生命科学中的随机动力学模型 II

姚 远 2011.03.01

几种聚类算法比较

类别	复杂性	近似算法	在线算法	Hierarchical	统计 一致性
K-means	NP	50-app	X	X	✓[Pollard81]
K-center	NP	2-app. O(kn)	✔ (8-app)	✔ (8-app)	x (metric net)
Average- linkage	Close to k- means	?	?	~	?
Complete- linkage	Close to k- center	a(k)-app k <a(k)<k^log(3)< td=""><td>?</td><td>~</td><td>?</td></a(k)<k^log(3)<>	?	~	?
Single- linkage	Minimal spanning tree		 (Persistent Homology) 	✓	✓ [Hartigen81, Stuetzle03]

Recall K-center clustering

- input: conformations in a metric space (RMSD) and a number k
- goal: obtain a partition of the points into clusters C₁, · · · , C_k with centers μ₁, · · · , μ_k.
 o condition: minimize the maximum cluster radius:

$$\max_i \max_{x \in C_i} d(x, \mu_i)$$

- NP-hard problem
- 2-approximation algorithm (greedy k-center algorithm)

K-center 几何性质

- Farthest-first-traversal算法形成了样本空间的一个度量R-net
 - Any two points in C are R-distance away
 - Points in C form a R-cover of sample space
- K-center is NP-hard, but the 2-approx. algorithm is O(kn), much faster than K-means etc.
- 只依赖于度量结构
- K-center在ISOMAP(TdL'2000, Science)中被采用,称为 Landmark技术
- Molecular dynamics application [Sun, Y, Huang, et al. JPC, 09]
- 缺点:
 - 对样本空间边缘的outlier和noise比较敏感 (Good or bad?)
 - 没有statistical consistency theory

Application I: Alanine-dipeptide

[Chodera et al. 2007] 975 trajectories 200 conformations per trajectory

density on $\phi-\psi$ plane

Phi-Psi Matlab 数据

>> load ../data/alanine_dipeptide_phi-psi.mat % phi, psi: reaction coordinates of 195000 points % micro36x36: a map to 36x36 torus cell index % freeEnergy: 1296 (=36x36) vector, free energy estimation for each cell

⊐ + 5 ×	Workspace			
1 🗹 🐿 🛍 🦉	Stack: Base 🛊	൜ plot(phi)	-	
Name 🔺	Value	Min	Max	
Η freeEnergy	<1296x1 double>	-8.0740	0	
Η micro36x36	<195000x1 double>	1	1296	
Η numConforma	200	200	200	
🛨 phi	<195000x1 double>	-179.9629	179.9963	
🕂 psi	<195000x1 double>	-179.9994	179.9998	

Torus Embedding

- >> [x,y,z]=embedTorus(3,1,phi,psi);
- >> freeEnergyTorus;
- >> idx=randperm(length(phi));
- >> scatter3(x(idx(1:1000)),y(idx(1:1000)),z(idx(1:1000)),'.')

Random vs. Kcenter

- >> idx=randperm(length(phi)); % 随机采样
- >> scatter3(x(idx(1:1000)),y(idx(1:1000)),z(idx(1:1000),'.')
- >> L=kcenter([x,y,z],1000); % 笔记本上需要几分钟...
- >> scatter3(x(L),y(L),z(L),'.')

Kmeans vs. Kcenter

Demo Kcenter

>> demo_ala_kcenter

- . . .
- % initial choice of L, DL distance from data to landmarks
- L = seed;
- DL = zeros(n, k);
- DL(:,1:length(L)) = dist2(X,X(L,:)); % Euclidean distance
- •
- % Farthest-First-Traversal, or maximin search
- DLmin = min(DL(:,(1:length(L))), [], 2);
- r = zeros(k,1);
- for a = (length(seed)+1: k),
- [r(a-1), newL] = max(DLmin, [], 1);
- L = [L; newL];
- DL(:,a) = dist2(X, X(newL,:));
- DLmin = min(DLmin, DL(:,a));
- end

Kcenter.m

- function [L, R, IDX, C, DL]=kcenter(X,k,L0,EorD)
- % Farthest-First Traversal Algorithm as a 2-approximation for kcenter clustering
- % [L,R,IDX,C,DL] = KCENTER(X,k,L0,EorD)
- %
- % INPUT:
- % X see description for input EorD.
- % k the number of centers to be chosen.
- % L0 the first centroid index.
- % EorD character EorD determines how input matrix is interpreted. If
- % EorD is 'e', then the N x p input matrix X is interpreted as N
- % points in R^p. If EorD is 'd', then the N x N input matrix X is
- % interpreted as the distance matrix for N points in an arbitrary
- % metric space.
- %
- % OUTPUT:
- % L an p-by-1 vector containing indices of each landmark.
- % R covering radius, i.e. the smallest number such that every data
- % point lies within distance R of a landmark point.
- % IDX an N-by-1 vector containing the cluster indices of each point.
- % C a k-by-p matrix for the k cluster centroid locations.
- % DL an N-by-k matrix of distances from each point to every centroid.
- %

