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几种聚类算法比较 

类别 复杂性 近似算法 在线算法 Hierarchical  统计一致性 
K-means NP 50-app ✗ ✗ ✔[Pollard81] 
K-center NP 2-app. O(kn) ✔ （8-app） ✔（8-app） ✗ 

(metric net) 
Average-
linkage 

Close to k-
means 

? ? ✔ ? 

Complete-
linkage 

Close to k-
center 

a(k)-app 
k<a(k)<k^log(3) 

? ✔ ? 

Single-
linkage 

Minimal 
spanning 
tree 

… ✔ 

（Persistent 
Homology） 

✔ ✔ 
[Hartigen81,
Stuetzle03] 



Recall K-center clustering 



•  Farthest-first-traversal算法形成了样本空间的一个度量R-net 
–  Any two points in C are R-distance away 
–  Points in C form a R-cover of sample space 

•  K-center is NP-hard, but the 2-approx. algorithm is O(kn), much 
faster than K-means etc. 

•  只依赖于度量结构 
•  K-center在ISOMAP(TdL’2000, Science)中被采用，称为

Landmark技术 
•  Molecular dynamics application [Sun, Y, Huang, et al. JPC, 09] 
•  缺点： 

–  对样本空间边缘的outlier和noise比较敏感 (Good or bad?) 
–  没有statistical consistency theory 

K-center 几何性质 



Application I: 
Alanine-dipeptide 



Phi-Psi Matlab 数据 
>> load ../data/alanine_dipeptide_phi-psi.mat 
% phi, psi: reaction coordinates of 195000 points 
% micro36x36: a map to 36x36 torus cell index 
% freeEnergy: 1296 (=36x36) vector, free energy 

estimation for each cell 



Torus Embedding 
>> [x,y,z]=embedTorus(3,1,phi,psi); 
>> freeEnergyTorus; 
>> idx=randperm(length(phi)); 
>> scatter3(x(idx(1:1000)),y(idx(1:1000)),z(idx(1:1000)),'.') 



Random vs. Kcenter 
>> idx=randperm(length(phi)); % 随机采样 
>> scatter3(x(idx(1:1000)),y(idx(1:1000)),z(idx(1:1000),'.') 
>> L=kcenter([x,y,z],1000); % 笔记本上需要几分钟… 
>> scatter3(x(L),y(L),z(L),'.') 



Kmeans vs. Kcenter 
>> [idx,C]=kmeans([x,y,z],1000); % Kmeans (k=1000) about 10 

times running time of kcenter 
Warning: Failed to converge in 100 iterations. 
>> scatter3(C(:,1),C(:,2),C(:,3),'.') 
>> L=kcenter([x,y,z],1000);   
>> scatter3(x(L),y(L),z(L),'.') 



Demo Kcenter 
>> demo_ala_kcenter 
… 
•  % initial choice of L, DL – distance from data to landmarks 
•  L = seed;  
•  DL = zeros(n, k); 
•  DL(:,1:length(L)) = dist2(X,X(L,:));  % Euclidean distance 
•    
•  % Farthest-First-Traversal, or maximin search 
•  DLmin = min(DL(:,(1:length(L))), [], 2); 
•  r = zeros(k,1); 
•  for a = (length(seed)+1: k), 
•    [r(a-1), newL] = max(DLmin, [], 1); 
•    L = [L; newL]; 
•    DL(:,a) = dist2(X, X(newL,:)); 
•    DLmin = min(DLmin, DL(:,a));   
•  end 



