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1. Course Website:

L. http://www.math.pku.edu.cn/teachers/yaoy/Spring2011/
11. Group Email:

L. yuanypku@googlegroups.com

I1. My own email: yuany @math.pku.edu.cn

III.  No final exam, yes final projects

L. Choose the topic interested, then work on it.
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L. Biomolecular folding
I1. Video (image sequence) analysis
I11. Dynamic (biological/social) networks
I FAAE) S AR,
L. Markov models
I1. Nonlinear diffusive models, etc.
L. — AR A
L. How to reconstruct models given data generated (approximately)

from such models?



Biomolecular Folding




Neuron Signaling in Zebrafish
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Courtesy of Le-Tian Tao



Surveillance Video

Courtesy of Yi Ma



Networks are Dynamic!

ca® pNa*




Networks are Dynamic!

\as hing ton [T <inghua Universit]

TouchGraph

TouchGraph

My facebook TouchGraph from the year of 2009 to 2011



The following tools may be

relavant...
e Y FadB Al T ik 383N A JUAT 5 ik

ELMEYE  nonlinear dimensionality reduction
JE 45 R Zn compressed sensing
A& AL 4E % 5 i low-rank matrix factorization

253 online learning of dictionary
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Markov models
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I1. Clustering Analysis
III.  Bayesian Inference of Markov Models
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Shirts and Pande, Science, 290, 1903, 2000




& 151 # ;. Conformational Changes

Unfolded State ?\‘NA"#
l Protein

Folding

Protein folding
in Chaperone

Native state

RNA Polymerase
Translocation

Translocation

Ilustrations by David Goodsell



Understanding Conformational
Changes at Atomic Resolution is
Difficult Experimentally

Computer simulations may complement experiments!

X-ray

structures are Single Molecule FRET

static snapshots
Provide information of an

order parameter

. | ==
W VT
NMR g 0 | !
C a n p rOVi d e 0.0 .‘"“.Wl . ").*P}.*'A‘L"} . A N rl‘t‘.&»ﬂl‘
dynamics, but Zhuang, Science 296:1473, 2002.

difficult for large
systems



Key Challenge: Timescale Gap

Bond lsomer-  Water Helix Fastest typical slow
vibration ation  dynamics forms folders folders folders

10, 10712 107 10° 10 109

fen{to pICO nano I micro I milli secon*ls
MD long where we where we'd
step MD run need to be love to be
Atomistic Simulations Experiments
Solution:

Use short simulations to predict long timescale dynamics



Conformational Dynamics:
Nearly Uncoupled Markov Chains

corresponds to a
meta-stable state

\‘?}‘

Each Markov chain

Zwanzig, J. Stat. Phys. 1983
Chodera. et. al. J. Chem. Phys. 2007
Noé¢. et.al. J. Chem. Phys. 2007

Huang et.al. 2009, Hummer, Shuttle....

Figure Courtesy John Chodera
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Markov State Models (MSMs)

The configuration space 1s decomposed Define transition

probabilities between
states

Py Do o Dis|
T(r) = p.zl P
| Psi Pss |

We can extract long time dynamics from MSMs built from short
simulations

P(nt) =[T ()] P(Q) Ihetimeis coarse-grained

InT




How to construct MSMs?

Dataset: Multiple trajectories with a lot of
conformations.

Trajectory 1 O—O—0O—C0O0O—0O—0O—0
Trajectory 2 O—O O O O O O
Trajectory 3 O—O O O O O O
time
) Trajectory

Conformation




Example: 8-RNA hairpin
An eight nucleotide RNA GCAA hairpin

e 2,543 TIP3P waters and 7 Na* 1ons
* 9963 45ns simulations

> 2.3 million conformations in total



How to construct MSMs?

800,000 nodes, 7.4 billion edges
Data: A large amount

of conformations

1
Directly work on ~ i S
\ —
N\

conformations

Network nodes are
snapshots from multiple
simulations.

Very Expensive!

Andrec, Felts, Gallicchio & Levy (2005) PNAS, 102, 6801



How to construct MSMs?

Conformations Microstates

o’ o 0 &'y e  Geometric Clustering

e o % ,‘-“: (K-means/K-center)

P Conformations within

: o, o e the same microstate
o : .o. .. e with distance metric mterconvert qu1ckly
¢’ ,3,*;.‘.: (RMSD ...)
A
A
12
10+
Construct MSMs # of microstates is huge.
on microstates:

Difficult for studying

folding mechanisms!

