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Abstract—This paper exploits the properties of the commute time between nodes of a graph for the purposes of clustering and

embedding and explores its applications to image segmentation and multibody motion tracking. Our starting point is the lazy random walk

on the graph, which is determined by the heat kernel of the graph and can be computed from the spectrum of the graph Laplacian. We

characterize the random walk using the commute time (that is, the expected time taken for a random walk to travel between two nodes and

return) and show how this quantity may be computed from the Laplacian spectrum using the discrete Green’s function. Our motivation is

that the commute time can be anticipated to be a more robust measure of the proximity of data than the raw proximity matrix. In this paper,

we explore two applications of the commute time. The first is to develop a method for image segmentation using the eigenvector

corresponding to the smallest eigenvalue of the commute time matrix. We show that our commute time segmentation method has the

property of enhancing the intragroup coherence while weakening intergroup coherence and is superior to the normalized cut. The second

application is to develop a robust multibody motion tracking method using an embedding based on the commute time. Our embedding

procedure preserves commute time and is closely akin to kernel PCA, the Laplacian eigenmap, and the diffusion map. We illustrate the

results on both synthetic image sequences and real-world video sequences and compare our results with several alternative methods.

Index Terms—Commute time, clustering, embedding, spectral graph theory, image segmentation, motion tracking.

Ç

1 INTRODUCTION

GRAPH spectral methods have played an important role in
the image segmentation and data clustering literature

[2], [24], [26], [27], [31], [37]. Spectral graph theory [4] is
concerned with characterizing the structural properties of
graphs using information conveyed by the eigenvalues and
eigenvectors of the Laplacian matrix (the degree matrix
minus the adjacency matrix). One of the most important tasks
that arise in the analysis of graphs is that of how information
diffuses with time across the edges connecting nodes. This
process can be characterized using the heat equation [20]. The
solution of the heat equation, or heat kernel, can be found by
exponentiating the Laplacian eigensystem with time. The
heat kernel contains a considerable amount of information
concerning the distribution of paths on the graph. For
instance, it can be used to compute the lazy random walk
on the nodes of the graph, since the lazy random walk is the
limit of the heat kernel in the continuous time limit. It may
also be used to determine hitting times or commute times
under the random walk between pairs of nodes. The hitting
time Oðu; vÞ of a random walk on a graph is defined as the
expected number of steps before node v is visited, commen-
cing from node u. The commute time CT ðu; vÞ, on the other
hand, is the expected time for the random walk to travel from
node u to reach node v and then return. An alternative but
closely related characterization of the graph is the discrete

Green’s function (or pseudoinverse of the Laplacian), which
captures the distribution of sources in the heat flow process.
Not surprisingly, there is a direct link between commute
times and the Green’s function [5].

The aim of this paper is to explore whether commute time
can be used as a means of data clustering and embedding. The
intuition that motivates this study is that since commute time
reflects the combined effect of all possible weighted paths
between a pair of nodes, it is more robust to structural
disturbance. Hence, the commute time can lead to a measure
of cluster cohesion that is less sensitive to edge deletions and
insertions than the simple use of edge weight alone, which
underpins algorithms such as the normalized cut [37].
Specifically, the affinity of nodes conveyed by commute time
is large for pairs of nodes residing in a cluster and small for
those falling outside the cluster. It has been shown [42] that
the reason that some methods succeed in solving the
grouping problem is because they lead to an affinity matrix
with a strong block structure. In fact, this block structure can
be further amplified by the commute times [11].

1.1 Related Literature

We will explore two applications of commute time: The first
of these is for image segmentation and, the second, is for
multibody motion tracking. In this section, we review the
related literature.

1.1.1 Segmentation, Clustering, and Embedding

There are two quantities that are commonly used to define the
utility in graph-theoretic methods for grouping and cluster-
ing. The first of these is the association, which is a measure
of total edge linkage within a cluster and is useful in
defining clump structure. The second is the cut, which is a
measure of linkage between different clusters and can be used
to split extraneous nodes from a cluster. Several methods use
eigenvectors to extract clusters. Some of the earliest work was
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done by Scott and Longuet-Higgins [36] who developed
a method for refining the block structure of the affinity
matrix by relocating its eigenvectors. At the level of image
segmentation, several authors have used algorithms based
on the eigenmodes of an affinity matrix to iteratively segment
image data. For instance, Sarkar and Boyer [34] have a method
that uses the leading eigenvector of the affinity matrix and
this locates clusters that maximize the average association.
This method is applied to locating line-segment groupings.
Perona and Freeman [30] have a similar method that uses the
second largest eigenvector of the affinity matrix. The method
of Shi and Malik [37], on the other hand, uses the normalized
cut, which balances the cut and the association. Clusters are
located by performing a recursive bisection using the
eigenvector associated with the second smallest eigenvalue
of the Laplacian, that is, the Fiedler vector. A random walk
view of this method is given by Shi and Meil�a [24]. They
interpreted the pairwise similarities as edge flows in a
Markov random walk and have shown how spectral
clustering methods can be explained in a probabilistic way.
Focusing more on the issue of postprocessing, Weiss [42] has
shown how this and other closely related methods can be
improved using a normalized affinity matrix. Pavan and
Pelillo [28], [29] have shown how the performance of this
method can be improved using a finer measure of cluster
cohesion based on dominant sets. More recently, Lafon et al.
[22], [25] have shown how the diffusion map can be used to
accommodate path-length variation and have used the map
for scale-dependent clustering. Zass and Shashua [44] show
how to provide a probabilistic interpretation for spectral
clustering [42] by developing a completely positive factoriza-
tion scheme.

Spectral embedding plays an important role in dimension-
ality reduction literature. It typically commences with an
affinity matrix computed from the distances between pairs of
data points. This data representation is characterized using
the eigenspectrum affinity matrix, often using one or just a
few eigenvectors. For example, principal components analy-
sis (PCA) [17] and kernel principal component analysis
(KPCA) [35] use the leading eigenvectors of the covariance
matrix to determine the projection directions with maximal
variance. Multidimensional scaling (MDS) [21] uses the
eigenvectors of a pairwise distance matrix to find an
embedding of the data that minimizes the stress. As an
extension, the isometric feature mapping (Isomap) [41]
employs MDS to preserve the geodesic distances between
data points located on a manifold. Locally linear embedding
(LLE) [32] maps the input data to a lower dimensional space
in a manner that preserves the local neighborhood. Similar
ideas to those developed later on in this paper are used in the
study by Saerens et al. [33]. Here, the commute time is taken as
a distance measure for nodes in the graph and embedding of
the nodes is performed in a variance preserving manner
similar to PCA. The evaluation of the method is confined to
visualizing relatively small graphs. The differences between
our work and that of Saerens et al. are threefold. First, Saerens
et al. introduce the commute time in a traditional way using a
Markov random walk model, whereas our approach is posed
as a diffusion process on the graph and generalizes the
computation of commute time using the normalized Lapla-
cian and the Green’s function. Second, Saerens et al. have
shown that the commute time-preserving embedding is
equivalent to a PCA of the graph, and taking commute time as

a kernel matrix, they compared it with five alternative graph
kernels [12]. In our work here, we go further to explore and
study the advantages of the commute time embedding over
existing manifold embedding methods including the Lapla-
cian eigenmap [3] and the diffusion map [6]. Third, most
importantly, in our experiments, we show how computer
vision problems such as image segmentation and motion
tracking can be cast into a commute time embedding
framework and solved effectively.