Kcenter.m 
•  function [L, R, IDX, C, DL]=kcenter(X,k,L0,EorD) 
•  % Farthest-First Traversal Algorithm as a 2-approximation for  kcenter clustering 
•  %   [L,R,IDX,C,DL] = KCENTER(X,k,L0,EorD) 
•  % 
•  % INPUT: 
•  %   X - see description for input EorD. 
•  %   k - the number of centers to be chosen. 
•  %   L0 - the first centroid index. 
•  %   EorD - character EorD determines how input matrix is interpreted. If  
•  %       EorD is 'e', then the N x p input matrix X is interpreted as N  
•  %       points in R^p. If EorD is 'd', then the N x N input matrix X is  
•  %       interpreted as the distance matrix for N points in an arbitrary  
•  %       metric space. 
•  % 
•  % OUTPUT: 
•  %   L - an p-by-1 vector containing indices of each landmark. 
•  %   R - covering radius, i.e. the smallest number such that every data  
•  %       point lies within distance R of a landmark point. 
•  %   IDX - an N-by-1 vector containing the cluster indices of each point. 
•  %   C - a k-by-p matrix for the k cluster centroid locations. 
•  %   DL - an N-by-k matrix of distances from each point to every centroid.  
•  % 



Homework 
•  EASY: 自己生成一个 dataset (比如圆附近的随机点，混合高斯分布
点), 比较 kcenter、kmeans、linkage (single, complete, average). 

•  CHALLENGE: 用自己喜欢的计算机语言实现一个 online kcenter 算
法。（optional） 



Full-Atomic Coordinates 
>> load ../data/alanine_dipeptide_traj_coords.mat 
% natom is 22, number of atoms 
% nconf is 195000, number of conformations 
% confs is 22x585000 double [x1,y1,z1,x2,y2,z2,

…] 

欧氏距离需要RMSD距离 
特殊package：bio-basics (Jian SUN), MSMBuilder 

(Greg Bowman) 



K-center in  
Molecular Dynamics 

•  Simple 
•  Fast 

–  Generate thousands of clusters from millions of 
conformations within several hours from a single machine 

–  20-60 times faster than K-means 
•  Online and hierarchical algorithms (cover-tree) 
•  Clusters have approximately equal radii, whence cluster 

population provides a density estimation in systems of intrinsic 
low dimension 
–  Note: accurate density estimation in high dimensional space (>10) 

is extremely difficult (Open: optional Polya Tree may work, Wong-
Ma 2010, tell me if you wanna try this!) 



Clustering in Biomolecular Dynamics 
Geometric  
Clustering 
(Splitting) 

Spectral  
Clustering 
(Lumping) 

K-center Clustering with 
RMSD metric: 

Form an epsilon-net to 
cover the sampled space 

Conformations  Microstates Macrostates 

Spectral Clustering with 
Transition Counts: 
Find non-spherical 

metastable states 



谱聚类分析���᠋᠌᠍
Spectral Clustering 



When we should not use K-means 	�

Figure: (a) data, (b) 2 clusters, (c) K-means with k=2	�

K-means requires any two points within the cluster close to each 
other.	�

K-means does NOT work for non-Gaussian (non-spherical) shape 
clusters.	�



Single-Lingkage & Spectral Clustering 	�

For non-Gaussian (non-spherical) shape clusters, two points within the 
same cluster are connected by a densely sampled path, but not 
necessarily close to each other  

Cluster are connected components in some neighborhood graph 
Single-linkage or spectral clustering are suitable to capture them	�



Block Structure of Transition Matrix 



Conformational Dynamics: 
Nearly Uncoupled Markov Chains 

Figure Courtesy John Chodera 

Zwanzig, J. Stat. Phys. 1983 
Chodera. et. al. J. Chem. Phys. 2007 
Noé. et.al. J. Chem. Phys. 2007 
Huang et.al.  2009,  Hummer, Shuttle.... 



Markov State Models (MSMs) 
Define transition 
probabilities between 
states 

The configuration space is decomposed 
into non-overlapping states	
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The time is coarse-grained 
in τ ( ) [ ( )] (0)nP n T Pτ τ=

We can extract long time dynamics from MSMs built from short 
simulations 	




Graph Partition Problem  



•  Lumpable Markov Chains 

•  Graph Minimal Cut 

Two Theories on  
Spectral Clustering 



Lumpability of Markov Chains 
•  Let T be the transition matrix of a Markov chain 

defined on n states S={1,…,n}. 
•  P={S1,…,Sk} is a partition of S into k macrostates. 
•  Sequences {x0,…,xt,…} generated by T, i.e.   