110,000 states mode

0
0 500 1000

Bowman, Beauchamp, Boxer, and Pande. Methods 2009.
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How to construct MSMs?

Geometric

o .';:;° Clustering

[

% (Splitting)

Conformations

Bayesian
Inference
of MSM

I(t)=

Py Di
P Pxn
| Psi

Microstates

Dis |

Pss

Spectral
Clustering
(Lumping)

Macrostates

Chodera. et. al. J. Chem. Phys. 2007

No¢. et.al. J. Chem. Phys. 2007

Deuflhard and Weber, ZIB-report, 2003
Weber, ZIB-report, 2004

Bowman, Huang, and Pande. Methods 20009.
Barcalado, et al. J. Chem. Phys. 2009



A Theory of Lumpability
* Lumpability

— (Kemeny-Snell 1976) A finite Markov chain T is lumpable w.r.t.
partition S=(S,,...,S,)) iff its induced dynamics on S is Markovian

— (Meila-Shi 2001) T is lumpable w.r.t. S iff T has n piece-wise
constant right eigenvectors, T; is the transition probability from i to j.

— If T is block diagonal, i.e. uncoupled Markov chain, then T is
lumpable with piece-wise constant right eigenvectors associated
with multiple eigenvalue 1.

— (E-Li-Vanden-Eijnden 2007) For reversible chains, optimal
approximation of lumpable Markov chains in Hilbert-Schmidt norms

— An spectral algorithm to find lumpable states in nearly uncoupled
systems:
 find top n piece-wise constant eigenvectors as embedding coordinates
* Use k-means to find n clusters
» Other variants with spectral bipartition also works (PCCA)

But there are issues when using with k-center here!



I11.

1)
2)
3)
4)

Geometric Clustering (FE & H. =)
K-means/K-medoids vs. K-center, etc.
Kinetic Clustering
Spectral clustering, etc.
RSO ETR
Flat clustering vs. Hierarchical clustering
Batch vs.Streaming (online) data
WAL E Tt B Ak
Zot R
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GEOMETRIC CLUSTERING



Two Types of Clustering

Flat
clustering

Hierarchical
clustering

—>

—

o€

“2-clustering”

includes k-clusterings for all k




How is the data presented

« Batch
n data point, all at once
(can store all of them in memory)

e Online/streaming
n or endless data point, one at once
(o(1) or o(n) memory, can NOT store all of them)

Molecular dynamics data is online/streaming in nature!



K-center vs. K-means

Input: Data set X C RP, desired # of clusters k
Goal: Summarize data using a few representatives C = {c,, c,, ..., ¢,} C RP, to
minimize overall distortion.

The distortion on a particular x is d(x,C) = min{|[x—c||: cin C}

Max distortion (k-center) Average distortion (k-means)
max {d(x,C): x in X} sum {d(x,C)?: x in X}
o ° o °
- o - ()
L [
o] ¢ [ ] ¢
[ J o}
o ’ ¢ (8] ’ ¢
° ®
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A Greedy Algorithm for K-center

Farthest-first traversal eg. k=4
[Gonzalez, 1985]
Input: data set X, integer k

Pick any x in X and set C = {x}
fori=2tok:
find x in X with largest d(x,C)
add xto C
return centers C

Claim: cost(C) < 2 OPT

Proof:

(i) Let x be the point in X that is farthest from C; and let R = d(x,C). Thus cost(C) = R.
(ii) The k+1 points C U {x} are all at distance > R from each other.

(iii) Any k-clustering must put two of these points in the same cluster; and this cluster
must therefore have radius > R/2. Therefore OPT > R/2.



K-center JL{A 14 it

K-centerE i\, T # A (0] [ —~epsilon-net

— Any two points in C are R-distance away

— Points in C form a R-cover of sample space
ST B = 45 1)

K-center is NP-hard, but greedy algorithm is O(kn)

K-center{£ISOMAP(TdL’2000, Science) ' # % /H, Tk
Landmark#i A

Molecular dynamics application [Sun, Y, Huang, et al. JPC, 09]
=
— XPREASR [A]70 % ¥ outlierflinoise Lb 1 U



Approximability of K-center

Upper bounds [Gonzalez, 1985]

Farthest-first traversal achieves factor 2 approximation for data in any metric
space.

Lower bounds [Feder and Greene, 1988]

Unless P = NP, no polynomial time algorithm achieves a factor:
better than 2 in a metric space
better than 1.82 in Euclidean space

Open problems:
1. Close the gap in the Euclidean case.
2. Other algorithms that are better in practice than farthest-first traversal?