Homework

- EASY: 自己生成一个 dataset (比如圆附近的随机点, 混合高斯分布 点), 比较 kcenter、kmeans、linkage (single, complete, average).
- CHALLENGE: 用自己喜欢的计算机语言实现一个 online kcenter 算 法。(optional)

Full-Atomic Coordinates

>> load ../data/alanine_dipeptide_traj_coords.mat % natom is 22, number of atoms % nconf is 195000, number of conformations % confs is 22x585000 double [x1,y1,z1,x2,y2,z2, ...]

欧氏距离需要RMSD距离 特殊package:bio-basics (Jian SUN), MSMBuilder (Greg Bowman)

K-center in Molecular Dynamics

- Simple
- Fast
 - Generate thousands of clusters from millions of conformations within several hours from a single machine
 - 20-60 times faster than K-means
- Online and hierarchical algorithms (cover-tree)
- Clusters have approximately equal radii, whence cluster population provides a density estimation in systems of intrinsic low dimension
 - Note: accurate density estimation in high dimensional space (>10) is extremely difficult (Open: optional Polya Tree may work, Wong-Ma 2010, tell me if you wanna try this!)

Clustering in Biomolecular Dynamics

谱聚类分析 Spectral Clustering

When we should not use K-means

Figure: (a) data, (b) 2 clusters, (c) K-means with k=2

K-means requires any two points within the cluster close to each other.

K-means does NOT work for non-Gaussian (non-spherical) shape clusters.

Single-Lingkage & Spectral Clustering

For non-Gaussian (non-spherical) shape clusters, two points within the same cluster are connected by a densely sampled path, but not necessarily close to each other

Cluster are connected components in some neighborhood graph Single-linkage or spectral clustering are suitable to capture them

Block Structure of Transition Matrix

Conformational Dynamics: Nearly Uncoupled Markov Chains

Zwanzig, J. Stat. Phys. 1983 Chodera. et. al. J. Chem. Phys. 2007 Noé. et.al. J. Chem. Phys. 2007 Huang et.al. 2009, Hummer, Shuttle....

Figure Courtesy John Chodera

Markov State Models (MSMs)

We can extract long time dynamics from MSMs built from short simulations

$$P(n\tau) = [T(\tau)]^n P(0)$$
 The time is coarse-grained
in τ

Graph Partition Problem

- goal: find a cut with the smallest Cheeger ratio (conductance)
 - For $S \subset V$, volume of S: $vol(S) = \sum_{v \in S} d_v$
 - $\circ \ \partial S = \{(u,v) \in E: u \in S \& v \in S\}$
 - Cheeger ratio of S, $h(S) = \frac{|\partial S|}{\min\{vol(S), vol(G) vol(S)\}}$
- applications
 - clustering
 - segmentation
 - task partitioning for parallel processing
 - a preprocessing step to divide-and-conquer algorithms

Two Theories on Spectral Clustering

- Lumpable Markov Chains
- Graph Minimal Cut

Lumpability of Markov Chains

- Let T be the transition matrix of a Markov chain defined on n states S={1,...,n}.
- $P={S_1,...,S_k}$ is a partition of S into k macrostates.
- Sequences {x₀,...,x_t,...} generated by T, i.e.
 Prob(x_t=j ; x_{t-1}=i)= T_{ij}
- Induced dynamics: relabel x_t by y_t from corresponding states in partition P
- [Kemeny-Snell'76] T is called *lumpable* if $Prob(y_t=k_0; y_{t-1}=k_1, ..., y_{t-m}=k_m) = Prob(y_t=k_0; y_{t-1}=k_1)$

i.e. the induced dynamics is markovian.

Lumpability of Markov Chains

 [Kemeny-Snell'76] T is *lumpable* w.r.t. partition P= {S₁,...,S_k} iff for any s, t chosen from P, and for any i, j lying in S_s, the following holds

$$T_{it} = T_{jt}$$

where T_{it} =sum_{k ϵ St} T_{ik} .

Spectral Theory of Lumpability

- [Meila-Shi 2001] T is *lumpable w.r.t. P* iff T has k independent piecewise constant right eigenvectors in the span of characteristic functions of P={S₁,...,S_k}.
- Special case: If T is block diagonal, i.e. uncoupled Markov chain, then T is lumpable with piece-wise constant right eigenvectors associated with multiple eigenvalue 1.
- [Belkin-Shi-Yu 2009] If T is close to being block diagonal, then there are top (k) eigenvectors which fix signs within the block.
- [E-Li-Vanden_Eijnden 2007] Let T be an n-dim reversible Markov chain, then the best approximation of T from k-dim lumpable chains solves the following optimization

Min_Q norm(T-Q,`Hilbert-Schmidt')

where the Hilbert-Schmidt norm of a reversible chain $T = D^{-1}W$, is defined to be sqrt((DT)'(DT))=sqrt(W'W).