1.1.2 Factorization Methods for Motion Analysis

As a second and more demanding application, we consider
the multibody motion tracking problem. Multibody motion
tracking is a challenging problem that arises in shape from
motion, video coding, the analysis of movement, and
surveillance. One of the classical techniques is the factoriza-
tion method of Costeira and Kanade [7], [8]. The basic idea
underpinning this method is to use singular value decom-
position (SVD) to factorize the feature trajectory matrix into
a motion matrix and a shape matrix. The shape interaction
matrix is found by taking the self outer product of the right
eigenvector matrix and can be used to identify the
independently moving objects present. Gear [13] has
developed a related method based on the reduced row
echelon form of the matrix and object separation is achieved
by performing probabilistic analysis on a bipartite graph.
Both methods work well in the ideal case when there is no
noise (that is, feature-point jitter) and outliers are not
present. However, real-world image sequences are usually
contaminated by these two types of noise. There have been
several attempts to overcome this problem. For instance,
Ichimura [18] has improved the factorization method by using
a discriminant criterion to threshold-out noise and outliers.

Rather than working with an affinity matrix derived from
the data, some researchers place the emphasis on the original
data. Kanatani et al. [19], [39], [40] developed a subspace
separation method by incorporating dimension correction
and model selection. Wu et al. [43] argue that the subspaces
associated with the different objects are not only distinct but
also orthogonal. They hence employ an orthogonal subspace
decomposition method to separate objects. This idea is
further extended by Fang et al. who use independent
subspaces [10] and multiple subspace inference analysis [9].
In addition to attempting to improve the behavior of the
factorization method under noise, there has been a consider-
able effort aimed at overcoming problems such as degen-
eracy, uncertainty, and missing data [1], [14], [45].

The factorization method is clearly closely akin to graph-
spectral methods used in clustering, since it uses eigenvector
methods to determine the class affinity of sets of points. In fact,
Weiss [42] has presented a unifying view of spectral clustering
techniques, and this includes the factorization method. There
has been some concerted effort devoted to solving the object
separation problem using spectral clustering methods. Park
et al. [27] have applied a multiway min-max cut clustering
method to the shape interaction matrix. Here, the shape
interaction matrix is used as a cluster indicator matrix and
noise compensation is effected using a combination of
spectral clustering and subspace separation techniques.

1.2 Contribution

The aim of this paper is twofold: First, we aim to review the
main results from the spectral graph theory that relate to the
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definition of commute time. With these definitions at hand,
we explore the properties of commute time for the purposes
of spectral clustering and embedding. Although, as we will
show later, embedding is more efficient, the spectral
clustering process is important since it is closely linked to
the normalized cut. The embedding coordinate matrix is
found by premultiplying the transpose of the Laplacian
eigenvector matrix with the inverse square root of the
eigenvalue matrix. Under the embedding, nodes that have
small commute time are close and those that have a large
commute time are distant. This allows us to separate the
objects in the embedded subspace by applying simple
techniques such as K-Means clustering. There are of course
many graph-spectral embedding algorithms reported in the
literature, and recent and powerful additions include KPCA
[35], the Laplacian eigenmap [3], and the diffusion map [6].
We explore the relationship of the commute time embed-
ding to these alternatives.

With the mathematical framework in place, we then
explore two applications of commute time to problems in
computer vision. The first application is that of image
segmentation. Here, we suggest the use of commute time as
an alternative to the use of edge weight information alone for
the purposes of pairwise clustering. The aim in the second
application reported in this paper is to explore whether an
embedding based on commute time can be used to solve the
problem of computing the shape interaction matrix in a robust
manner. We use the shape interaction matrix Q as a data-
proximity weight matrix and compute the associated Lapla-
cian matrix (the degree matrix minus the weight matrix).

The outline of the paper is as follows: In Section 2, we
review the definitions of commute time and its links to the
Laplacian spectrum. Section 3 discusses the commute time
embedding and explores its links with the diffusion map
and KPCA. Section 4 sets up the two applications studied in
the paper. Experiments are presented in Section 5. Finally,
Section 6 offers some conclusions and offers directions for
future investigation.

2 GRAPH LAPLACIAN, HEAT KERNEL, GREEN’S
FUNCTION, AND THE COMMUTE TIME

Commute time is a concept from spectral graph theory that
has close links with the graph Laplacian, the heat kernel,
and random walks on a graph. In the following sections, we
review how to compute commute time and describe the
relationships to the graph Laplacian and the heat kernel.
The material presented in this section provides the
prerequisites for our study and is a summary of results
obtained by Chung and Yau [5].

2.1 Graph Laplacian and Heat Kernel

We denote a weighted graph by the triple � ¼ ðV ;E;�Þ,
where V is the set of nodes, E � V � V is the set of edges,
and � is the weighted adjacency matrix

�ðu; vÞ ¼ wðu; vÞ ifðu; vÞ 2 E
0 otherwise;

�

where wðu; vÞ is the weight on the edge ðu; vÞ 2 E. Further,
let T ¼ diagðdu;u 2 V Þ be the diagonal weighted degree
matrix with elements given by the degrees of the nodes
du ¼

PjV j
v¼1 wðu; vÞ. The unnormalized weighted Laplacian

matrix is given by L ¼ T � �, and the normalized weighted

Laplacian matrix is defined to be L ¼ T�1=2LT�1=2 and has
elements

L�ðu; vÞ ¼
1 if u ¼ v
� wðu;vÞffiffiffiffiffiffiffi

dudv
p if u 6¼ v and ðu; vÞ 2 E

0 otherwise:

8<
:

The spectral decomposition of the normalized Laplacian is

L ¼ �0�0�0T , where �0 ¼ diagð�01; �02; . . . ; �0jV jÞ is the diag-

onal matrix with the ordered eigenvalues as the elements

satisfying the condition 0 ¼ �01 � �02 . . . � �0jV j, and �0 ¼
ð�01j�02j . . . j�0jV jÞ is the matrix with the ordered eigenvectors

as columns. The corresponding eigendecomposition of the

unnormalized Laplacian matrix is L ¼ ���T .
In spectral clustering, both the normalized Laplacian and

the unnormalized Laplacian have been used for partitioning
data. For instance, the ratio cut [15] uses the unnormalized
Laplacian, and the normalized cut [37] uses the normalized
Laplacian. The difference lies in the cutting criterion used.
Both methods aim at minimizing the weighted edge cut
between clusters. The ratio cut only balances the number of
vertices, whereas the normalized cut balances the volume of
each class. The latter criterion has been demonstrated to yield
a better performance.