Prob(xt=j ; xt-1=i)= Tij 

•  Induced dynamics: relabel xt by yt from corresponding 
states in partition P 

•  [Kemeny-Snell’76] T is called lumpable if  
Prob(yt=k0; yt-1=k1, …,yt-m=km) = Prob(yt=k0; yt-1=k1)  

i.e. the induced dynamics is markovian. 



Lumpability of Markov Chains 
•  [Kemeny-Snell’76] T is lumpable w.r.t. partition P=

{S1,…,Sk} iff for any s, t chosen from P, and for any i, 
j lying in Ss, the following holds 

Tit= Tjt 
where Tit=sumk ε St Tik. 



Spectral Theory of Lumpability 
•  [Meila-Shi 2001] T is lumpable w.r.t. P iff T has k independent piece-

wise constant right eigenvectors in the span of characteristic functions 
of P={S1,…,Sk}.  

•  Special case: If T is block diagonal, i.e. uncoupled Markov chain, then 
T is lumpable with piece-wise constant right eigenvectors associated 
with multiple eigenvalue 1. 

•  [Belkin-Shi-Yu 2009] If T is close to being block diagonal, then there 
are top (k) eigenvectors which fix signs within the block. 

•  [E-Li-Vanden_Eijnden 2007] Let T be an n-dim reversible Markov 
chain, then the best approximation of T from k-dim lumpable chains 
solves the following optimization 

MinQ norm(T-Q,`Hilbert-Schmidt’)  
 where the Hilbert-Schmidt norm of a reversible chain T = D-1W, is 
defined to be sqrt((DT)’(DT))=sqrt(W’W). 



Spectral Clustering Algorithm 

•  Typical spectral algorithm to find lumpable states in 
nearly uncoupled systems [Ng-Jordan-Weiss’02]:  

•  Find top k right eigenvectors of T where a large 
spectral gap occurs, v1,…,vk 

•  Embed the data into Rk by those eigenvectors 

•  Use k-means (or alternatives) to find k clusters 
in Rk  

•  In biomolecular dynamics, this type algorithm is 
named after Perron, or PCCA [Weber’04]. 

Note there are issues when using with k-center here!  



Graph Laplacian Operator  



Graph Partition Problem  



Cheeger Inequality  



Local Cheeger Inequality  



•  Graph min-cut is NP-hard 
•  However one can find a polynomial approximation via 

second eigenvector of normalized graph Laplacian 
•  Graph Laplacian is symmetric diagonal dominant 

(SDD) 
•  [Spielman-Teng 2009, Koutis-Miller-Peng 2010] SDD 

has fast solver with preconditioners 

Spectra of Graph Laplacians 



•  Shi, Belkin, and Yu, Data spectroscopy: Eigenspaces of convolution operators and 
clustering. Annals of Statistics, 37 (6B): 3960-3984. 2008. 

•  Chodera, J. D., Singhal, N., Pande V. S., Dill, K. A., and Swope W. C. (2007) J. Chem. 
Phys., 126, 155101-. 

•  E, Li, and Vanden_Eijnden. Optimal partition and effective dynamics of complex networks. 
PNAS, 105 (23): 7907–7912, 2008. 

•  T.F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical 
Computer Science, 38:293-306, 1985. 

•  J.A. Hartigan. Consistency of single linkage for high-density clusters. Journal of the 
American Statistical Association, 76:388-394, 1981. 

•  Kemeny and Snell 1976. Finite Markov Chains. Springer-Verlag. 
•  Koutis, Miller, and Peng. Approaching Optimality For Solving SDD Linear Systems, 2010. 
•  Meila and Shi, A random walk view of spectral segmentation, AISTATS 2001. 
•  D. Pollard. Strong consistency of k-means clustering. Annals of Statistics, 9(1):135-140, 

1981 
•  W. Stuetzle. Estimating the cluster tree of a density by analyzing the minimal spanning tree 

of a sample. Journal of Classification, 20(5):25-47, 2003. 
•  Spielman and Teng. Nearly-Linear Time Algorithms for Preconditioning and Solving 

Symmetric, Diagonally Dominant Linear Systems, arXiv:cs/0607105v4, 2009.  

Reference 