A Greedy Algorithm for K-means

A stochastic farthest-first traversal

kmeans++
[Arthur and Vassilvitskii, 2006] °
Input: data set X, integer k

Pick x in X at random, set C = {x} ¢
fori=2tok: o

pick x in X at random, with
probability o< d(x,C)?

add xto C

return centers C
Claim: E[cost(C)] < O(log k) - OPT



A Constant-factor Approximation

local search
[Kanungo et al, 2003] .
Input: data set X, integer k

Pick initial centers C arbitrarily from X
while dcin C, xin X with

cost(C — {c} + {x}) < cost(C): o
C=C—-{c}+{x} ¢
return C

Claim: cost(C) <50 - OPT



Complexity of K-means

Upper bounds [Inaba et al, 1989]

Can solve optimally in time O(n*d), where
n = number of points
d = dimension

Lower bounds [D. et al, 2009; Mahajan et al, 2009]
NP-hard in the following cases:

k=2, arbitrary d

d = 2, arbitrary k

Open problems:
1. Better approximation algorithms?
2. Hardness of approximation results?



Hierarchical Clustering

1-clustering

2-clustering

3-clustering
‘ _‘ 4-clustering

S5-clustering
1 2 3 4 5

Popular form of data analysis:
No need to specify number of clusters
Can view data at many levels of granularity, all at the same time
Simple greedy agglomerative heuristics for constructing these clusterings



A Basic Existence Problem

The whole enterprise of hierarchical clustering could use some more
justification.

& D& D& %

Must there always exist a hierarchical clustering which is close to optimal at
every level of granularity, simultaneously? [such that for all k, the induced k-
clustering is close to the best k-clustering?]



Hierarchical K-center

° X,

PY ® X5

level -1

level O

Build online! When new point x arrives: level 1
1. Find largest j such that x is within
dist 1/2 of some node p at level

2. Make x a child of p X3 level 2



Hierarchical K-center: Complexity

lev 2
X3 °ox, ox, ox X,

Claim: For any k, consider the lowest level with < k nodes, and let C, be those
nodes. Then cost(C,) < 8 OPT,.
Proof: (Suppose it is level j.) C/’s children are within 1/2i of it, and its grandchildren
are within 1/2) + 1/21*1 of it, and so on. Therefore:

cost(Ck) < 1/21 + 1/2*1 + 1 /212 + | < 1/2)1
Meanwhile, level j+1 has > k+1 nodes, at dist > 1/2i*1 from each other. Any k-
clustering puts two of these in the same cluster, and thus has radius > 1/2/*2,




Hierarchical Clustering: Open Problems

1. Hierarchical k-center: closing the gap
Upper bound: we have a factor 8 approximation. Can we do better?
Two sources of lower bounds:
Hardness of approximation of k-center (factor of 2)
Hierarchical incompatibility of optimal k-clusterings (factor of 2?)
Can these be combined to give a lower bound greater than 2?

2. Hierarchical k-means

Good algorithms for this?



Clustering online/streaming data

Online

Streaming

Endless stream of data
Fixed amount of memory
Tested at every time step
Each point is only seen once

Stream of (known) length n
Memory is o(n), e.g. sgrt(n)
Tested only at the very end
More than one pass may be possible



Online K-center

For each new point x that arrives:
Find largest j such that x is within dist 1/2) of some node p at level j
Make x a child of p

Problem: requires O(n) space — all points are stored

Solution: only maintain levels upto the first level j with > k nodes

Open problem: online k-means.



Online K-center Implementation

e Cover Tree

4 ; v) | g ‘ ' i ) ([} http://hunch.net/~jl/projects/cover_tree/cover_tree.html

Most Visited ¥ Getting Started Latest Headlines http:/ /fedex.com/us...

Cover Tree for Nearest Neighbor calculations

Alina Beygelzimer, Sham Kakade, and John Langford, Cover Trees for Nearest Neighbor, ICML 2006. Video

A longer version and experimental results addendum
Thomas Kollar found a small bug in the insert algorithm description. This doesn't appear in the code because the code uses a batch insert

A Cover Tree is a datastructure helpful in calculating the nearest neighbor of points given only a metric. A cover tree is particularly moti
1. The running time of a nearest neighbor query is only O(log(n)) given a fixed intrinsic dimensionality. (like KR2002 and K1.04)

2. The space usage and query time are O(n) under no assumptions. (like the naive approach, sb(s), and ball trees)
3. It's remarkably fast in practice.

code (v1) (Under LGPL/GPL license), templated code (v2), datasets, and sparse datasets (This is version 2, the templated version with bo

cover tree code faq.
William Zeller created a demo showing how the cover tree works in two dimensions. (The demo requires java and apparently only works

Gordon Rios notes a few details on porting to a Mac.