Commute time is a property of a diffusion process on a
graph. Diffusion is governed by the heat equation—the
partial differential equation @Ht

@t ¼ �LHt, where Ht is the
heat kernel, and t is time. The solution of the heat equation
is found by exponentiating the Laplacian eigenspectrum,
that is,

Ht ¼ exp½�tL� ¼ exp �t�0�0�0T
� �

¼ exp �0ð�t�0Þ�0T
� �

: ð1Þ

Let A be a symmetric n� n diagonizable matrix with
eigendecomposition A ¼MEMT , where E is the diagonal
matrix whose elements are the ordered eigenvalues of A
and M is the matrix with the ordered unit eigenvectors
of A as columns satisfying the condition MTM ¼ I. From
the MacLaurin expansion exp½A� ¼ I þAþ ð1=2ÞA2 þ . . .þ
ð1=N !ÞAN þ . . . and using the fact that AN ¼MENMT , it
follows that exp½A� ¼M exp½E�MT . Therefore, we have
Ht ¼ �0 exp½�t�0��0T . As a result, the heat kernel is a
jV j � jV j matrix, and for the nodes u and v of the graph
�, the element of the matrix is

Htðu; vÞ ¼
XjV j
i¼1

exp½��0it��0iðuÞ�0iðvÞ:

2.2 Green’s Function

Now, consider the discrete Laplace operator � ¼ T�1=2LT 1=2.
The Green’s function is the left inverse operator of the Laplace
operator �, defined by G�ðu; vÞ ¼ Iðu; vÞ � dv

vol , where vol ¼P
v2V dv is the volume of the graph and I is the jV j � jV j

identity matrix. The Green’s function of the graph is related to
the heat kernel Ht and has elements given by

Gðu; vÞ ¼
Z 1

0

d1=2
u Htðu; vÞ � �01ðuÞ�01ðvÞ
� �

d�1=2
v dt; ð2Þ

where �01 is the eigenvector associated with the zero
eigenvalue, that is, �01 ¼ 0 of the normalized Laplacian
matrix, and whose kth element is �01ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dk=vol

p
. Further-

more, the normalized Green’s function G ¼ T 1=2GT�1=2 is
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given in terms of the normalized Laplacian spectrum (see
[5, p. 6]) as

Gðu; vÞ ¼
XjV j
i¼2

1

�0i
�0iðuÞ�0iðvÞ; ð3Þ

where �0 and �0 are the eigenvalue and eigenvectors of the
normalized Laplacian L. The corresponding Green’s function
of the unnormalized Laplacian �G is given by

�Gðu; vÞ ¼
XjV j
i¼2

1

�i
�iðuÞ�iðvÞ; ð4Þ

where �i and �i are the eigenvalue and eigenvectors of the
unnormalized Laplacian L.

The normalized Green’s function is hence the pseudoin-
verse of the normalized Laplacian L. Moreover, it is straight-
forward to show that GL ¼ LG ¼ I � �01�0

T
1 , and, as a result,

ðLGÞðu; vÞ ¼ �ðu; vÞ �
ffiffiffiffiffiffiffi
dudv
p

vol . From (3), the eigenvalues of L
and G have the same sign, and L is positive semidefinite and,
so, G is also positive semidefinite. Since G is also symmetric
(see [5, p. 4]), it follows that G is a kernel. The same applies to
the unnormalized Green’s function �G.

The relationship between G, �G, and G can be obtained if
we consider an induced subgraph �S of the original graph �.
If �S is connected, �, L, and L are nonsingular (see [4])
and we have the relationship G� ¼ �GL ¼ GL ¼ I between
the normalized and unnormalized Laplacians and their
corresponding Green’s functions. From the fact that � ¼
T�1=2LT 1=2 and L ¼ T�1=2LT�1=2, then � ¼ T�1L. As a
result, we have G� ¼ GT�1L ¼ �GL and, as a consequence,
�G ¼ GT�1. Making use of the fact that G ¼ T 1=2GT�1=2, we

have that G ¼ T�1=2GT 1=2 and we then obtain

�G ¼ GT�1 ¼ T�1=2GT 1=2T�1 ¼ T�1=2GT�1=2: ð5Þ

2.3 Commute Time

We note that the hitting time Oðu; vÞ of a random walk on a
graph is defined as the expected number of steps before
node v is visited, commencing from node u. The commute
time CT ðu; vÞ, on the other hand, is the expected time for the
random walk to travel from node u to reach node v and then
return. As a result, CT ðu; vÞ ¼ Oðu; vÞ þOðv; uÞ. The hitting
time Oðu; vÞ is given by [5]

Oðu; vÞ ¼ vol
dv
Gðv; vÞ � vol

du
Gðu; vÞ;

where G is the Green’s function given in (2). Therefore, the

commute time is given by

CT ðu; vÞ ¼ Oðu; vÞ þOðv; uÞ

¼ vol
du
Gðu; uÞ þ vol

dv
Gðv; vÞ � vol

du
Gðu; vÞ � vol

dv
Gðv; uÞ

ð6Þ

or, using the unnormalized Green’s function, as

CT ðu; vÞ ¼ vol �Gðu; uÞ þ �Gðv; vÞ � 2 �Gðu; vÞ
� �

: ð7Þ

As a consequence of (7), the commute time is a metric on

the graph. The reason for this is that, if we take the elements

of G as inner products defined in a euclidean space, CT will

become the norm satisfying kxu � xvk2 ¼< xu � xv; xu �
xv >¼< xu; xu > þ < xv; xv > � < xu; xv > � < xv; xu > .

Substituting the spectral expression for the Green’s
function into the definition of the commute time, it is
straightforward to show that in terms of the eigenvectors of
the normalized Laplacian

CT ðu; vÞ ¼ vol
XjV j
i¼2

1

�0i

�0iðuÞffiffiffiffiffi
du
p � �

0
iðvÞffiffiffiffiffi
dv
p

� 	2

: ð8Þ

On the other hand, taking (4) into (7), the commute time
can then be expressed using the eigensystem of the
unnormalized Laplacian as

CT ðu; vÞ ¼ vol
XjV j
i¼2

1

�i
ð�iðuÞ � �iðvÞÞ2: ð9Þ

3 COMMUTE TIME EMBEDDING

The commute time embedding is a mapping from the data
space into a Hilbert subspace, which preserves the original
commute times. It has some properties similar to existing
embedding methods including PCA, the Laplacian eigen-
map [2], [3] and the diffusion map [22], [25]. In this section,
we will first introduce the commute time embedding, and
then, we compare it with alternative embedding methods.
Some embedding examples are illustrated and the robust-
ness of the embedding is also discussed.

3.1 Basics

Equation (8) can be rewritten in the following form, which
makes the relationship between the commute time and the
euclidean distance between the components of the eigen-
vectors explicit:

CT ðu; vÞ ¼
XjV j
i¼2

ffiffiffiffiffiffiffiffiffi
vol

�0idu

s
�0iðuÞ �

ffiffiffiffiffiffiffiffiffi
vol

�0idv

s
�0iðvÞ

 !2

: ð10Þ

Hence, the embedding of the nodes of the graph into a vector
space that preserves commute time has the coordinate matrix

	 ¼
ffiffiffiffiffiffiffi
vol
p

�0�1=2�0TT�1=2: ð11Þ

The columns of the matrix are vectors of embedding
coordinates for the nodes of the graph. The term T�1=2 arises
from the normalization of the Laplacian. If the commute time
is computed from the unnormalized Laplacian, the corre-
sponding matrix of embedding coordinates is

	 ¼
ffiffiffiffiffiffiffi
vol
p

��1=2�T : ð12Þ

The embedding is nonlinear in the eigenvalues of the
Laplacian. This distinguishes it from PCA and locality
preserving projection (LPP) [16], which are both linear. As
we will demonstrate in the next section, the commute time
embedding is just KPCA [35] on the Green’s function.
Moreover, it is also related to the Laplacian eigenmap since
it minimizes similar objective functions.