Spectral Clustering Algorithm

- Typical spectral algorithm to find lumpable states in nearly uncoupled systems [Ng-Jordan-Weiss'02]:
 - Find top k right eigenvectors of T where a large spectral gap occurs, v₁,...,v_k
 - Embed the data into R^k by those eigenvectors
 - Use k-means (or alternatives) to find k clusters in R^k
- In biomolecular dynamics, this type algorithm is named after Perron, or PCCA [Weber'04].

Graph Laplacian Operator

- given an undirected graph G=(V, E),
 - Adjacency matrix A:

$$A(u,v) = \left\{ egin{array}{cc} 1 & ext{if } u \sim v \ 0 & ext{o.w.} \end{array}
ight.$$

- Diagonal degree matrix $D = diag(d_{v_1}, \cdots, d_{v_n})$
- Graph Laplace Operator $L = D^{-1}(D A)$
- Tranistion probability matrix $W = D^{-1}A = I L$,
- $Wv = \lambda v$ implies $Lv = (1 \lambda)v$
- \circ 1 is the largest eigenvalue for W; 0 is the smallest eigenvalue for L.

Graph Partition Problem

- Rayleigh quotient $R(f) = \frac{\sum_{u \sim v} (f(u) f(v))^2}{\sum_u f^2(u) d_u}$ for $f \neq 0$
 - find a boolean function f minimizing $R(f) \leftarrow \mathsf{NP}\text{-complete}$
 - RELAXATION: find a real valued function f minimizing R(f)

$$\circ \ R(f) = \frac{}{}$$

 $\circ \ \lambda_1 = \inf_f R(f) \ \Rightarrow \ \lambda_1 \text{ and } f \text{ are the first nonzero} \\ \text{eigenvalue and eigenvector of } L.$

How good is this relaxation? Cheeger inequality

Cheeger Inequality

$$2h_G \geq \lambda_1 \geq rac{h_f^2}{2} \geq rac{h_G^2}{2}.$$

- $\circ \ f$ is the eigenvector of L corresponding to λ_1
- $\circ h_G$ is the smallest conductance (Cheeger ratio) of graph G
- $\circ h_f$: the minimum Cheeger ratio determinded by a sweep of f
 - order the vertices: $f(v_1) \ge f(v_2) \ge \cdots \ge f(v_n)$.
 - $S_i = \{v_1, \cdots, v_i\}$
 - $h_f = \min_i h_{S_i}$
- $\circ~$ find a partition whose conductance is within $2\sqrt{h_G}$

Local Cheeger Inequality

- Heat kernel $H_t = e^{-tL} = I tL + \dots + (-1)^k \frac{t^k}{k!} L^k + \dots$
 - induce a random walk on the graph
 - a version of local Cheeger inequality for local graph partition
 - see the following references for details:
 - "A local graph partitioning algorithm using heat kernel pagerank," WAW 2009, LNCS 5427, (2009), 62-75
 - "The heat kernel as the pagerank of a graph," PNAS, 105 (50), (2007), 19735–19740.

Spectra of Graph Laplacians

- Graph min-cut is NP-hard
- However one can find a polynomial approximation via second eigenvector of normalized graph Laplacian
- Graph Laplacian is symmetric diagonal dominant (SDD)
- [Spielman-Teng 2009, Koutis-Miller-Peng 2010] SDD has fast solver with preconditioners

- Shi, Belkin, and Yu, Data spectroscopy: Eigenspaces of convolution operators and clustering. Annals of Statistics, 37 (6B): 3960-3984. 2008.
- Chodera, J. D., Singhal, N., Pande V. S., Dill, K. A., and Swope W. C. (2007) *J. Chem. Phys.*, **126**, **155101-.**
- **E, Li, and** Vanden_Eijnden. Optimal partition and effective dynamics of complex networks. PNAS, 105 (23): 7907–7912, 2008.
- T.F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293-306, 1985.
- J.A. Hartigan. Consistency of single linkage for high-density clusters. Journal of the American Statistical Association, 76:388-394, 1981.
- Kemeny and Snell 1976. Finite Markov Chains. Springer-Verlag.
- Koutis, Miller, and Peng. Approaching Optimality For Solving SDD Linear Systems, 2010.
- Meila and Shi, A random walk view of spectral segmentation, AISTATS 2001.
- D. Pollard. Strong consistency of k-means clustering. Annals of Statistics, 9(1):135-140, 1981
- W. Stuetzle. Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample. Journal of Classification, 20(5):25-47, 2003.
- Spielman and Teng. Nearly-Linear Time Algorithms for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems, **arXiv:cs/0607105v4, 2009**.