Streaming K-means: I

Strategy #1: divide and conquer. Divide stream S into p groups S, ..., S,

[Guha et al 03] foreachi=1, 2, ..., p:

Start with approx alg KM for weighted KM(S,) yields centers C, = {c,, ..., C;}

k-means: each point x has a weight and clusters S,,, ..., S, C S,

w(x) and cost of k-clustering C is: S\ = {all ¢;}, with weights w(c;) = |S; |
cost(C) = sum{ w(x) d(x,C)? } return KM(S,,)

huge data stream S

v v v '
S, S, S, S,
KM § ' ' '
C, C\ ; C,
SW

Space requirements: | Claim: If KM is a b-approximation,
O(n/p) + O(kp) c the overall scheme is a (6b + 4b?)
eg. choose p = sqrt(n/k). approximation




Streaming K-means: I (bicriterion)

Bicriterion version:

An (a,b)-approximation for k-means
yields ak centers with cost at most
b times that of the best k-means

solution.

Claim: If KM1 is an (a,b)-approximation
and KM2 is an (a’,b’)-approximation, the
overall scheme is an (a’, 2b + 4b’(b+1))
approximation.

huge data stream S

v

S;3

KM1

O fe=—  |e=—

'
S,
!

C

N/

-}

S

w
kM2 §
C

Even if KM1, KM2 are perfect,
the approximation factor is 10.
Open problem: improve this!



Streaming K-means: I1

Strategy #2: random sampling.
[Indyk 99]

Assume we have an (a,b)-approx alg KM.

Pass 1: All large clusters are
S’ = random subset of S, of size s sufficiently sampled in

C’ = KM(S) l §’, and covered by C’

Pass 2:
S”” = (8kn/s) log (k/6) points farthest from C’
C” =KM(S”)

Now pick up all points
not adequately covered
by C’

returnC’ U C”

Claim: With probability > 1- 4, this is a (2a, 2(b + 1)(1+ 4/4)) approximation.



Hierarchical Agglomerative Clustering

Building a hierarchical clustering:
1. Start with each data point in its own cluster.
2. Repeatedly merge two “closest” clusters.

Notion of distance between clusters: ]

Single linkage © o
closest pair of points
Complete linkage
furthest pair of points o
Average linkage — several variants .
(i) distance between centers
(i) average pairwise distance
(ii) Ward’s method: increase in k-means cost
due to merger



Guarantees for Agglomerative Clustering

Complete linkage has underlying k-center cost function.

Approximability characterization: for all k, the induced k-clustering is within
factor a(k) of the optimal k-center solution... what is a(k) ?

Claim: [Dasgupta 09] k < a(k) < k*log3
[Recall: cover tree has a(k) = 8.]

Open Problem: Ward’s method of average linkage has the underlying k-
means cost function... what is its approximation ratio?



Statistical Theory for Clustering

I. Consistency of K-means

II. Density Cluster Tree and Consistency of Single-linkage



Consistency of K-means

Suppose data D ={X:: I1=1,...,n} is drawn iid from an underlying distribution P.
Let C, be the optimal k-means centers with respect to P.
Let C,, be the optimal k-means centers for D.,.

Claim: [Pollard 81] If G, is unique for 1<j<k,then dist(Ck,Cnk)->0 a.s.

Here dist(S,T) = maxmian - tH
seS teT

Issues:
1. G, is NP-hard to compute.
2. Is C, something truly useful?



Density Cluster Tree

For any density p(x), consider the super-level set {x: p(x) =
r} and let C, be the connected components of this super-
level set.

Claim: [Hartigan 81] If r = s,then C, C C,, ie Hierarchical clustering
with tree structure.




Which clustering converges to Cluster Tree

Robust Single Linkage: Build a neighborhood graph G,
nodes {X},
edges {(i,)): dist(X;, X;) =r},
discard nodes with degree < c log n,

Let C,, be the connected components of such a graph.

Claim: [Stuetzle 03, Zhou-Wong 08] C,,, converges to density cluster
tree.

In fact: this is equivalent to the 1-skeleton Rips complex with
persistent 0-homology, a special case in computational
topology.

Other methods: Witness complex?
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