3.2 The Commute Time Embedding and Kernel PCA

Let us consider the unnormalized case above. Since the
Green’s function �G is the pseudoinverse of the Laplacian, it
discards the zero eigenvalue and the corresponding
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eigenvector ~1 of the Laplacian. The columns of the
eigenvector matrix are orthogonal, which means that the
eigenvector matrix � of �G satisfies �T~1 ¼~0. Hence,ffiffiffiffiffiffiffi
vol
p

��1=2�T~1 ¼~0, and this means that the data is centered.
As a result, the covariance matrix for the centered data is

Cf ¼ 		T ¼ vol��1=2�T���1=2 ¼ vol��1 ¼ vol� �G; ð13Þ

where � �G is the eigenvalue matrix of the unnormalized Green’s
function with eigenvalues ordered according to decreasing
magnitude down the diagonal. The kernel or Gram matrix of
the embedding is given by

K ¼ 	T	 ¼ vol���1=2��1=2�T ¼ vol���1�T ¼ vol �G; ð14Þ

which is just the Green’s function multiplied by a constant.
Hence, we can view the embedding as performing KPCA
on the Green’s function for the Laplacian.

3.3 The Commute Time Embedding and the
Laplacian Eigenmap

In the Laplacian eigenmap [2], [3], the aim is to embed a set of
points �X ¼ f�x1; �x2; . . . ; �xng from an Rl space into a lower
dimensional subspaceRm with the corresponding embedded
coordinate matrix Znxm ¼ ½z1jz2j . . . jzm�. The original data
points have a proximity weight matrix � with elements
�ðu; vÞ ¼ exp½�k�xu � �xvk2�. The aim is to find the embedding
that minimizes the objective function (see [2, p. 4])

� ¼
X
u;v

ZðuÞ � ZðvÞk k2�ðu; vÞ ¼ trðZTLZÞ; ð15Þ

where � is the edge weight matrix of the original data �X.
To remove the arbitrary scaling factor and to avoid

the embedding undergoing dimensionality collapse, the
constraint ZTTZ ¼ I is applied. The embedding problem
becomes

Z ¼ arg min
Z�T TZ�¼I

trðZ�TLZ�Þ: ð16Þ

The solution is given by the lowest eigenvectors of the
generalized eigenproblem

LZ ¼ �0TZ ð17Þ

and the value of the objective function corresponding to the
solution is �� ¼ trð�0Þ.

For the commute time embedding, the objective function
minimized is

�0 ¼
P

u;v ZðuÞ � ZðvÞk k2�ðu; vÞPm
v¼1

Pn
u¼1 Zðu; vÞ2du

¼ tr ZTLZ

ZTTZ

� 	
: ð18Þ

To show that we achieve the same minimum, let Z ¼ 	T ¼
ð
ffiffiffiffiffiffiffi
vol
p

�0�1=2�0TT�1=2ÞT , we have

�0 ¼ tr
ffiffiffiffiffiffiffi
vol
p

�0�1=2�0TT�1=2LT�1=2�0�0�1=2
ffiffiffiffiffiffiffi
vol
pffiffiffiffiffiffiffi

vol
p

�0�1=2�0TT�1=2TT�1=2�0�0�1=2
ffiffiffiffiffiffiffi
vol
p

 !

¼ tr �0�1=2�0TL�0�0�1=2

�0�1=2�0T�0�0�1=2

� 	

¼ tr �0�1=2�0�0�1=2

�0�1

� 	
¼ trð�0Þ ¼ ��:

ð19Þ

Hence, the commute time embedding not only aims to
maintain proximity relationships by minimizing

P
u;v

kZðuÞ � ZðvÞk2�ðu; vÞbut also aims to assign large coordinate
values to nodes (or points) with a large degree (that is, it
maximizes

Pm
v¼1

Pn
u¼1 Zðu; vÞ2du). Nodes with a large degree

are the most significant in a graph since they have the largest
number or total weight of connecting edges. In the commute
time embedding, these nodes are farthest away from the
origin and are hence unlikely to be close to one-another.

Finally, we note that the objective function appearing in
(18) is identical to that used in the normalized cut. To show
this, let ~� be an N ¼ jV j dimensional binary indicator vector,
which determines to which component of the bipartition a
node belongs. The minimum value obtained by the normal-
ized cut [37] is

~�1 ¼ arg min
~�TT1¼0

~�T ðT� �Þ~�
~�TT~�

: ð20Þ

Hence, comparing with (18), it is clear that the objective
function minimized by the commute time embedding is
exactly the same as that minimized by the normalized cut,
provided that the eigenvectors are scaled by the inverse of
the corresponding nonzero eigenvalues. In the bipartition
case, this does not make any difference since scaling will
not change the distribution of the eigenvector components.
However, in the multipartition case, the scaling differenti-
ates the importance of different eigenvectors. From (9), it is
clear that the eigenvector corresponding to the smallest
nonzero eigenvalue contributes the greatest amount to the
sum. Moreover, it is this eigenvector or Fiedler vector that is
used in the normalized cut to bipartition the graphs
recursively. In the case of the commute time embedding,
the scaled eigenvectors are used as projection axes for the
data. As a result, if we project the data into the commute
time embedding subspace, the normalized cut bipartition
can be realized by simply dividing the projected data into
two along the axis spanned by the Fiedler vector. Further
partitions can be realized by projecting and dividing along
the axes corresponding to the different scaled eigenvectors.

In Fig. 2, we compare the result of embedding using the
Laplacian eigenmap (Fig. 2a) and the commute time embed-
ding (Fig. 2b) on the planar graph shown in Fig. 1. The original
graph is constructed by connecting two randomly generated
planar graphs with two edges. The graph is unweighted. We
project the nodes of the graph onto the plane spanned by the
two principal eigenvectors of the mapping. In the figure, it is
clear that both embeddings maintain the original graph
structure and that the two original graphs are well separated.
However, compared to the Laplacian embedding, the points
in the two original graphs are more densely distributed by the
commute time embedding. In fact, in the case of the commute
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Fig. 1. Original planar graph.



time embedding, the two original graphs are embedded in
two orthogonal planes.

3.4 The Commute Time and the Diffusion Map

Finally, it is interesting to note the relationship with the
diffusion map embedding of Lafon et al. [22], [25]. The
method commences from the random walk on a graph that
has transition probability matrix P ¼ T�1�, where � is the
adjacency matrix. AlthoughP is not symmetric, it does have a
right eigenvector matrix 
, which satisfies the equation

P
 ¼ �P
: ð21Þ

Since P ¼ T�1� ¼ T�1ðT � LÞ ¼ I � T�1L, as a result,

ðI � T�1LÞ
 ¼ �P
;

T�1L
 ¼ ðI � �P Þ
;
L
 ¼ ðI � �P ÞT
;

ð22Þ

which is identical to (17) if Z ¼ 
 and �0 ¼ I � �P . The
embedding coordinate matrix for the diffusion map is
	D ¼ �t

P
T , where t is real. For the embedding, the diffusion
distance between a pair of nodes is D2

t ðu; vÞ ¼
Pm

i¼1ð�P Þ
2t
i

ð iðuÞ �  iðvÞÞ2. Summing the distance over the possible
discrete time steps on the graph, we have

X1
t¼0

D2
t ðu; vÞ ¼

X1
t¼0

Xm
i¼1

ð�P Þ2ti  iðuÞ �  iðvÞð Þ2: ð23Þ

Making use of the property of the power series thatP1
t¼0ð�P Þ

2t
i ¼ 1

1�ð�P Þi
, we have

X1
t¼0

D2
t ðu; vÞ ¼

Xm
i¼1

1

1� ð�P Þi
 iðuÞ �  iðvÞð Þ2

¼
Xm
i¼1

1

�0i
 iðuÞ �  iðvÞð Þ2;

ð24Þ

which is identical to (9) up to a constant. As a result,
commute time is an integral of the diffusion map over all
time. This can be understood using random walks. When t
is small, the number of steps a random walk can take is
limited by t. Pairs of nodes on the graph can therefore only
be linked by relatively short paths, and diffusion takes place
only over a very local neighborhood. As t becomes large,
diffusion occurs over a larger area, and the random walk
takes more steps. As a result, the pairs of nodes become
linked by longer paths. In other words, as t goes from zero

to infinity, the diffusion map measures the connectivity of a
pair of nodes with a specific path length. Commute time, on
the other hand, is the sum of the diffusion distance over all
possible paths connecting a pair of nodes. An alternative
explanation can be provided using the expression for the
commute time in (6). Here, the commute time is computed
using the sum of the Green’s functions for the graph. From
(2), the Green’s function is an integral of the heat kernel and
can be used to compute the diffusion distance.

