 
– Kij = Kji, every physical system is reversible 
– D=diag(sum(K,2)), a diagonal matrix of row sum 

of K 
– Sort row/columns of K in a descend order of Dii 



Nystrom method for the 1st issue 
•  Assume K has block-partition 

•  Nystrom Approximation, where A’s SVD is A=U∧UT 

–  If Schur Complement C-BTA-1B≈0, then a good approximation 
–  So we leave in C those microstates with rare visits 
–  [U; B’U’inv(∧)] gives a good approx. of K’s top eigenvectors 



Nystrom method literature 

•  Nystrom method is widely used to find approximate 
eigenvectors with large matrices 
–  Image segmentation [Folkes et al. 2004] 
– Machine learning and massive data [Williams et 

al. 2001, Belabbas and Wolfe 2009] 
– and a lot more if you google… 

Det(A) Det(Sc(A)) = Det(K) 



However … 

•  We don’t know what’s the best cut, if any, between 
high populated A and low populated C; 

•  The energy landscape is of multiscale in nature, 
which prohibits any ‘best’ cut to be the ‘best’; 

Answer: Hierarchical Nystrom Method! 



A A

ALevel 2: 

Level 1: 

A

Level 3: 

Level 4: 

Four attraction nodes 

Super-level-set Hierarchical Clustering 
(SHC, Huang-Y-Sun’09) 

Key insight: Cluster conformations hierarchically using super density 
level sets in a bottom-up fashion 

Level 2: 
Level 1: 

Level 3: 
Level 4: 



Example: Alanine-dipeptide 



Example: Alanine-dipeptide 
•  Load ../data/T5000.mat X  % 5000 microstates by kcenter  
•  spy(X), title('Original transition count matrix 5k-by-5k') % no 

block structure 



Example: Alanine-dipeptide 
•  d = sum((X'+X)/2,2);  % population filter 
•  filter = d; 

•  % Power-law distribution of populations 
•  loglog(hist(d,500),'*'),title('Power distribution of populations') 



Example: Ala_nystrom.m 
%% Choose 9 levels according to percentage of samples 
•  plevels = [0.1:0.1:0.9], % 10%, 20%, 30%, ..., 90% of top populated data 
•  fcdf = hcdf(filter); 
•  for i=1:length(plevels), levels(i) = sum(fcdf<=plevels(i)); end 

•  %% Form superlevel sets. 
•  numLevels = length(levels); 
•  % Compute approximate Betti_0 number 
•  [b,g]=apBetti(X,filter,levels); 
•  clusters = []; 
•  for i=1:numLevels, 
•      alpha = 10/g{i}(1); 
•      choice_prob = exp(alpha*g{i}(1:min(3,end))-b{i}(1:min(3,end))); 
•      clusters(i) = b{i}(find(choice_prob>=max(choice_prob)-eps)); 
•  end 
•  superLevelSet = superLvlSet(filter,levels,clusters); 



Example: Ala_nystrom.m 
•  %% 1) Call nystrom to construct the Hierarchical Nystrom Extension graph 
•  opt.clusterSize = 0; % Keep those clusters larger than 0% 
•  opt.filter = filter; 
•  [adja, nodeInfo, levelIdx] = nystrom(X, superLevelSet,opt);  

•  %% 2) Analyze the gradient flow on the nystrom graph 
•  cpt = flowGrad(adja,levelIdx,nodeInfo);  

•  %% 3) Get optimal assignment of microstates by Diffusion according to X, the 
transition count matrix  

•  [ci,csize,fassign,T,Qmax,id_fuzzy]=assign_optim
(X,cpt.equilibrium,nodeInfo,opt); 



Example: Ala_nystrom.m 
•  % Write DOT file for Graphviz output 
•  DotFileName = sprintf('%s/%s_flow',figureDir,fname); 
•  writeFlowGraph_plus(sprintf('%s.dot',DotFileName), cpt.gradFlow, 

nodeInfo ,superLevelSet,levelIdx,filter);  
•  disp(sprintf('%s.dot File done.',DotFileName)); 

•  % Write JPG file, need Graphviz  
•  % On my macbook air: 
•  system(sprintf('/usr/local/bin/dot %s.dot -Tjpg > %s.jpg', DotFileName, 

DotFileName));  
•  disp(sprintf('%s.jpg File done.',DotFileName)); 



Outputs of Ala_nystrom.m 

6 macrostates 
Metastability=5.56 (92.6%) 



Block structure unveiled 
•  [ig,id]=sort(ci,'ascend'); 
•  spy(X(id,id)),title('Block structures with 6 macrostates') 



•   2,543 TIP3P waters and 7 Na+ ions 
•   9963 45ns simulations 

An eight nucleotide RNA GCAA hairpin 

> 2.3 million conformations in total  

Example: 8-RNA hairpin 



Huang-Y.-Sun  et.al  PSB 2010 

Assign each microstate to the metastable state it has the largest 
transition probability to.  

We assign microstates not in attraction nodes to metastable states. 

Assigning microstates not in attraction nodes 



Huang  et.al  PSB 2010, Submitted 

L 1 3 6 9 15 
Nam

e 
L1MS

M 
L3MSM L6MSM L9MS

M 
L15MSM 

N 6 46 57 63 68 
Q 5.95 44.3 54.2 59.3 63.4 

<Tii> 99.1% 96.3% 95.1% 94.1% 93.2% 
Np 2 8 15 12 10 

L: # of super density levels,  N: # of states,  Q: metastability, <Tii>=Q/N,  
Np: # of states with population > 1%. 

SHC guarantees that highly populated metastable regions are 
identified before less populated ones. 

MSMs at Different Resolutions for RNA 



( ) [ ( )] (0)nP n t T t PΔ = Δ

Black curve: raw data, Red curve: from L3MSM 

Validating MSMs: Chapman-Kolmogorov Check 



Mean First Passage Time in microseconds from L3MSM 

• No stable 
thermodynamic 
intermediate states 
• Overall timescales 
agree with 
experiments 

Folding mechanisms: 
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