The diffusion map is designed to give a distance function
that reflects the connectivity of the original graph or point set.
The distance should be small if a pair of points is connected by
many short paths and this is also the behavior of the commute
time. The advantage of the diffusion map (or distance) is that
it has a free parameter t and this may be varied to alter the
properties of the map. The disadvantage is that when t is
small, the diffusion distance is ill posed. This can be explained
by the original definition of the diffusion distance for a
random walk asD2

t ðu; vÞ ¼ kptðu; �Þ � ptðv; �Þk
2
!, where! is the

weight. As a result, the distance between a pair of nodes
depends not only on the transition probability between the
nodes under consideration but also upon all of the remaining
nodes in the graph. Hence, if t is small, then the random walk
will not have propagated significantly and the distance will
depend only on very local information. There are also
problems when t is large. When this is the case, the random
walk converges to its stationary state with Pt ¼ T=vol (a
diagonal matrix) and this gives zero diffusion distance for all
pairs of distinct nodes. Therefore, it is critical to control t
carefully in order to obtain useful embeddings.

To illustrate the difficulty of selecting the correct diffusion
time t for clustering, we explore a simple example. Fig. 3a
shows a nonuniformly distributed set of points on a circle.
Here, the density function over the circle is as shown in Fig. 3b
and is a bimodal Gaussian mixture with respect to the angle
subtended at the center of the circle. From this data set, we
construct a graph �P with Gaussian weights !ðu; vÞ ¼
exp½�kXu �Xvk2=��, where X is the coordinate matrix, and
� is a scale parameter. We embed this graph into a vector
space (the diffusion space) using the diffusion map 	D ¼
�t
P
T with diffusion times t ¼ 1, 16, and 64. We then partition

the embedded points so that the distance between any two
points 	tðuÞ and 	tðvÞ (where 	tðuÞ is the uth column of the
matrix of embedding coordinates 	t for the diffusion map
with parameter t) in a given partition satisfies the condition
k	tðuÞ �	tðvÞk ¼ Dtðu; vÞ � �. The results of embedding
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Fig. 2. Graph embedding comparison. (a) Normalized Laplacian embedding. (b) Commute time embedding.



with different diffusion times are shown in Figs. 3c, 3d, and
3e, respectively. Here, the different colors indicate the
different partitions. When the diffusion time is small, as
shown in Fig. 3c, the diffusion distance between distinct pairs
of points gives rise to many partitions. As time increases,
these partitions begin to merge. The largest partitions
correspond to the regions of highest point density, as shown
in Fig. 3d. When the diffusion time t ¼ 64, two large partitions
are formed, corresponding to the two ideal components of the
Gaussian mixture density. However, if we continue to
increase t, these two partitions will merge into a single one
once t > 80. If we embed the same graph �P using the
commute time embedding, we obtain the result shown in
Fig. 3f. Without parameter tuning, the commute time
embedding gives the required bipartition of the data.

3.5 Some Embedding Examples

In Fig. 4, we show some examples of point configurations and
their commute time embeddings. The figure shows four
examples. In the left-hand panel for each example, we show
the original configuration of the points and in the right-hand
panel, we show the embedding. Here, we have computed the
proximity weight matrix � by exponentiating the euclidean
distance between points. The main features to note are the
following: First, the embedded points corresponding to the
same point clusters are cohesive, being scattered around
approximately straight lines in the subspace. Second, the

clusters corresponding to different objects give rise to straight
lines that are nearly orthogonal. This is due to the strong
block-diagonal structure of the affinity matrix (the commute
time matrix in this case). Ng et al. [26] have proposed an
embedding method using the row-normalized eigenvectors
of the affinity matrix. They have proved that in an ideal case,
all embedded points will reside on a k-dimensional unit
sphere, where k is equal to the number of eigenvectors
selected. Points belonging to the same cluster will be located
at the same position after normalization. However, if the
eigenvectors are not normalized (as in our case), points in the
same cluster will be distributed along a radius of the sphere,
hence maintaining orthogonality in the remaining clusters. In
an ideal case, where all the points in different clusters are
infinitely far apart, this gives a strong block-diagonal
structure of the affinity matrix.

From (12), we can see that the coordinates of the commute
time embedding depend on the eigenvalues and eigenvectors
of the Laplacian matrix. Hence, the stability of the embedded
coordinates depends on the stability of the eigenvalue and
eigenvector matrices. Although the variation of the eigenva-
lues can be bounded by the maximum and the minimum
eigenvalues of the perturbing matrix using Weyl’s theorem,
the eigenvectors are less stable under perturbation or even
differences in the implementation of the eigensolvers.
Fortunately, like all other spectral embedding methods, we
do not consider the (unstable) individual coordinates but,
instead, the subspace spanned by the scaled eigenvectors,
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Fig. 3. An embedding comparison between diffusion map and commute time. (a) Original circle. (b) Density of points on the circle. (c) Embedding

using diffusion map when t ¼ 1. (d) Embedding using diffusion map when t ¼ 16. (e) Embedding using diffusion map when t ¼ 64. (f) Embedding

using commute time.



which can be considerably more stable [26]. However, the
commute time matrix is likely to be relatively stable under
perturbations in graph structure. According to Rayleigh’s
Principle in the theory of electrical networks, commute time
can be neither increased by adding an edge or a node nor
decreased by deleting a single edge or a node. In fact, the
impact of deleting or adding an edge or a node to the
commute time between a pair of nodes is negligible if they are
well connected. As we will see later, in the application to
motion tracking, this property reduces the impact of outliers,
since once embedded, outliers will be excluded from the
object point clusters.

4 APPLICATIONS OF COMMUTE TIME

We explore two applications of commute time, namely, for
image segmentation and multibody motion tracking. In this
section, we set up the model ingredients needed for these
two applications.

4.1 Commute Time for Grouping

The idea underpinning our segmentation algorithm is to
use the spectrum of the commute time matrix for the
purposes of grouping. In the normalized cut method, the
eigenvector corresponding to the second smallest eigenva-
lue of the Laplacian matrix is utilized to bipartition data.
The method exploits the relatively uniform distribution of
the components in the smallest eigenvector.

For the purposes of comparison, here, we use the
eigenvector associated with the smallest eigenvalue of the
commute time matrix. As we have explained in Section 3.3, a
bipartition using commute time embedding does not outper-
form the normalized cut. However, the eigenvector corre-
sponding to the smallest eigenvalue of the commute time
matrix contains more information concerning cluster struc-
ture since the complete Laplacian eigenspectrum is taken into
account in computing the commute time matrix. Our
commute time algorithm consists of the following steps:

1. Given an image, or a point set, set up a weighted graph
� ¼ ðV ;E;�Þwhere each pixel, or point, is taken as a
node, and each pair of nodes is connected by an edge.

The weight on the edge is assigned according to the
similarity between the two node as follows:

a. For a point set, the weight between nodes u and
v is set to be �ðu; vÞ ¼ expð�dðu; vÞ=�xÞ, where
dðu; vÞ is the euclidean distance between two
points, and �x controls the scale of the spatial
proximity of the points.

b. For an image, the weight is

�ðu; vÞ ¼ exp
� Fu � Fvk k2

�I

� 	

� exp
� Xu�Xvk k2

�X


 �
if Xu �Xvk k2< r

0 otherwise;

(

ð25Þ

where Fu is either the intensity value at pixel u
for a brightness image or the vector of the red,
green, blue (RGB) value for a color image.

2. From the weight matrix �, we compute the
Laplacian L ¼ T � �.

3. Then, we compute the normalized Green’s function
using (3) and the eigenspectrum of the normalized
Laplacian L.

4. From (7), we compute the commute time matrix CT
whose elements are the commute times between
each pair of nodes in the graph �.

5. Use the eigenvector corresponding to the smallest
eigenvalue of the commute time matrix CT ðu; vÞ ¼
vol
PjV j

i¼2
1
�0i
ð�
0
iðuÞffiffiffiffi
du
p � �0iðvÞffiffiffiffi

dv
p Þ2 to bipartition the weighted

graph.
6. Decide if the current partition should be subdivided,

and recursively repartition the component parts if
necessary.

The major computational overhead in our method arises
from Step 3, that is, the computation of the normalized Green’s
function and Step 5, that is, computation of the eigenvector
corresponding to the smallest eigenvalue. In (3), the
computation of the normalized Green’s function is realized
using the full eigendecomposition of the Laplacian matrix.
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The most reliable algorithm for computing the eigenspectrum
of an n� n matrix is by reducing the matrix to a tridiagonal
form and then solving the eigenproblem for the tridiagonal
matrix. The Householder method is normally used for
tridiagonal matrix reduction. The method takes 4

3n
3 þOðn2Þ

operations (see SSBTRD in LAPACK). Typical eigensolvers
such as QR have a complexity of Oðn3Þ for a tridiagonal
eigenproblem. However, this can be reduced to Oðn2Þ using
the divide-and-conquer (D&C) method or multiple relatively
robust representations (MR3). Even so, the overall complexity
of solving a full eigenproblem is still Oðn3Þ. Fortunately, the
matrices that concern us here are sparse, since from (25), it is
clear that the graphs are only locally connected. In this case,
more efficient methods such as the Lanczos method
(ARPACK) can be used. In the Lanczos method, the
eigenspectrum of a k� k symmetric tridiagonal matrix TD
is used to approximate the eigenspectrum of the original
matrix A. The most expensive part of this method is the
construction of the matrixTD, which requires kmatrix-vector
multiplications with A. If A is sparse, as in our case, the
matrix-vector computation is only OðnÞ. As a result, the
overall complexity of the Lanczos method isOðknÞ. Since we
compute the full eigenspectrum, then k ¼ n and the corre-
sponding complexity rises to Oðn2Þ. The computations
required for Step 5 are similar. Although the commute time
matrix becomes dense, we only need to compute the
eigenvector corresponding to the smallest eigenvalue. In this
case, an iterative eigensolver such as the Lanczos method is
much more efficient than a fully diagonalized one (LAPACK)
and has a complexity Oðn2Þ.

Compared to the normalized cut method, our commute
time clustering method is less efficient. This is because the
matrix underpinning the normalized cut is sparse and only a
few eigenvectors need to be computed. The normalized cut
method uses the Lanczos method to solve the eigenproblem
inOðn3=2Þ time. Commute time embedding, on the other hand,
is similar to the normalized cut and has comparable
efficiency. From (11) or (12), the commute time embedding
requires the first d eigenvalues and eigenvectors of either the
normalized or unnormalized Laplacian matrix to be computed.
Here, d is the dimension of embedded subspace. In all our
experiments, d � 3. Since both the normalized and unnorma-
lized Laplacian matrices are real, symmetric, and sparse, their
first few eigenvalues and eigenvectors can be computed
using the Lanczos method in Oðn3=2Þ time.

4.2 Multibody Motion Tracking Using Commute
Time

In this section, we will show how the multibody motion
tracking problem can be posed as one of commute time
embedding using the Q matrix. The method is motivated by
the intuition that since the eigenvectors associated with the
different objects span different subspaces, they can be
embedded using a spectral method and separated using a
simple clustering method.

4.2.1 Factorization Method Review

Suppose that there are N objects moving independently in a
scene and the movement is acquired by an affine camera as
F frames. In each frame, P feature points are tracked and
the coordinate of the ith point in the fth frame is given by
ðxfi ; y

f
i Þ. Let X and Y denote two F � P matrices con-

structed from the image coordinates of all the points across
all of the frames

X ¼

x1
1 x1

2 � � � x1
P

x2
1 x2

2 � � � x2
P

..

. ..
. . .

. ..
.

xF1 xF2 � � � xFP

2
6664

3
7775 Y ¼

y1
1 y1

2 � � � y1
P

y2
1 y2

2 � � � y2
P

..

. ..
. . .

. ..
.

yF1 yF2 � � � yFP

2
6664

3
7775:

Each row in the two matrices above corresponds to a single
frame, and each column corresponds to a single point. The
two coordinate matrices can be stacked to form the matrix
W ¼ X

Y

� �
2F�P .

The W matrix can be factorized into a motion matrix M
and a shape matrix S; thus, W2F�P ¼M2F�r � Sr�P , where r
is the rank of W (r ¼ 4 in the case of W without noise and
outliers). The intuition underpinning the factorization
method is that using shape information alone, image
features can be segmented or grouped into individual
objects based on their shape properties. In order to solve the
factorization problem, matrix W can be decomposed using
SVD as W ¼ U�RT . If the features from the same object are
grouped together, then U , �, and R will have a block-
diagonal structure

W ¼ ½U1 � � �UN �
�1

. .
.

�N

2
64

3
75

RT
1

. .
.

RT
N

2
64

3
75

and the shape matrix for object k can be approximated by
Sk ¼ B�1�kR

T
k , where B is an invertible matrix that can be

found from M.
In a real multibody tracking problem, the coordinates of

the different objects are potentially permuted into a random
order. As a result, it is impossible to correctly recover the
shape matrix Sk without knowledge of the correspondence
order. Since the eigenvector matrix V is related to the shape
matrix, the shape interaction matrix was introduced by
Costeira and Kanade [7], [8] to solve the multibody
separation problem. The shape interaction matrix is

Q ¼ RRT ¼

ST1 ��1
1 S1 0 � � � 0
0 ST2 ��1

2 S2 � � � 0

..

. ..
. . .

.
0

0 0 � � � STN��1
N SN

2
6664

3
7775: ð26Þ

From (26), the shape interaction matrix Q has the
convenient properties that Qðu; vÞ ¼ 0 if points u and v
belong to different objects and Qðu; vÞ 6¼ 0 if points u and v
belong to the same object. The matrix Q is also invariant to
both the object motion and the selection of the object
coordinate systems. This leads to a simple scheme for
separating multiobject motions by permuting the elements
ofQ so that it acquires a block-diagonal structure. In Costeira
and Kanade’s method [7], [8], a greedy algorithm is used to
permute the Q matrix into block-diagonal form. An illustra-
tion is shown in Fig. 5. Fig. 5a shows the set of original points
together with their trails, Fig. 5b theQmatrix for these points,
Fig. 5c the result of applying Costeira and Kanade’s method
to sort the Q matrix, and Fig. 5d the result of separating the
points into moving objects. This method works well only for
the ideal case, where there is no noise, and outliers are not
present. In Figs. 5e and 5f, we, respectively, show the effect of
adding Gaussian noise to theQmatrix in 5b and the resulting
permuted matrix. In this noisy case, the block structure is
badly corrupted and object separation is almost impossible.
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4.2.2 Commute Time Formulation

Having discussed some of the properties of the commute
time embedding, in this section, we will show how it may
be used for multibody motion analysis.

As we have already seen, the shape interaction matrix Q
introduced in the factorization method is invariably con-
taminated by noise and this limits its effectiveness. Our aim
is to use commute time as a shape separation measure.
Specifically, we use the commute time to refine the block
structure of the Q matrix and group the feature points into
objects.

The idea is to embed the feature points into a subspace in
such a way that feature points belonging to the same object
will remain in close proximity. This can be realized by
commute time embedding. When commute time is pre-
served, points belonging to the same object will be in close
proximity since they have a smaller commute time. On the
other hand, noise and outliers will be spread sparsely and can
be eliminated by a simple clustering method such as
K-Means. An alternative approach to embedding feature
points is to use the eigenvectors of the commute time matrix.
As we have seen in Section 4.1, the eigenvectors of the
commute time matrix contain cluster information and can be
used for grouping points into partitions. The reason why we
use the commute time embedding here are twofold: First, the
euclidean distance in the embedding subspace approximates
the commute time. Second, the commute time embedding is
more efficient since it requires that only the Laplacian
eigenspectrum be computed and not the additional eigende-
composition of the commute time matrix. In principle,

embedding using eigenvectors of the commute time matrix
will give finer clusters. This is because the commute time
matrix is more block diagonal than the Laplacian.

Object Separation Steps. The algorithm we propose for
this purpose has the following steps:

1. Use the shape interaction matrix Q as the weighted
adjacency matrix �, and construct the corresponding
graph �.

2. Compute the Laplacian matrix of graph � using
L ¼ T �Q.

3. Find the eigenvalue matrix � and eigenvector matrix
� of L using L ¼ ���T .

4. Embed the commute time into a subspace of Rn

using (11) or (12).
5. Cluster the data points in the subspace using the

K-Means algorithm [23].

To illustrate the effectiveness of this method, we return to
the example used earlier in Fig. 5. First, in the ideal case, the
Q matrix will have a zero value for the feature points
belonging to different objects. As a result, the graph �,
constructed fromQ, will have disjoint subgraphs correspond-
ing to the nodes belonging to different objects. The partitions
give rise to infinite commute times and are hence unreachable
by the random walk. However, when we add noise (Q with
zero mean and standard derivation 0.8 Gaussian noise) and
the clustering steps listed above, we still recover a good set of
objects (see Fig. 5d). This is illustrated in Fig. 6. Here, Fig. 6a
shows the commute time matrix of graph � and Fig. 6b shows
the embedding in a 3D subspace. It is clear that the commute
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Fig. 5. A multibody motion separation example using Costeira and Kanade’s method. (a) Original picture with trails of the moving feature points.

(b) OriginalQmatrix unsorted. (c) SortedQ by Costeira and Kanade’s method. (d) Object separation result. (e) Qmatrix with Gaussian noise � ¼ 0:8.

(f) Sorted Q with noise.



time matrix gives a good block-diagonal structure and the

points are well clustered in the embedding space even when

significant noise is present.

5 EXPERIMENTS

In this section, we describe our experiments with the two

applications of commute time. First, we show results on

clustering and image segmentation, and then, we show

motion tracking results on synthetic and real-world videos

sequences.

5.1 Image Segmentation and Data Clustering

5.1.1 Point-Set Clustering Examples

In Figs. 7a and 7b, we, respectively, show and compare the

results obtained for point-set clustering using commute times

and the normalized cut. Here, we set � ¼ 1:5. The subfigures

in both figures are organized as follows: The leftmost column
shows the point sets, the middle column the affinity matrices,
and the rightmost column the components of the smallest
eigenvector. The first row shows the first bipartition on the
original data. From this bipartition, we obtain two separate
clusters, and using each of them, we perform a second
bipartition. The second bipartition results are shown in the
second and third rows of Figs. 7a and 7b. In the figures, it is
clear that both methods succeeded in grouping the data.
However, the commute time method outperforms the
normalized cut since its affinity matrix has a stronger block
structure and the distribution of the smallest eigenvector
components is more stable. Moreover, its jumps, correspond-
ing to the different clusters in the data, are larger. Since the
eigenvector is taken as an indicator for the membership of the
cluster, the more differentiated the distribution of the
components of this eigenvector, the closer the relaxed
solution is toward the desired discrete solution. This point
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Fig. 6. Multibody motion separation recast as a commute time clustering problem. (a) Sorted commute time matrix. (b) Clustered points in the

commute time subspace for two objects.

Fig. 7. Clustering examples. (a) Data clustering by commute time. (b) Data clustering by normalized cut.



is well illustrated in the third column of Fig. 7a compared to

the one in Fig. 7b. In the figures, it is clear that the eigenvector

delivered by our commute time matrix is strongly bimodal.

This is due to the strong block structure of the commute time

matrix as illustrated in the middle of Fig. 7a compared to the

normalized affinity matrix in Fig. 7b.

5.1.2 Image Segmentation

We have compared our new method with that of Shi and

Malik [37] on synthetic images subject to additive Gaussian

noise. On the left-hand side of Fig. 8, we show the results of

using these two methods for segmenting a synthetic image

composed of three rectangular regions with additive (zero

mean and standard derivation increasing evenly from 0.04 to

0.20) random Gaussian noise. On the right-hand side of Fig. 8,

we show the fraction of pixels correctly assigned as a function

of the noise standard derivation. At the highest noise levels,

our method outperforms the Shi and Malik method by about

10 percent.

In Fig. 9, we show eight real-world images (from the
Berkeley image database) with the corresponding segmen-
tation results. The images are scaled to be 50� 50 in size,
and the parameters used for producing the results are r ¼ 5,
�I ¼ 0:02, and �X ¼ 0:2. In each set of the images, the
leftmost panel shows the original image. The middle and
rightmost panels show the results from two successive
bipartitions.

For four of the real images, we compare our method with
the normalized cut in Figs. 10 and 11. The first column of
each subfigure shows the first, second, and third biparti-
tions of the images. The second column shows the
histogram of the components of the smallest eigenvector,
and the third column shows the distribution of the
eigenvector components. The blue and red lines in the
third column, respectively, correspond to zero and the
eigenvector component threshold.

Comparing the segmentation results in the first column,
it is clear that commute time outperforms the normalized
cut in maintaining both region integrity and continuity. For
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Fig. 8. Method comparison for a synthetic image with increasing Gaussian noise.

Fig. 9. Real-world segmentation examples.



instance, in the case of the baseball player, the background
trademark and the limbs of the players are well segmented.
In the case of the bird, the thin tree branch is detected. For
the astronaut, the boundary between space and the earth is
detected. Finally, for the hand, the finger nails and ring are
correctly segmented by the commute time method. Another
important feature is that, once again, the eigenvector
distribution is more stable and discriminates more strongly
between clusters. This is illustrated in the second and third
columns of Figs. 10 and 11, where the distribution of
eigenvector components in the histograms is better sepa-
rated for the commute time method. Hence, the correspond-
ing cluster indicators give better separation.

5.2 Multibody Motion Tracking Problem

In this section, we conduct experiments with the commute
time embedding method on both synthetic data and real-
world motion tracking problems. To investigate the robust-
ness of the method, we add Gaussian noise to the data sets
and compare the results with some classical methods.

5.2.1 Synthetic Data

Fig. 12 shows a sequence of five consecutive synthetic images
with 20 background points (green dots) and 20 foreground
points (red dots) moving independently. We have added a
Gaussian noise of zero mean and standard deviation � to the
coordinates of these 29 points and then clustered them into
two groups.

We have compared our method with Costeira and
Kanade’s greedy algorithm [7], [8], Ichimura’s discrimination
criterion method [18], and Kanatani’s subspace separation
method [19]. In Fig. 13, we plot the average misclassification
ratio as a function of� for different algorithms. The results are
based on the averages of 50 trials for each method. In the
figure, it is clear that our method performs significantly better
than the greedy method [8] and the discrimination criterion
method [18]. It also has a margin of advantage over the
subspace separation method [19].

For an example with a Gaussian noise with � ¼ 0:5, the
commute time matrix and the embedded subspace are shown
in Figs. 13b and 13c, respectively. It is clear that even in this
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Fig. 10. Detailed segmentation process comparison. (a) Commute time for a 50� 50 image with r ¼ 8, �X ¼ 0:5 and �I ¼ 0:1. (b) Commute time for a
60� 40 image with r ¼ 5, �X ¼ 0:2 and �I ¼ 0:02. (c) Normalized cut for a 50� 50 image with r ¼ 5, �X ¼ 2 and �I ¼ 0:05. (d) Normalized cut for a
60� 40 image with r ¼ 5, �X ¼ 0:05 and �I ¼ 0:01.



heavily noise-contaminated case, the commute time matrix

still maintains a good block-diagonal structure. Moreover,

under the embedding, the points are easily separated.

5.2.2 Real-World Motion Tracking

In this section, we experiment with the commute time

method on real-world multibody motion tracking problems.

The columns in Fig. 14 show five real-world video

sequences overlaid with the successfully tracked feature

points using the commute time method. The full sequences

can be found in the supplementary material Web site.

The first three columns are for the data used by Sugaya and
Kanatani in [39], [40]. Here, there is one moving object and a
moving camera. A successful tracking method will separate
the moving object from the moving background. The fourth
and fifth columns in Fig. 14 are two video sequences captured
using a FujiFilm 2.0M camera (320� 240 pixels). For each of
sequence, we detected feature points using the Kanade-
Lucas-Tomasi (KLT) algorithm [38] and tracked the feature
points using the commute time method. Due to the contin-
uous loss of the feature points in the successive frames by the
KLT algorithm, we use only 10 frames each from the
sequences with 117 and 116 feature points, respectively.
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Fig. 11. Detailed segmentation process comparison. (a) Commute time for a 60� 58 image with r ¼ 5, �X ¼ 0:1 and �I ¼ 0:03. (b) Commute time for
a 50� 40 image with r ¼ 10, �X ¼ 0:1 and �I ¼ 0:03. (c) Normalized cut for a 60� 58 image withr ¼ 5, �X ¼ 0:1 and �I ¼ 0:03. (d) Normalized cut for
a 50� 40 image with r ¼ 5, �X ¼ 5 and �I ¼ 0:02.

Fig. 12. Synthetic image sequence.



Compared to the data from Sugaya and Kanatani [39], [40],
we increase the number of detected moving objects from one
to two, which makes the separation more difficult.

In the case of the forth column in Fig. 14, our method not
only separates the ducks correctly from the moving back-
ground but also separates the moving ducks from each other.
The fifth column in Fig. 14 is the most difficult one with two
independently moving hands and a moving background. It
also separates the wall from the floor correctly.

In Fig. 15, we show the trajectories for the tracked points in
each of the video sequences. Here, the outliers are success-
fully removed. The different sequences offer tasks of
increasing difficulty. The easiest sequence is the one labeled
A, where the background has a uniform and almost linear
relative movement, and the foreground car follows a curved
trajectory. There is a similar pattern in the sequence labeled B,
but, here, the background movement is more significant. In
sequence C, there is both camera pan and abrupt object
movement. Sequence D has camera pan and three indepen-
dently moving objects. Finally, in sequence E, there is
background jitter (due to camera shake) and two objects
exhibiting independent overall movements together with
articulations. In Fig. 16, we show the embeddings of the
tracked points for the sequences. The feature to note is that the
different moving objects form distinct clusters and are well
separated from the background. The color coding scheme
used in the plot is the same as that used in the rows in Fig. 14.

For the same sequences, we compared our results with
Costeira and Kanade’s greedy algorithm [8], Ichimura’s

discrimination criterion method [18], Kanatani’s subspace
separation method [19], and Sugaya and Kanatani’s multi-
stage learning [40]. The comparison is shown in Table 1.

Table 1 lists the accuracies of the different methods using
the ratio of the number of correctly classified points to the
total number of points. The ratio is averaged over 50 trails
for each method. In the table, it is clear that the greedy
algorithm [8] gives the worst results. This is because the
greedy algorithm simply sorts according to the magnitude
of elements of the Q matrix and this matrix is susceptible to
noise. The discrimination criterion method [18] and the
subspace separation method [19] perform better due to their
robustness to the noise. The discrimination criterion method
effectively rejects noise and outliers by selecting the most
reliable features. The subspace separation method removes
outliers by fitting a subspace only to consistent trajectories.

The multistage learning method [40] delivers significantly
better results due to its adaptive capabilities but failed on our
data. The failures are most pronounced when there are
several moving objects and an inconsistent moving back-
ground. Our method gives the best performance and achieves
100 percent accuracy. In our method, motion jitter or noise
disturbance will be correctly recognized and suppressed by
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Fig. 13. Synthetic data. (a) Method comparison. (b) Sorted commute

time matrix. (c) Embedded subspace.

Fig. 14. Real-world video sequences and successfully tracked feature

points.



the embedding process. Outliers, on the other hand, are

automatically rejected in the clustering step by the K-Means

algorithm.

6 CONCLUSION

In this paper, we have explored the use of commute time for

image segmentation problems in computer vision. We

commenced by reviewing some of the properties of

commute time and its relationship with the Laplacian

spectrum. This analysis relied on the discrete Green’s

function of the graph. Two of the most important properties

are that the Green’s function is a kernel and that the
commute time is a metric.

With the mathematical definitions of commute time at
hand, we have analyzed the properties of the commute time
embedding. This allows us to understand the links between
the commute time and alternative methods such as the
normalized cut and the diffusion map.

We have explored two applications of the commute time.
The first of these is image segmentation and the second is
multibody motion tracking. Both methods are proven to
outperform alternatives in terms of their ability to separate
the input data into cleanly separated clusters.
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Fig. 15. Feature point trajectories.

Fig. 16. Sequences embedded by commute time in the subspace.



There are a number of ways in which the work described
in this paper can be extended. First, we would like to
perform a detailed matrix perturbation analysis to better
understand the stability properties of commute time.

Second, we would like to extend the methods reported
here to discrete graph structures and to see if they lend
themselves to higher level image analysis tasks such as
object recognition and shape indexing.
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